Skip to contents

This function computes the Cox Model based on lars variables computed model with

  • as the response: the Residuals of a Cox-Model fitted with no covariate

  • as explanatory variables: Xplan.

It uses the package lars to perform PLSR fit.

Usage

larsDR_coxph(Xplan, ...)

# Default S3 method
larsDR_coxph(
  Xplan,
  time,
  time2,
  event,
  type,
  origin,
  typeres = "deviance",
  collapse,
  weighted,
  scaleX = FALSE,
  scaleY = TRUE,
  plot = FALSE,
  typelars = "lasso",
  normalize = TRUE,
  max.steps,
  use.Gram = TRUE,
  allres = FALSE,
  verbose = TRUE,
  ...
)

# S3 method for class 'formula'
larsDR_coxph(
  Xplan,
  time,
  time2,
  event,
  type,
  origin,
  typeres = "deviance",
  collapse,
  weighted,
  scaleX = FALSE,
  scaleY = TRUE,
  plot = FALSE,
  typelars = "lasso",
  normalize = TRUE,
  max.steps,
  use.Gram = TRUE,
  allres = FALSE,
  dataXplan = NULL,
  subset,
  weights,
  model_frame = FALSE,
  model_matrix = FALSE,
  verbose = TRUE,
  contrasts.arg = NULL,
  ...
)

Arguments

Xplan

a formula or a matrix with the eXplanatory variables (training) dataset

...

Arguments to be passed on to survival::coxph or to lars::lars.

time

for right censored data, this is the follow up time. For interval data, the first argument is the starting time for the interval.

time2

The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event.

event

ending time of the interval for interval censored or counting process data only. Intervals are assumed to be open on the left and closed on the right, (start, end]. For counting process data, event indicates whether an event occurred at the end of the interval.

type

character string specifying the type of censoring. Possible values are "right", "left", "counting", "interval", or "interval2". The default is "right" or "counting" depending on whether the time2 argument is absent or present, respectively.

origin

for counting process data, the hazard function origin. This option was intended to be used in conjunction with a model containing time dependent strata in order to align the subjects properly when they cross over from one strata to another, but it has rarely proven useful.

typeres

character string indicating the type of residual desired. Possible values are "martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", and "scaledsch". Only enough of the string to determine a unique match is required.

collapse

vector indicating which rows to collapse (sum) over. In time-dependent models more than one row data can pertain to a single individual. If there were 4 individuals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4) could be used to obtain per subject rather than per observation residuals.

weighted

if TRUE and the model was fit with case weights, then the weighted residuals are returned.

scaleX

Should the Xplan columns be standardized ?

scaleY

Should the time values be standardized ?

plot

Should the survival function be plotted ?)

typelars

One of "lasso", "lar", "forward.stagewise" or "stepwise". The names can be abbreviated to any unique substring. Default is "lasso".

normalize

If TRUE, each variable is standardized to have unit L2 norm, otherwise it is left alone. Default is TRUE.

max.steps

Limit the number of steps taken; the default is 8 * min(m, n-intercept), with m the number of variables, and n the number of samples. For type="lar" or type="stepwise", the maximum number of steps is min(m,n-intercept). For type="lasso" and especially type="forward.stagewise", there can be many more terms, because although no more than min(m,n-intercept) variables can be active during any step, variables are frequently droppped and added as the algorithm proceeds. Although the default usually guarantees that the algorithm has proceeded to the saturated fit, users should check.

use.Gram

When the number m of variables is very large, i.e. larger than N, then you may not want LARS to precompute the Gram matrix. Default is use.Gram=TRUE

allres

FALSE to return only the Cox model and TRUE for additionnal results. See details. Defaults to FALSE.

verbose

Should some details be displayed ?

dataXplan

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in dataXplan, the variables are taken from environment(Xplan), typically the environment from which plscox is called.

subset

an optional vector specifying a subset of observations to be used in the fitting process.

weights

an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.

model_frame

If TRUE, the model frame is returned.

model_matrix

If TRUE, the model matrix is returned.

contrasts.arg

a list, whose entries are values (numeric matrices, functions or character strings naming functions) to be used as replacement values for the contrasts replacement function and whose names are the names of columns of data containing factors.

Value

If allres=FALSE :

cox_larsDR

Final Cox-model.

If allres=TRUE :

DR_coxph

The (Deviance) Residuals.

larsDR

The LASSO/LARS model fitted to the (Deviance) Residuals.

X_larsDR

The eXplanatory variables.

cox_larsDR

Final Cox-model.

Details

This function computes the LASSO/LARS model with the Residuals of a Cox-Model fitted with an intercept as the only explanatory variable as the response and Xplan as explanatory variables. Default behaviour uses the Deviance residuals.

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the (Deviance) Residuals, the LASSO/LARS model fitted to the (Deviance) Residuals, the eXplanatory variables and the final Cox-model. allres=TRUE is useful for evluating model prediction accuracy on a test sample.

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nicolas Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics, 31(3):397-404, doi:10.1093/bioinformatics/btu660.

See also

Examples


data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(cox_larsDR_fit <- larsDR_coxph(X_train_micro,Y_train_micro,C_train_micro,max.steps=6,
use.Gram=FALSE,scaleX=TRUE))
#> Loaded lars 1.3
#> Call:
#> coxph(formula = YCsurv ~ ., data = X_larsDR)
#> 
#>            coef exp(coef) se(coef)      z        p
#> D20S107  0.6263    1.8706   0.4316  1.451 0.146794
#> D3S1282 -0.2857    0.7515   0.4547 -0.628 0.529826
#> D15S127  0.9521    2.5911   0.3834  2.483 0.013027
#> D2S138  -1.3850    0.2503   0.4197 -3.300 0.000967
#> D16S408 -0.7357    0.4792   0.3880 -1.896 0.057930
#> N        0.4274    1.5332   0.2675  1.598 0.110118
#> 
#> Likelihood ratio test=31.8  on 6 df, p=1.784e-05
#> n= 80, number of events= 17 
(cox_larsDR_fit <- larsDR_coxph(~X_train_micro,Y_train_micro,C_train_micro,max.steps=6,
use.Gram=FALSE,scaleX=TRUE))
#> Loaded lars 1.3
#> Call:
#> coxph(formula = YCsurv ~ ., data = X_larsDR)
#> 
#>                         coef exp(coef) se(coef)      z        p
#> X_train_microD20S107  0.6263    1.8706   0.4316  1.451 0.146794
#> X_train_microD3S1282 -0.2857    0.7515   0.4547 -0.628 0.529826
#> X_train_microD15S127  0.9521    2.5911   0.3834  2.483 0.013027
#> X_train_microD2S138  -1.3850    0.2503   0.4197 -3.300 0.000967
#> X_train_microD16S408 -0.7357    0.4792   0.3880 -1.896 0.057930
#> X_train_microN        0.4274    1.5332   0.2675  1.598 0.110118
#> 
#> Likelihood ratio test=31.8  on 6 df, p=1.784e-05
#> n= 80, number of events= 17 
(cox_larsDR_fit <- larsDR_coxph(~.,Y_train_micro,C_train_micro,max.steps=6,
use.Gram=FALSE,scaleX=TRUE,dataXplan=X_train_micro_df))
#> Loaded lars 1.3
#> Call:
#> coxph(formula = YCsurv ~ ., data = X_larsDR)
#> 
#>            coef exp(coef) se(coef)      z        p
#> D20S107  0.6263    1.8706   0.4316  1.451 0.146794
#> D3S1282 -0.2857    0.7515   0.4547 -0.628 0.529826
#> D15S127  0.9521    2.5911   0.3834  2.483 0.013027
#> D2S138  -1.3850    0.2503   0.4197 -3.300 0.000967
#> D16S408 -0.7357    0.4792   0.3880 -1.896 0.057930
#> N        0.4274    1.5332   0.2675  1.598 0.110118
#> 
#> Likelihood ratio test=31.8  on 6 df, p=1.784e-05
#> n= 80, number of events= 17 

larsDR_coxph(~X_train_micro,Y_train_micro,C_train_micro,max.steps=6,use.Gram=FALSE)
#> Loaded lars 1.3
#> Call:
#> coxph(formula = YCsurv ~ ., data = X_larsDR)
#> 
#>                          coef exp(coef) se(coef)      z        p
#> X_train_microD20S107  1.27033   3.56204  0.87552  1.451 0.146794
#> X_train_microD3S1282 -0.56794   0.56669  0.90398 -0.628 0.529826
#> X_train_microD15S127  1.89761   6.66992  0.76423  2.483 0.013027
#> X_train_microD2S138  -2.75342   0.06371  0.83440 -3.300 0.000967
#> X_train_microD16S408 -1.47895   0.22788  0.77994 -1.896 0.057930
#> X_train_microN        0.54943   1.73227  0.34390  1.598 0.110118
#> 
#> Likelihood ratio test=31.8  on 6 df, p=1.784e-05
#> n= 80, number of events= 17 
larsDR_coxph(~X_train_micro,Y_train_micro,C_train_micro,max.steps=6,use.Gram=FALSE,scaleX=FALSE)
#> Loaded lars 1.3
#> Call:
#> coxph(formula = YCsurv ~ ., data = X_larsDR)
#> 
#>                          coef exp(coef) se(coef)      z        p
#> X_train_microD20S107  1.27033   3.56204  0.87552  1.451 0.146794
#> X_train_microD3S1282 -0.56794   0.56669  0.90398 -0.628 0.529826
#> X_train_microD15S127  1.89761   6.66992  0.76423  2.483 0.013027
#> X_train_microD2S138  -2.75342   0.06371  0.83440 -3.300 0.000967
#> X_train_microD16S408 -1.47895   0.22788  0.77994 -1.896 0.057930
#> X_train_microN        0.54943   1.73227  0.34390  1.598 0.110118
#> 
#> Likelihood ratio test=31.8  on 6 df, p=1.784e-05
#> n= 80, number of events= 17 
larsDR_coxph(~X_train_micro,Y_train_micro,C_train_micro,max.steps=6,use.Gram=FALSE,
scaleX=TRUE,allres=TRUE)
#> Loaded lars 1.3
#> $DR_coxph
#>           1           2           3           4           5           6 
#> -1.48432960 -0.54695398 -0.23145502 -0.34003013 -0.97633722 -0.38667660 
#>           7           8           9          10          11          12 
#> -0.38667660  1.57418914 -0.54695398 -0.15811388  2.10405254 -0.23145502 
#>          13          14          15          16          17          18 
#> -0.38667660 -1.09692040 -0.15811388 -0.15811388 -0.54695398 -0.38667660 
#>          19          20          21          22          23          24 
#>  0.65978609 -1.09692040 -0.43627414 -0.28961087 -0.38667660 -0.97633722 
#>          25          26          27          28          29          30 
#> -1.09692040 -0.15811388 -0.43627414 -0.43627414 -0.38667660 -0.23145502 
#>          31          32          33          34          35          36 
#>  2.30072697 -0.49023986 -0.54695398 -0.73444882  1.31082939 -0.97633722 
#>          37          38          39          40          41          42 
#>  1.70134282 -0.54695398 -0.15811388  1.07714870 -0.15811388 -0.49023986 
#>          43          44          45          46          47          48 
#> -0.34003013 -0.97633722 -0.15811388 -0.91410465 -1.09692040 -0.43627414 
#>          49          50          51          52          53          54 
#> -0.38667660 -0.09836581 -0.79392956  0.46851068 -0.34003013  1.95366297 
#>          55          56          57          58          59          60 
#>  2.60558118 -0.54695398 -1.09692040 -0.15811388 -0.49023986 -0.97633722 
#>          61          62          63          64          65          66 
#> -0.28961087  1.44879795  1.82660327 -0.38667660  0.96936094 -0.15811388 
#>          67          68          69          70          71          72 
#> -0.43627414 -0.49023986  1.18850436 -0.97633722 -0.97633722  0.86322194 
#>          73          74          75          76          77          78 
#> -0.43627414 -0.49023986 -0.38667660  0.76231394 -0.97633722 -0.43627414 
#>          79          80 
#> -0.54695398 -0.43627414 
#> 
#> $larsDR
#> 
#> Call:
#> lars(x = structure(c(-1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, -1.04472358469647, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, 0.945226100439667, -1.04472358469647, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, -1.04472358469647, 0.945226100439667, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, 0.945226100439667, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, -1.04472358469647, 0.945226100439667, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> 1.09861023317847, -0.898862918055109, 1.09861023317847, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, 1.09861023317847, 1.09861023317847, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> -0.898862918055109, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, 1.04472358469647, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, -1.21706614446381, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, -1.21706614446381, 
#> 0.811377429642539, -1.21706614446381, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, -1.21706614446381, 
#> -1.21706614446381, -1.21706614446381, -1.21706614446381, 0.811377429642539, 
#> -1.21706614446381, -1.21706614446381, -1.21706614446381, -1.21706614446381, 
#> 0.811377429642539, -1.21706614446381, -1.21706614446381, 0.811377429642539, 
#> -1.21706614446381, -1.21706614446381, -1.21706614446381, 0.811377429642539, 
#> -1.21706614446381, -1.21706614446381, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, -1.21706614446381, 
#> -1.21706614446381, 0.811377429642539, -1.21706614446381, -1.21706614446381, 
#> -1.21706614446381, -1.21706614446381, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, 0.811377429642539, 
#> -1.21706614446381, -1.21706614446381, 0.811377429642539, 0.811377429642539, 
#> -1.21706614446381, -1.21706614446381, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, -1.21706614446381, 
#> -1.21706614446381, 0.811377429642539, -1.21706614446381, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, 0.811377429642539, 
#> 0.811377429642539, 0.811377429642539, 0.811377429642539, 0.811377429642539, 
#> -1.21706614446381, 0.921796779298767, -1.07127733810397, -1.07127733810397, 
#> 0.921796779298767, 0.921796779298767, -1.07127733810397, 0.921796779298767, 
#> -1.07127733810397, -1.07127733810397, 0.921796779298767, 0.921796779298767, 
#> 0.921796779298767, -1.07127733810397, -1.07127733810397, 0.921796779298767, 
#> -1.07127733810397, -1.07127733810397, -1.07127733810397, 0.921796779298767, 
#> 0.921796779298767, -1.07127733810397, -1.07127733810397, -1.07127733810397, 
#> 0.921796779298767, -1.07127733810397, 0.921796779298767, -1.07127733810397, 
#> -1.07127733810397, -1.07127733810397, 0.921796779298767, 0.921796779298767, 
#> 0.921796779298767, -1.07127733810397, 0.921796779298767, 0.921796779298767, 
#> 0.921796779298767, 0.921796779298767, -1.07127733810397, -1.07127733810397, 
#> -1.07127733810397, -1.07127733810397, 0.921796779298767, 0.921796779298767, 
#> -1.07127733810397, -1.07127733810397, -1.07127733810397, -1.07127733810397, 
#> 0.921796779298767, -1.07127733810397, 0.921796779298767, 0.921796779298767, 
#> -1.07127733810397, -1.07127733810397, 0.921796779298767, -1.07127733810397, 
#> 0.921796779298767, 0.921796779298767, 0.921796779298767, 0.921796779298767, 
#> 0.921796779298767, 0.921796779298767, 0.921796779298767, 0.921796779298767, 
#> -1.07127733810397, -1.07127733810397, 0.921796779298767, -1.07127733810397, 
#> 0.921796779298767, 0.921796779298767, 0.921796779298767, 0.921796779298767, 
#> -1.07127733810397, 0.921796779298767, 0.921796779298767, -1.07127733810397, 
#> 0.921796779298767, 0.921796779298767, -1.07127733810397, 0.921796779298767, 
#> -1.07127733810397, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 0.945226100439667, -1.04472358469647, 0.945226100439667, 
#> -1.04472358469647, 0.945226100439667, -1.04472358469647, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, 0.945226100439667, -1.04472358469647, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.769740215917033, -0.769740215917033, 1.28290035986172, 
#> 1.28290035986172, -0.769740215917033, 1.28290035986172, 1.28290035986172, 
#> 1.28290035986172, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> 1.28290035986172, -0.769740215917033, 1.28290035986172, -0.769740215917033, 
#> -0.769740215917033, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> 1.28290035986172, -0.769740215917033, -0.769740215917033, 1.28290035986172, 
#> 1.28290035986172, 1.28290035986172, 1.28290035986172, -0.769740215917033, 
#> 1.28290035986172, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> 1.28290035986172, -0.769740215917033, -0.769740215917033, 1.28290035986172, 
#> -0.769740215917033, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> 1.28290035986172, 1.28290035986172, 1.28290035986172, -0.769740215917033, 
#> 1.28290035986172, -0.769740215917033, 1.28290035986172, -0.769740215917033, 
#> -0.769740215917033, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> -0.769740215917033, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> 1.28290035986172, -0.769740215917033, -0.769740215917033, 1.28290035986172, 
#> 1.28290035986172, 1.28290035986172, -0.769740215917033, 1.28290035986172, 
#> -0.769740215917033, -0.769740215917033, 1.28290035986172, 1.28290035986172, 
#> -0.769740215917033, -0.769740215917033, 1.28290035986172, -0.769740215917033, 
#> -0.769740215917033, -0.769740215917033, -0.769740215917033, -0.769740215917033, 
#> -0.769740215917033, 1.28290035986172, -0.769740215917033, 1.28290035986172, 
#> -0.769740215917033, 0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> -0.99373034571759, 0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, 0.99373034571759, 0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, 0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> -0.99373034571759, -0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> -0.99373034571759, -0.99373034571759, 0.99373034571759, -0.99373034571759, 
#> -0.99373034571759, 0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, -0.99373034571759, -0.99373034571759, -0.99373034571759, 
#> -0.99373034571759, -0.99373034571759, -0.99373034571759, -0.99373034571759, 
#> 0.99373034571759, 0.99373034571759, -0.99373034571759, -0.99373034571759, 
#> 0.99373034571759, -0.99373034571759, 0.99373034571759, -0.99373034571759, 
#> -0.99373034571759, -0.99373034571759, 0.99373034571759, -0.99373034571759, 
#> -0.99373034571759, 0.99373034571759, 0.99373034571759, 0.99373034571759, 
#> -0.99373034571759, 0.99373034571759, -0.99373034571759, -0.99373034571759, 
#> -0.99373034571759, -0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, 0.99373034571759, 0.99373034571759, 0.99373034571759, 
#> -0.99373034571759, -0.99373034571759, 0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, 0.99373034571759, -0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, -0.99373034571759, 0.99373034571759, 0.99373034571759, 
#> 0.99373034571759, -0.99373034571759, 0.99373034571759, -0.99373034571759, 
#> -0.99373034571759, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, 1.07127733810397, 
#> 1.07127733810397, 1.07127733810397, -0.921796779298767, 1.07127733810397, 
#> -0.921796779298767, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, -0.921796779298767, -0.921796779298767, 1.07127733810397, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, 1.07127733810397, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, 1.07127733810397, 
#> -0.921796779298767, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> 1.07127733810397, 1.07127733810397, -0.921796779298767, 1.07127733810397, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, 1.07127733810397, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, 1.07127733810397, 
#> -0.921796779298767, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, -0.921796779298767, 1.07127733810397, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, 1.21706614446381, 
#> -0.811377429642539, 1.21706614446381, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, -0.811377429642539, 1.21706614446381, 
#> 1.21706614446381, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, -0.811377429642539, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, 1.21706614446381, 
#> -0.811377429642539, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, 1.21706614446381, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, 1.21706614446381, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, 1.12678429929728, -0.876387788342327, -0.876387788342327, 
#> 1.12678429929728, 1.12678429929728, -0.876387788342327, 1.12678429929728, 
#> 1.12678429929728, 1.12678429929728, -0.876387788342327, 1.12678429929728, 
#> -0.876387788342327, -0.876387788342327, -0.876387788342327, 1.12678429929728, 
#> 1.12678429929728, -0.876387788342327, 1.12678429929728, 1.12678429929728, 
#> 1.12678429929728, -0.876387788342327, -0.876387788342327, -0.876387788342327, 
#> -0.876387788342327, -0.876387788342327, -0.876387788342327, -0.876387788342327, 
#> -0.876387788342327, -0.876387788342327, -0.876387788342327, -0.876387788342327, 
#> -0.876387788342327, -0.876387788342327, -0.876387788342327, -0.876387788342327, 
#> -0.876387788342327, 1.12678429929728, -0.876387788342327, -0.876387788342327, 
#> 1.12678429929728, 1.12678429929728, 1.12678429929728, -0.876387788342327, 
#> -0.876387788342327, 1.12678429929728, 1.12678429929728, -0.876387788342327, 
#> 1.12678429929728, 1.12678429929728, 1.12678429929728, 1.12678429929728, 
#> -0.876387788342327, 1.12678429929728, -0.876387788342327, 1.12678429929728, 
#> 1.12678429929728, -0.876387788342327, -0.876387788342327, 1.12678429929728, 
#> -0.876387788342327, -0.876387788342327, -0.876387788342327, 1.12678429929728, 
#> -0.876387788342327, 1.12678429929728, -0.876387788342327, -0.876387788342327, 
#> 1.12678429929728, 1.12678429929728, 1.12678429929728, 1.12678429929728, 
#> 1.12678429929728, -0.876387788342327, -0.876387788342327, 1.12678429929728, 
#> 1.12678429929728, -0.876387788342327, -0.876387788342327, -0.876387788342327, 
#> -0.876387788342327, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> -0.969190006290141, 1.01889205789476, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, -0.969190006290141, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> 1.01889205789476, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> 1.01889205789476, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, 1.09861023317847, 1.09861023317847, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, 1.09861023317847, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, 1.09861023317847, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, 1.09861023317847, 1.09861023317847, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, 1.09861023317847, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, 1.09861023317847, -0.898862918055109, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, 1.09861023317847, 1.09861023317847, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, 1.09861023317847, -0.898862918055109, 
#> 1.09861023317847, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> 1.09861023317847, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, 1.09861023317847, 1.09861023317847, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, -0.898862918055109, 
#> -0.898862918055109, -0.898862918055109, 1.09861023317847, 1.09861023317847, 
#> -0.898862918055109, 1.09861023317847, 1.09861023317847, -0.898862918055109, 
#> -0.898862918055109, 1.09861023317847, 1.09861023317847, -0.898862918055109, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, -0.898862918055109, 
#> 1.09861023317847, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, 1.09861023317847, -0.898862918055109, 1.09861023317847, 
#> 1.09861023317847, 1.09861023317847, 1.09861023317847, -0.898862918055109, 
#> 1.09861023317847, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -0.898862918055109, -0.898862918055109, 1.09861023317847, 
#> -0.898862918055109, -1.09861023317847, -1.09861023317847, -1.09861023317847, 
#> -1.09861023317847, 0.898862918055109, 0.898862918055109, 0.898862918055109, 
#> 0.898862918055109, -1.09861023317847, 0.898862918055109, 0.898862918055109, 
#> 0.898862918055109, 0.898862918055109, 0.898862918055109, -1.09861023317847, 
#> -1.09861023317847, 0.898862918055109, -1.09861023317847, 0.898862918055109, 
#> 0.898862918055109, -1.09861023317847, 0.898862918055109, 0.898862918055109, 
#> -1.09861023317847, 0.898862918055109, 0.898862918055109, 0.898862918055109, 
#> -1.09861023317847, -1.09861023317847, 0.898862918055109, -1.09861023317847, 
#> 0.898862918055109, -1.09861023317847, 0.898862918055109, 0.898862918055109, 
#> 0.898862918055109, -1.09861023317847, -1.09861023317847, 0.898862918055109, 
#> -1.09861023317847, -1.09861023317847, 0.898862918055109, 0.898862918055109, 
#> -1.09861023317847, 0.898862918055109, 0.898862918055109, 0.898862918055109, 
#> -1.09861023317847, 0.898862918055109, 0.898862918055109, -1.09861023317847, 
#> -1.09861023317847, -1.09861023317847, 0.898862918055109, -1.09861023317847, 
#> -1.09861023317847, -1.09861023317847, 0.898862918055109, 0.898862918055109, 
#> 0.898862918055109, 0.898862918055109, 0.898862918055109, -1.09861023317847, 
#> -1.09861023317847, -1.09861023317847, 0.898862918055109, -1.09861023317847, 
#> 0.898862918055109, 0.898862918055109, -1.09861023317847, -1.09861023317847, 
#> 0.898862918055109, 0.898862918055109, -1.09861023317847, -1.09861023317847, 
#> 0.898862918055109, 0.898862918055109, -1.09861023317847, 0.898862918055109, 
#> -1.09861023317847, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> 1.15586738502508, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, 1.15586738502508, 1.15586738502508, -0.854336762844621, 
#> 1.15586738502508, 1.15586738502508, -0.854336762844621, -0.854336762844621, 
#> 1.15586738502508, 1.15586738502508, -0.854336762844621, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, 1.15586738502508, 1.15586738502508, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> -0.854336762844621, 1.15586738502508, 1.15586738502508, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> 1.15586738502508, 1.15586738502508, 1.15586738502508, 1.15586738502508, 
#> 1.15586738502508, 1.15586738502508, -0.854336762844621, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> 1.15586738502508, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> 1.15586738502508, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> 1.15586738502508, -0.854336762844621, 1.15586738502508, 1.15586738502508, 
#> 1.15586738502508, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> 1.15586738502508, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> 1.15586738502508, 1.15586738502508, -0.854336762844621, -0.854336762844621, 
#> -0.854336762844621, 1.15586738502508, -0.854336762844621, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, 1.15586738502508, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> 1.15586738502508, 1.15586738502508, 1.15586738502508, 1.15586738502508, 
#> 1.15586738502508, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, 1.15586738502508, 1.15586738502508, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, -0.854336762844621, 
#> 1.15586738502508, 1.15586738502508, -0.854336762844621, -0.854336762844621, 
#> 1.15586738502508, 1.15586738502508, 1.15586738502508, -0.854336762844621, 
#> -0.854336762844621, -0.854336762844621, 1.15586738502508, 1.15586738502508, 
#> -0.854336762844621, -0.854336762844621, -0.854336762844621, 1.15586738502508, 
#> -0.854336762844621, 1.15586738502508, 1.15586738502508, -0.854336762844621, 
#> 1.15586738502508, 1.15586738502508, 1.15586738502508, 1.15586738502508, 
#> -0.854336762844621, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> 1.04472358469647, 1.04472358469647, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, 1.04472358469647, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> 1.04472358469647, -0.945226100439667, 1.04472358469647, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, -0.945226100439667, -0.945226100439667, 
#> -0.945226100439667, -0.945226100439667, 1.04472358469647, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, 1.04472358469647, 
#> -0.945226100439667, 1.04472358469647, -0.945226100439667, -0.945226100439667, 
#> 1.04472358469647, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, 1.07127733810397, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, -0.921796779298767, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> 1.07127733810397, 1.07127733810397, -0.921796779298767, 1.07127733810397, 
#> 1.07127733810397, 1.07127733810397, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, 1.07127733810397, 1.07127733810397, 1.07127733810397, 
#> -0.921796779298767, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, -0.921796779298767, 
#> 1.07127733810397, -0.921796779298767, -0.921796779298767, -0.921796779298767, 
#> -0.921796779298767, -0.921796779298767, 1.07127733810397, 1.07127733810397, 
#> 1.07127733810397, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, 0.945226100439667, 0.945226100439667, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, -1.04472358469647, 0.945226100439667, 
#> -1.04472358469647, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, 0.945226100439667, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, -1.04472358469647, 
#> 0.945226100439667, 0.945226100439667, 0.945226100439667, -1.04472358469647, 
#> -1.04472358469647, 0.945226100439667, 0.945226100439667, 0.945226100439667, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, 0.945226100439667, -1.04472358469647, 0.945226100439667, 
#> -1.04472358469647, 0.945226100439667, -1.04472358469647, -1.04472358469647, 
#> -1.04472358469647, -1.04472358469647, 0.945226100439667, 0.945226100439667, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> 0.945226100439667, -1.04472358469647, -1.04472358469647, -1.04472358469647, 
#> 0.945226100439667, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, 0.969190006290141, 0.969190006290141, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> -1.01889205789476, 0.969190006290141, -1.01889205789476, -1.01889205789476, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, -1.01889205789476, 
#> 0.969190006290141, 0.969190006290141, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, 0.969190006290141, 
#> -1.01889205789476, -1.01889205789476, -1.01889205789476, 0.969190006290141, 
#> 0.969190006290141, -1.01889205789476, 0.969190006290141, -1.01889205789476, 
#> 0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> -0.969190006290141, 1.01889205789476, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, -0.969190006290141, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> -0.969190006290141, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, 1.21706614446381, 
#> 1.21706614446381, 1.21706614446381, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, -0.811377429642539, -0.811377429642539, 
#> 1.21706614446381, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, 1.21706614446381, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> -0.811377429642539, 1.21706614446381, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, 1.21706614446381, 
#> -0.811377429642539, -0.811377429642539, -0.811377429642539, 1.21706614446381, 
#> 1.21706614446381, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, 1.21706614446381, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, -0.811377429642539, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, -0.811377429642539, 1.21706614446381, 1.21706614446381, 
#> -0.811377429642539, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, -0.811377429642539, -0.811377429642539, 
#> -0.811377429642539, -0.811377429642539, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, 1.21706614446381, 1.21706614446381, -0.811377429642539, 
#> 1.21706614446381, -0.811377429642539, -0.811377429642539, 1.21706614446381, 
#> -0.811377429642539, 0.854336762844621, -1.15586738502508, -1.15586738502508, 
#> -1.15586738502508, -1.15586738502508, 0.854336762844621, -1.15586738502508, 
#> -1.15586738502508, 0.854336762844621, -1.15586738502508, -1.15586738502508, 
#> 0.854336762844621, 0.854336762844621, 0.854336762844621, 0.854336762844621, 
#> -1.15586738502508, 0.854336762844621, 0.854336762844621, 0.854336762844621, 
#> 0.854336762844621, -1.15586738502508, 0.854336762844621, -1.15586738502508, 
#> -1.15586738502508, 0.854336762844621, 0.854336762844621, 0.854336762844621, 
#> 0.854336762844621, 0.854336762844621, -1.15586738502508, 0.854336762844621, 
#> -1.15586738502508, 0.854336762844621, 0.854336762844621, 0.854336762844621, 
#> 0.854336762844621, -1.15586738502508, 0.854336762844621, -1.15586738502508, 
#> -1.15586738502508, 0.854336762844621, -1.15586738502508, 0.854336762844621, 
#> 0.854336762844621, 0.854336762844621, -1.15586738502508, -1.15586738502508, 
#> -1.15586738502508, -1.15586738502508, -1.15586738502508, 0.854336762844621, 
#> -1.15586738502508, 0.854336762844621, -1.15586738502508, -1.15586738502508, 
#> 0.854336762844621, 0.854336762844621, -1.15586738502508, 0.854336762844621, 
#> 0.854336762844621, -1.15586738502508, 0.854336762844621, -1.15586738502508, 
#> 0.854336762844621, -1.15586738502508, 0.854336762844621, 0.854336762844621, 
#> -1.15586738502508, -1.15586738502508, 0.854336762844621, -1.15586738502508, 
#> 0.854336762844621, 0.854336762844621, 0.854336762844621, 0.854336762844621, 
#> -1.15586738502508, 0.854336762844621, 0.854336762844621, 0.854336762844621, 
#> 0.854336762844621, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, -0.969190006290141, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> -0.969190006290141, 1.01889205789476, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, 1.01889205789476, 
#> -0.969190006290141, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, 1.01889205789476, -0.969190006290141, 
#> 1.01889205789476, 1.01889205789476, 1.01889205789476, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> 1.01889205789476, 1.01889205789476, -0.969190006290141, -0.969190006290141, 
#> -0.969190006290141, -0.969190006290141, -0.969190006290141, -0.969190006290141, 
#> 1.01889205789476, -0.969190006290141, -0.969190006290141, 1.01889205789476, 
#> -0.969190006290141, 1.18593397537105, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, -0.832677046537123, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, 1.18593397537105, -0.832677046537123, 1.18593397537105, 
#> 1.18593397537105, -0.832677046537123, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, -0.832677046537123, -0.832677046537123, -0.832677046537123, 
#> 1.18593397537105, 1.18593397537105, 1.18593397537105, -0.832677046537123, 
#> -0.832677046537123, 1.18593397537105, 1.18593397537105, -0.832677046537123, 
#> 1.18593397537105, 1.18593397537105, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, 1.18593397537105, -0.832677046537123, -0.832677046537123, 
#> -0.832677046537123, -0.832677046537123, 1.18593397537105, 1.18593397537105, 
#> 1.18593397537105, 1.18593397537105, -0.832677046537123, 1.18593397537105, 
#> 1.18593397537105, 1.18593397537105, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, -0.832677046537123, -0.832677046537123, -0.832677046537123, 
#> -0.832677046537123, 1.18593397537105, -0.832677046537123, -0.832677046537123, 
#> 1.18593397537105, -0.832677046537123, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, -0.832677046537123, -0.832677046537123, 1.18593397537105, 
#> -0.832677046537123, -0.832677046537123, 1.18593397537105, -0.832677046537123, 
#> 1.18593397537105, -0.832677046537123, -0.832677046537123, 1.18593397537105, 
#> 1.18593397537105, -0.832677046537123, -0.832677046537123, -0.832677046537123, 
#> -0.832677046537123, -0.832677046537123, -0.832677046537123, -0.832677046537123, 
#> 1.18593397537105, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, -1.51794817654183, -1.51794817654183, 
#> 0.650549218517927, -1.51794817654183, 0.650549218517927, -1.51794817654183, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, -1.51794817654183, 
#> -1.51794817654183, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> -1.51794817654183, 0.650549218517927, -1.51794817654183, -1.51794817654183, 
#> -1.51794817654183, -1.51794817654183, -1.51794817654183, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, -1.51794817654183, -1.51794817654183, -1.51794817654183, 
#> 0.650549218517927, -1.51794817654183, 0.650549218517927, 0.650549218517927, 
#> -1.51794817654183, -1.51794817654183, 0.650549218517927, -1.51794817654183, 
#> -1.51794817654183, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, -1.51794817654183, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, -1.51794817654183, 
#> 0.650549218517927, -1.51794817654183, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> -1.51794817654183, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, 0.650549218517927, 0.650549218517927, 0.650549218517927, 
#> 0.650549218517927, -2.84243689529752, -0.229732314916899, 0.752085699177805, 
#> 0.747216426060813, -0.412542971788335, -0.660279738799205, -0.371354475522511, 
#> -0.451701555109114, 0.423595277532238, -2.22197745181848, -1.64575026316205, 
#> 0.626898353631099, -1.35378198190243, 1.12196679375246, -1.33795591855488, 
#> -0.115704676837868, 1.67526655633604, -0.0568646026642827, 1.55860099417447, 
#> 0.215828762790623, -1.21601450822822, -0.154660342921527, 0.766491341865523, 
#> 0.852317186854333, 0.329045472495037, 0.386870960483027, 0.965938990459126, 
#> 0.965938990459126, 1.32770413612288, 1.19379208995393, 0.77237520116811, 
#> -0.6328888740836, -1.56824402489511, 0.787389595567184, -2.95707328508791, 
#> 0.137713772812327, 1.81039610592771, 0.020033624465158, 0.513478726689566, 
#> -0.247587550635636, 0.812346194011221, -0.994856936984477, -0.476658153553151, 
#> -1.28824563890393, 0.893910777020537, -0.175762254434165, -0.991002250053078, 
#> 0.715970133839951, -0.567556188896072, -2.25667333707036, -1.12065303424254, 
#> 0.312610657436132, -0.522513005698849, 0.726926183496649, 0.842374982809371, 
#> -0.779380307806205, -0.919987882226224, -0.337876834267201, -1.05937795322353, 
#> -0.171095157980433, 1.22280703314034, 0.756144043920181, 1.01848937085589, 
#> 0.162061619545008, 0.410001303792996, 0.816200880942621, 1.3912113067502, 
#> 0.325799537274995, 0.688173434650109, 0.272640405166878, -1.16468163125417, 
#> 0.391335139699641, 0.14968440865462, 0.566434941560564, 0.22840889091813, 
#> -0.105965390030024, -0.0840525501427683, 0.244640788739918, 0.651854952075136, 
#> -0.0580821060869957, -1.03904847299718, 0.301659234095955, 0.301659234095955, 
#> 0.301659234095955, 0.301659234095955, 0.301659234095955, 0.301659234095955, 
#> 0.301659234095955, 0.301659234095955, -1.03904847299718, -1.03904847299718, 
#> 0.301659234095955, 0.301659234095955, -1.03904847299718, 0.301659234095955, 
#> -1.03904847299718, 0.301659234095955, -1.03904847299718, 0.301659234095955, 
#> -1.03904847299718, -1.03904847299718, 1.64236694118909, -1.03904847299718, 
#> -1.03904847299718, 1.64236694118909, -1.03904847299718, 0.301659234095955, 
#> 0.301659234095955, -1.03904847299718, -1.03904847299718, 1.64236694118909, 
#> 1.64236694118909, 0.301659234095955, -1.03904847299718, 0.301659234095955, 
#> 0.301659234095955, 0.301659234095955, -1.03904847299718, -1.03904847299718, 
#> 1.64236694118909, 0.301659234095955, -1.03904847299718, 0.301659234095955, 
#> 1.64236694118909, -1.03904847299718, 0.301659234095955, 0.301659234095955, 
#> 1.64236694118909, -1.03904847299718, -1.03904847299718, 0.301659234095955, 
#> 1.64236694118909, 0.301659234095955, -1.03904847299718, -1.03904847299718, 
#> -1.03904847299718, -1.03904847299718, -1.03904847299718, -1.03904847299718, 
#> -1.03904847299718, -1.03904847299718, 0.301659234095955, 1.64236694118909, 
#> 1.64236694118909, -1.03904847299718, -1.03904847299718, -1.03904847299718, 
#> 0.301659234095955, 0.301659234095955, 1.64236694118909, 1.64236694118909, 
#> -1.03904847299718, -1.03904847299718, 0.301659234095955, 0.301659234095955, 
#> 0.301659234095955, 1.64236694118909, 1.64236694118909, 0.301659234095955, 
#> 1.64236694118909, 0.541677248057095, -2.79172120152503, 0.541677248057095, 
#> -1.68058838499765, 0.541677248057095, 0.541677248057095, -1.68058838499765, 
#> 0.541677248057095, 0.541677248057095, -2.79172120152503, 0.541677248057095, 
#> 0.541677248057095, 0.541677248057095, 0.541677248057095, 0.541677248057095, 
#> 0.541677248057095, -0.56945556847028, 0.541677248057095, 0.541677248057095, 
#> 0.541677248057095, -1.68058838499765, 0.541677248057095, 0.541677248057095, 
#> -0.56945556847028, 0.541677248057095, -0.56945556847028, 0.541677248057095, 
#> 0.541677248057095, -0.56945556847028, -1.68058838499765, -0.56945556847028, 
#> -2.79172120152503, -0.56945556847028, 1.65281006458447, 1.65281006458447, 
#> 0.541677248057095, 0.541677248057095, -0.56945556847028, -0.56945556847028, 
#> 0.541677248057095, -1.68058838499765, 0.541677248057095, -1.68058838499765, 
#> -0.56945556847028, 0.541677248057095, 0.541677248057095, 0.541677248057095, 
#> -1.68058838499765, 0.541677248057095, 0.541677248057095, -0.56945556847028, 
#> 0.541677248057095, 0.541677248057095, -0.56945556847028, 0.541677248057095, 
#> -0.56945556847028, -0.56945556847028, -0.56945556847028, -1.68058838499765, 
#> 0.541677248057095, 0.541677248057095, 0.541677248057095, 1.65281006458447, 
#> 0.541677248057095, 0.541677248057095, 0.541677248057095, 0.541677248057095, 
#> 0.541677248057095, 0.541677248057095, 0.541677248057095, -1.68058838499765, 
#> 1.65281006458447, 0.541677248057095, -0.56945556847028, 0.541677248057095, 
#> 0.541677248057095, 0.541677248057095, 0.541677248057095, 0.541677248057095, 
#> -0.56945556847028, -0.707069797647142, -0.707069797647142, -0.707069797647142, 
#> -0.707069797647142, -0.707069797647142, -0.707069797647142, -0.707069797647142, 
#> 1.86409310288792, 0.578511652620389, -0.707069797647142, 1.86409310288792, 
#> -0.707069797647142, 1.86409310288792, -0.707069797647142, 1.86409310288792, 
#> 1.86409310288792, 0.578511652620389, -0.707069797647142, -0.707069797647142, 
#> -0.707069797647142, -0.707069797647142, -0.707069797647142, -0.707069797647142, 
#> 1.86409310288792, -0.707069797647142, -0.707069797647142, 1.86409310288792, 
#> 1.86409310288792, -0.707069797647142, -0.707069797647142, 0.578511652620389, 
#> -0.707069797647142, -0.707069797647142, 0.578511652620389, 1.86409310288792, 
#> -0.707069797647142, 0.578511652620389, 0.578511652620389, -0.707069797647142, 
#> 0.578511652620389, -0.707069797647142, 1.86409310288792, -0.707069797647142, 
#> -0.707069797647142, -0.707069797647142, -0.707069797647142, -0.707069797647142, 
#> -0.707069797647142, 0.578511652620389, -0.707069797647142, -0.707069797647142, 
#> 1.86409310288792, 0.578511652620389, -0.707069797647142, -0.707069797647142, 
#> -0.707069797647142, -0.707069797647142, -0.707069797647142, -0.707069797647142, 
#> -0.707069797647142, 0.578511652620389, 0.578511652620389, 1.86409310288792, 
#> -0.707069797647142, 0.578511652620389, -0.707069797647142, -0.707069797647142, 
#> 1.86409310288792, -0.707069797647142, 0.578511652620389, -0.707069797647142, 
#> 0.578511652620389, 0.578511652620389, -0.707069797647142, 0.578511652620389, 
#> 1.86409310288792, -0.707069797647142, -0.707069797647142, -0.707069797647142, 
#> -0.707069797647142, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, 1.72119144780585, 1.72119144780585, -0.57373048260195, 
#> 1.72119144780585, -0.57373048260195, -0.57373048260195, 1.72119144780585, 
#> -0.57373048260195, 1.72119144780585, -0.57373048260195, -0.57373048260195, 
#> 1.72119144780585, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, 1.72119144780585, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, -0.57373048260195, 1.72119144780585, 
#> 1.72119144780585, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, -0.57373048260195, 1.72119144780585, 
#> -0.57373048260195, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, 1.72119144780585, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, 1.72119144780585, -0.57373048260195, 
#> 1.72119144780585, 1.72119144780585, -0.57373048260195, -0.57373048260195, 
#> 1.72119144780585, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, -0.57373048260195, 1.72119144780585, 
#> 1.72119144780585, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, 1.72119144780585, -0.57373048260195, 1.72119144780585, 
#> 1.72119144780585, -0.57373048260195, -0.57373048260195, -0.57373048260195, 
#> -0.57373048260195, -0.298525816034996, -1.94556480105567, -0.298525816034996, 
#> -1.12204530854533, 1.34851316898567, 1.34851316898567, -1.12204530854533, 
#> 1.34851316898567, -0.298525816034996, -1.94556480105567, 1.34851316898567, 
#> -0.298525816034996, 1.34851316898567, -0.298525816034996, 0.524993676475338, 
#> 1.34851316898567, 0.524993676475338, -0.298525816034996, -0.298525816034996, 
#> -0.298525816034996, -1.12204530854533, 1.34851316898567, -0.298525816034996, 
#> 0.524993676475338, -0.298525816034996, -1.12204530854533, 1.34851316898567, 
#> 1.34851316898567, -1.12204530854533, -1.12204530854533, 0.524993676475338, 
#> -1.94556480105567, -1.12204530854533, 0.524993676475338, 1.34851316898567, 
#> -0.298525816034996, 0.524993676475338, 0.524993676475338, -1.12204530854533, 
#> 0.524993676475338, -1.12204530854533, 1.34851316898567, -1.12204530854533, 
#> -1.12204530854533, -0.298525816034996, 1.34851316898567, -0.298525816034996, 
#> 1.34851316898567, 1.34851316898567, -0.298525816034996, -1.12204530854533, 
#> 1.34851316898567, 0.524993676475338, -1.12204530854533, -0.298525816034996, 
#> -1.12204530854533, -1.12204530854533, -1.12204530854533, -1.12204530854533, 
#> -0.298525816034996, 0.524993676475338, 0.524993676475338, 1.34851316898567, 
#> 1.34851316898567, 0.524993676475338, -0.298525816034996, -0.298525816034996, 
#> 0.524993676475338, -0.298525816034996, 0.524993676475338, -1.12204530854533, 
#> 0.524993676475338, 1.34851316898567, -1.12204530854533, 1.34851316898567, 
#> 1.34851316898567, -0.298525816034996, -0.298525816034996, -0.298525816034996, 
#> -1.12204530854533), dim = c(80L, 40L), assign = c(1L, 1L, 1L, 
#> 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
#> 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
#> 1L, 1L, 1L, 1L, 1L), dimnames = list(c("1", "2", "3", "4", "5", 
#> "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", 
#> "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", 
#> "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", 
#> "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", 
#> "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", 
#> "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", 
#> "72", "73", "74", "75", "76", "77", "78", "79", "80"), c("X_train_microD18S61", 
#> "X_train_microD17S794", "X_train_microD13S173", "X_train_microD20S107", 
#> "X_train_microTP53", "X_train_microD9S171", "X_train_microD8S264", 
#> "X_train_microD5S346", "X_train_microD22S928", "X_train_microD18S53", 
#> "X_train_microD1S225", "X_train_microD3S1282", "X_train_microD15S127", 
#> "X_train_microD1S305", "X_train_microD1S207", "X_train_microD2S138", 
#> "X_train_microD16S422", "X_train_microD9S179", "X_train_microD10S191", 
#> "X_train_microD4S394", "X_train_microD1S197", "X_train_microD6S264", 
#> "X_train_microD14S65", "X_train_microD17S790", "X_train_microD5S430", 
#> "X_train_microD3S1283", "X_train_microD4S414", "X_train_microD8S283", 
#> "X_train_microD11S916", "X_train_microD2S159", "X_train_microD16S408", 
#> "X_train_microD6S275", "X_train_microD10S192", "X_train_microsexe", 
#> "X_train_microAgediag", "X_train_microSiege", "X_train_microT", 
#> "X_train_microN", "X_train_microM", "X_train_microSTADE")), "`scaled:center`" = c(X_train_microD18S61 = 0.525, 
#> X_train_microD17S794 = 0.45, X_train_microD13S173 = 0.475, X_train_microD20S107 = 0.6, 
#> X_train_microTP53 = 0.5375, X_train_microD9S171 = 0.475, X_train_microD8S264 = 0.525, 
#> X_train_microD5S346 = 0.475, X_train_microD22S928 = 0.375, X_train_microD18S53 = 0.5, 
#> X_train_microD1S225 = 0.4625, X_train_microD3S1282 = 0.5125, 
#> X_train_microD15S127 = 0.4625, X_train_microD1S305 = 0.4, X_train_microD1S207 = 0.4375, 
#> X_train_microD2S138 = 0.4875, X_train_microD16S422 = 0.45, X_train_microD9S179 = 0.5125, 
#> X_train_microD10S191 = 0.5125, X_train_microD4S394 = 0.5125, 
#> X_train_microD1S197 = 0.45, X_train_microD6S264 = 0.55, X_train_microD14S65 = 0.425, 
#> X_train_microD17S790 = 0.425, X_train_microD5S430 = 0.475, X_train_microD3S1283 = 0.4625, 
#> X_train_microD4S414 = 0.525, X_train_microD8S283 = 0.5125, X_train_microD11S916 = 0.4875, 
#> X_train_microD2S159 = 0.4, X_train_microD16S408 = 0.575, X_train_microD6S275 = 0.4875, 
#> X_train_microD10S192 = 0.4125, X_train_microsexe = 0.7, X_train_microAgediag = 64.236335125, 
#> X_train_microSiege = 1.775, X_train_microT = 2.5125, X_train_microN = 0.55, 
#> X_train_microM = 0.25, X_train_microSTADE = 2.3625), "`scaled:scale`" = c(X_train_microD18S61 = 0.502525268588178, 
#> X_train_microD17S794 = 0.500632511321833, X_train_microD13S173 = 0.502525268588178, 
#> X_train_microD20S107 = 0.492988818010657, X_train_microTP53 = 0.501737487466418, 
#> X_train_microD9S171 = 0.502525268588178, X_train_microD8S264 = 0.502525268588178, 
#> X_train_microD5S346 = 0.502525268588178, X_train_microD22S928 = 0.487177351846223, 
#> X_train_microD18S53 = 0.503154605426628, X_train_microD1S225 = 0.501737487466418, 
#> X_train_microD3S1282 = 0.502997345036655, X_train_microD15S127 = 0.501737487466418, 
#> X_train_microD1S305 = 0.492988818010657, X_train_microD1S207 = 0.499208233865883, 
#> X_train_microD2S138 = 0.502997345036655, X_train_microD16S422 = 0.500632511321833, 
#> X_train_microD9S179 = 0.502997345036655, X_train_microD10S191 = 0.502997345036655, 
#> X_train_microD4S394 = 0.502997345036655, X_train_microD1S197 = 0.500632511321833, 
#> X_train_microD6S264 = 0.500632511321833, X_train_microD14S65 = 0.497461912542437, 
#> X_train_microD17S790 = 0.497461912542437, X_train_microD5S430 = 0.502525268588178, 
#> X_train_microD3S1283 = 0.501737487466418, X_train_microD4S414 = 0.502525268588178, 
#> X_train_microD8S283 = 0.502997345036655, X_train_microD11S916 = 0.502997345036655, 
#> X_train_microD2S159 = 0.492988818010657, X_train_microD16S408 = 0.497461912542437, 
#> X_train_microD6S275 = 0.502997345036655, X_train_microD10S192 = 0.495390141610694, 
#> X_train_microsexe = 0.461148813126632, X_train_microAgediag = 13.5030421215323, 
#> X_train_microSiege = 0.745874730718269, X_train_microT = 0.89998241895627, 
#> X_train_microN = 0.77785814332643, X_train_microM = 0.435744670330595, 
#> X_train_microSTADE = 1.21430034030124)), y = c(`1` = -1.48432960272689, 
#> `2` = -0.546953975803827, `3` = -0.231455024943138, `4` = -0.340030131930231, 
#> `5` = -0.976337221215795, `6` = -0.386676603514146, `7` = -0.386676603514146, 
#> `8` = 1.57418914279605, `9` = -0.546953975803827, `10` = -0.158113883008419, 
#> `11` = 2.10405253987611, `12` = -0.231455024943138, `13` = -0.386676603514146, 
#> `14` = -1.09692040255042, `15` = -0.158113883008419, `16` = -0.158113883008419, 
#> `17` = -0.546953975803827, `18` = -0.386676603514146, `19` = 0.659786090690449, 
#> `20` = -1.09692040255042, `21` = -0.436274136565358, `22` = -0.28961087492437, 
#> `23` = -0.386676603514146, `24` = -0.976337221215795, `25` = -1.09692040255042, 
#> `26` = -0.158113883008419, `27` = -0.436274136565358, `28` = -0.436274136565358, 
#> `29` = -0.386676603514146, `30` = -0.231455024943138, `31` = 2.30072697072586, 
#> `32` = -0.490239861940916, `33` = -0.546953975803827, `34` = -0.73444881503344, 
#> `35` = 1.31082938694368, `36` = -0.976337221215795, `37` = 1.70134282314234, 
#> `38` = -0.546953975803827, `39` = -0.158113883008419, `40` = 1.0771486960837, 
#> `41` = -0.158113883008419, `42` = -0.490239861940916, `43` = -0.340030131930231, 
#> `44` = -0.976337221215795, `45` = -0.158113883008419, `46` = -0.914104649757265, 
#> `47` = -1.09692040255042, `48` = -0.436274136565358, `49` = -0.386676603514146, 
#> `50` = -0.0983658134866668, `51` = -0.793929564138479, `52` = 0.468510675262855, 
#> `53` = -0.340030131930231, `54` = 1.9536629749367, `55` = 2.60558117688699, 
#> `56` = -0.546953975803827, `57` = -1.09692040255042, `58` = -0.158113883008419, 
#> `59` = -0.490239861940916, `60` = -0.976337221215795, `61` = -0.28961087492437, 
#> `62` = 1.4487979466996, `63` = 1.82660326764499, `64` = -0.386676603514146, 
#> `65` = 0.969360944759548, `66` = -0.158113883008419, `67` = -0.436274136565358, 
#> `68` = -0.490239861940916, `69` = 1.18850435510435, `70` = -0.976337221215795, 
#> `71` = -0.976337221215795, `72` = 0.863221936022845, `73` = -0.436274136565358, 
#> `74` = -0.490239861940916, `75` = -0.386676603514146, `76` = 0.762313939494724, 
#> `77` = -0.976337221215795, `78` = -0.436274136565358, `79` = -0.546953975803827, 
#> `80` = -0.436274136565358), type = "lasso", max.steps = 6, use.Gram = FALSE)
#> R-squared: 0.187 
#> Sequence of LASSO moves:
#>      X_train_microN X_train_microD3S1282 X_train_microD16S408
#> Var              38                   12                   31
#> Step              1                    2                    3
#>      X_train_microD20S107 X_train_microD15S127 X_train_microD2S138
#> Var                     4                   13                  16
#> Step                    4                    5                   6
#> 
#> $X_larsDR
#>    X_train_microD20S107 X_train_microD3S1282 X_train_microD15S127
#> 1            -1.2170661            -1.018892           -0.9217968
#> 2             0.8113774             0.969190           -0.9217968
#> 3             0.8113774            -1.018892           -0.9217968
#> 4             0.8113774            -1.018892            1.0712773
#> 5             0.8113774            -1.018892            1.0712773
#> 6             0.8113774             0.969190            1.0712773
#> 7            -1.2170661            -1.018892            1.0712773
#> 8             0.8113774            -1.018892           -0.9217968
#> 9            -1.2170661             0.969190           -0.9217968
#> 10            0.8113774            -1.018892           -0.9217968
#> 11            0.8113774            -1.018892            1.0712773
#> 12            0.8113774             0.969190            1.0712773
#> 13            0.8113774             0.969190           -0.9217968
#> 14            0.8113774             0.969190            1.0712773
#> 15           -1.2170661             0.969190           -0.9217968
#> 16           -1.2170661             0.969190            1.0712773
#> 17           -1.2170661             0.969190           -0.9217968
#> 18           -1.2170661             0.969190           -0.9217968
#> 19            0.8113774             0.969190           -0.9217968
#> 20           -1.2170661             0.969190           -0.9217968
#> 21           -1.2170661            -1.018892            1.0712773
#> 22           -1.2170661             0.969190            1.0712773
#> 23           -1.2170661            -1.018892           -0.9217968
#> 24            0.8113774            -1.018892            1.0712773
#> 25           -1.2170661             0.969190           -0.9217968
#> 26           -1.2170661            -1.018892            1.0712773
#> 27            0.8113774            -1.018892            1.0712773
#> 28           -1.2170661            -1.018892            1.0712773
#> 29           -1.2170661             0.969190            1.0712773
#> 30           -1.2170661             0.969190            1.0712773
#> 31            0.8113774            -1.018892            1.0712773
#> 32           -1.2170661             0.969190            1.0712773
#> 33           -1.2170661             0.969190           -0.9217968
#> 34            0.8113774             0.969190           -0.9217968
#> 35            0.8113774            -1.018892            1.0712773
#> 36            0.8113774            -1.018892           -0.9217968
#> 37            0.8113774            -1.018892            1.0712773
#> 38            0.8113774             0.969190            1.0712773
#> 39           -1.2170661             0.969190            1.0712773
#> 40           -1.2170661             0.969190            1.0712773
#> 41            0.8113774             0.969190            1.0712773
#> 42           -1.2170661            -1.018892           -0.9217968
#> 43           -1.2170661             0.969190            1.0712773
#> 44           -1.2170661            -1.018892            1.0712773
#> 45           -1.2170661             0.969190           -0.9217968
#> 46            0.8113774            -1.018892            1.0712773
#> 47            0.8113774            -1.018892           -0.9217968
#> 48            0.8113774             0.969190           -0.9217968
#> 49            0.8113774            -1.018892            1.0712773
#> 50            0.8113774            -1.018892           -0.9217968
#> 51            0.8113774             0.969190           -0.9217968
#> 52           -1.2170661            -1.018892           -0.9217968
#> 53           -1.2170661             0.969190           -0.9217968
#> 54            0.8113774            -1.018892            1.0712773
#> 55            0.8113774            -1.018892            1.0712773
#> 56           -1.2170661            -1.018892           -0.9217968
#> 57           -1.2170661             0.969190           -0.9217968
#> 58            0.8113774             0.969190            1.0712773
#> 59            0.8113774            -1.018892            1.0712773
#> 60            0.8113774             0.969190            1.0712773
#> 61            0.8113774            -1.018892           -0.9217968
#> 62            0.8113774            -1.018892           -0.9217968
#> 63            0.8113774            -1.018892            1.0712773
#> 64            0.8113774            -1.018892           -0.9217968
#> 65            0.8113774            -1.018892           -0.9217968
#> 66            0.8113774            -1.018892           -0.9217968
#> 67           -1.2170661             0.969190           -0.9217968
#> 68           -1.2170661             0.969190           -0.9217968
#> 69            0.8113774            -1.018892           -0.9217968
#> 70           -1.2170661             0.969190           -0.9217968
#> 71            0.8113774            -1.018892            1.0712773
#> 72            0.8113774             0.969190            1.0712773
#> 73            0.8113774            -1.018892           -0.9217968
#> 74            0.8113774             0.969190           -0.9217968
#> 75            0.8113774             0.969190           -0.9217968
#> 76            0.8113774            -1.018892            1.0712773
#> 77            0.8113774             0.969190           -0.9217968
#> 78            0.8113774             0.969190           -0.9217968
#> 79            0.8113774             0.969190           -0.9217968
#> 80           -1.2170661             0.969190           -0.9217968
#>    X_train_microD2S138 X_train_microD16S408 X_train_microN
#> 1             1.018892            0.8543368     -0.7070698
#> 2            -0.969190           -1.1558674     -0.7070698
#> 3            -0.969190           -1.1558674     -0.7070698
#> 4             1.018892           -1.1558674     -0.7070698
#> 5             1.018892           -1.1558674     -0.7070698
#> 6             1.018892            0.8543368     -0.7070698
#> 7             1.018892           -1.1558674     -0.7070698
#> 8            -0.969190           -1.1558674      1.8640931
#> 9             1.018892            0.8543368      0.5785117
#> 10           -0.969190           -1.1558674     -0.7070698
#> 11            1.018892           -1.1558674      1.8640931
#> 12            1.018892            0.8543368     -0.7070698
#> 13           -0.969190            0.8543368      1.8640931
#> 14            1.018892            0.8543368     -0.7070698
#> 15           -0.969190            0.8543368      1.8640931
#> 16            1.018892           -1.1558674      1.8640931
#> 17            1.018892            0.8543368      0.5785117
#> 18            1.018892            0.8543368     -0.7070698
#> 19           -0.969190            0.8543368     -0.7070698
#> 20            1.018892            0.8543368     -0.7070698
#> 21            1.018892           -1.1558674     -0.7070698
#> 22            1.018892            0.8543368     -0.7070698
#> 23           -0.969190           -1.1558674     -0.7070698
#> 24            1.018892           -1.1558674      1.8640931
#> 25            1.018892            0.8543368     -0.7070698
#> 26            1.018892            0.8543368     -0.7070698
#> 27           -0.969190            0.8543368      1.8640931
#> 28           -0.969190            0.8543368      1.8640931
#> 29           -0.969190            0.8543368     -0.7070698
#> 30            1.018892           -1.1558674     -0.7070698
#> 31           -0.969190            0.8543368      0.5785117
#> 32           -0.969190           -1.1558674     -0.7070698
#> 33           -0.969190            0.8543368     -0.7070698
#> 34           -0.969190            0.8543368      0.5785117
#> 35           -0.969190            0.8543368      1.8640931
#> 36           -0.969190            0.8543368     -0.7070698
#> 37            1.018892           -1.1558674      0.5785117
#> 38            1.018892            0.8543368      0.5785117
#> 39            1.018892           -1.1558674     -0.7070698
#> 40            1.018892           -1.1558674      0.5785117
#> 41            1.018892            0.8543368     -0.7070698
#> 42           -0.969190           -1.1558674      1.8640931
#> 43            1.018892            0.8543368     -0.7070698
#> 44            1.018892            0.8543368     -0.7070698
#> 45            1.018892            0.8543368     -0.7070698
#> 46            1.018892           -1.1558674     -0.7070698
#> 47            1.018892           -1.1558674     -0.7070698
#> 48            1.018892           -1.1558674     -0.7070698
#> 49            1.018892           -1.1558674      0.5785117
#> 50           -0.969190           -1.1558674     -0.7070698
#> 51           -0.969190            0.8543368     -0.7070698
#> 52           -0.969190           -1.1558674      1.8640931
#> 53           -0.969190            0.8543368      0.5785117
#> 54           -0.969190           -1.1558674     -0.7070698
#> 55           -0.969190           -1.1558674     -0.7070698
#> 56           -0.969190            0.8543368     -0.7070698
#> 57           -0.969190            0.8543368     -0.7070698
#> 58           -0.969190           -1.1558674     -0.7070698
#> 59            1.018892            0.8543368     -0.7070698
#> 60           -0.969190            0.8543368     -0.7070698
#> 61           -0.969190           -1.1558674      0.5785117
#> 62           -0.969190            0.8543368      0.5785117
#> 63           -0.969190           -1.1558674      1.8640931
#> 64            1.018892            0.8543368     -0.7070698
#> 65           -0.969190           -1.1558674      0.5785117
#> 66           -0.969190            0.8543368     -0.7070698
#> 67            1.018892            0.8543368     -0.7070698
#> 68            1.018892           -1.1558674      1.8640931
#> 69           -0.969190           -1.1558674     -0.7070698
#> 70           -0.969190            0.8543368      0.5785117
#> 71            1.018892           -1.1558674     -0.7070698
#> 72           -0.969190            0.8543368      0.5785117
#> 73           -0.969190            0.8543368      0.5785117
#> 74            1.018892            0.8543368     -0.7070698
#> 75           -0.969190            0.8543368      0.5785117
#> 76            1.018892           -1.1558674      1.8640931
#> 77           -0.969190            0.8543368     -0.7070698
#> 78           -0.969190            0.8543368     -0.7070698
#> 79           -0.969190            0.8543368     -0.7070698
#> 80            1.018892            0.8543368     -0.7070698
#> 
#> $cox_larsDR
#> Call:
#> coxph(formula = YCsurv ~ ., data = X_larsDR)
#> 
#>                         coef exp(coef) se(coef)      z        p
#> X_train_microD20S107  0.6263    1.8706   0.4316  1.451 0.146794
#> X_train_microD3S1282 -0.2857    0.7515   0.4547 -0.628 0.529826
#> X_train_microD15S127  0.9521    2.5911   0.3834  2.483 0.013027
#> X_train_microD2S138  -1.3850    0.2503   0.4197 -3.300 0.000967
#> X_train_microD16S408 -0.7357    0.4792   0.3880 -1.896 0.057930
#> X_train_microN        0.4274    1.5332   0.2675  1.598 0.110118
#> 
#> Likelihood ratio test=31.8  on 6 df, p=1.784e-05
#> n= 80, number of events= 17 
#> 

rm(X_train_micro,Y_train_micro,C_train_micro,cox_larsDR_fit)