Two sided interval estimation of sigma^2
of one normal sample
interval_var1.Rd
Compute the two sided interval estimation of sigma^2
of one normal sample when the population mean is known or unknown.
Arguments
- x
A numeric vector.
- mu
The population mean. When it is known, input it, and the function computes the interval endpoints using a chi-square distribution with degree of freedom
n
. When it is unknown, ignore it, and the function computes the interval endpoints using a chi-square distribution with degree of freedomn-1
.- alpha
The significance level, a real number in [0, 1]. Default to 0.05. 1-alpha is the degree of confidence.
Value
A data.frame with variables:
- var
The estimate of the population variance. When the population mean
mu
is known,var = mean((x-mu)^2)
. Whenmu
is unknown,var = var(x)
.- df
The degree of freedom.
- a
The confidence lower limit.
- b
The confidence upper limit.
References
Zhang, Y. Y., Wei, Y. (2013), One and two samples using only an R funtion, doi:10.2991/asshm-13.2013.29 .
Author
Ying-Ying Zhang (Robert) robertzhangyying@qq.com
Examples
x=rnorm(10, mean = 1, sd = 0.2); x
#> [1] 1.1584902 1.3630062 0.8126055 1.1722601 1.1243280 0.5711336 1.0969443
#> [8] 0.9105451 1.1092194 1.2888373
interval_var1(x, mu = 1)
#> var df a b
#> 1 0.0533823 10 0.02606153 0.1644064
interval_var1(x)
#> var df a b
#> 1 0.0552148 9 0.02612308 0.1840228