Skip to contents

Compute the two sided or one sided interval estimation of mu of one normal sample when the population variance is known or unknown.

Usage

interval_estimate4(x, sigma = -1, side = 0, alpha = 0.05)

Arguments

x

A numeric vector.

sigma

The standard deviation of the population. sigma>=0 indicates it is known, sigma<0 indicates it is unknown. Default to unknown standard deviation.

side

A parameter used to control whether to compute two sided or one sided interval estimation. When computing the one sided upper limit, input side = -1; when computing the one sided lower limit, input side = 1; when computing the two sided limits, input side = 0 (default).

alpha

The significance level, a real number in [0, 1]. Default to 0.05. 1-alpha is the degree of confidence.

Value

A data.frame with variables:

mean

The sample mean.

df

The degree of freedom.

a

The confidence lower limit.

b

The confidence upper limit.

References

Zhang, Y. Y., Wei, Y. (2013), One and two samples using only an R funtion, doi:10.2991/asshm-13.2013.29 .

Author

Ying-Ying Zhang (Robert) robertzhangyying@qq.com

Examples

x=rnorm(10, mean = 1, sd = 0.2); x
#>  [1] 0.9528708 1.0088669 0.5760600 0.9343016 1.0924105 1.1387249 0.8582811
#>  [8] 0.9582206 1.0704558 1.3489427
interval_estimate4(x, sigma = 0.2, side = -1)
#>        mean df    a        b
#> 1 0.9939135 10 -Inf 1.097943
interval_estimate4(x, side = 1)
#>        mean df         a   b
#> 1 0.9939135  9 0.8776059 Inf