This dataset provides Microsat specifications and survival times.

Format

A data frame with 117 observations on the following 43 variables.

numpat

a factor with levels B1006 B1017 B1028 B1031 B1046 B1059 B1068 B1071 B1102 B1115 B1124 B1139 B1157 B1161 B1164 B1188 B1190 B1192 B1203 B1211 B1221 B1225 B1226 B1227 B1237 B1251 B1258 B1266 B1271 B1282 B1284 B1285 B1286 B1287 B1290 B1292 B1298 B1302 B1304 B1310 B1319 B1327 B1353 B1357 B1363 B1368 B1372 B1373 B1379 B1388 B1392 B1397 B1403 B1418 B1421t1 B1421t2 B1448 B1451 B1455 B1460 B1462 B1466 B1469 B1493 B1500 B1502 B1519 B1523 B1529 B1530 B1544 B1548 B500 B532 B550 B558 B563 B582 B605 B609 B634 B652 B667 B679 B701 B722 B728 B731 B736 B739 B744 B766 B771 B777 B788 B800 B836 B838 B841 B848 B871 B873 B883 B889 B912 B924 B925 B927 B938 B952 B954 B955 B968 B972 B976 B982 B984

D18S61

a numeric vector

D17S794

a numeric vector

D13S173

a numeric vector

D20S107

a numeric vector

TP53

a numeric vector

D9S171

a numeric vector

D8S264

a numeric vector

D5S346

a numeric vector

D22S928

a numeric vector

D18S53

a numeric vector

D1S225

a numeric vector

D3S1282

a numeric vector

D15S127

a numeric vector

D1S305

a numeric vector

D1S207

a numeric vector

D2S138

a numeric vector

D16S422

a numeric vector

D9S179

a numeric vector

D10S191

a numeric vector

D4S394

a numeric vector

D1S197

a numeric vector

D6S264

a numeric vector

D14S65

a numeric vector

D17S790

a numeric vector

D5S430

a numeric vector

D3S1283

a numeric vector

D4S414

a numeric vector

D8S283

a numeric vector

D11S916

a numeric vector

D2S159

a numeric vector

D16S408

a numeric vector

D6S275

a numeric vector

D10S192

a numeric vector

sexe

a numeric vector

Agediag

a numeric vector

Siege

a numeric vector

T

a numeric vector

N

a numeric vector

M

a numeric vector

STADE

a factor with levels 0 1 2 3 4

survyear

a numeric vector

DC

a numeric vector

Source

Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment, #' Benoît Romain, Agnès Neuville, Nicolas Meyer, Cécile Brigand, Serge Rohr, Anne Schneider, Marie-Pierre Gaub and Dominique Guenot, BMC Cancer 2010, 10:561, doi:10.1186/1471-2407-10-561.

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nicolas Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics, 31(3):397-404, doi:10.1093/bioinformatics/btu660.

Examples

# \donttest{ data(micro.censure) Y_train_micro <- micro.censure$survyear[1:80] C_train_micro <- micro.censure$DC[1:80] Y_test_micro <- micro.censure$survyear[81:117] C_test_micro <- micro.censure$DC[81:117] rm(Y_train_micro,C_train_micro,Y_test_micro,C_test_micro) # }