Two sided or one sided interval estimation of sigma^2
of one normal sample
interval_var3.Rd
Compute the two sided or one sided interval estimation of sigma^2
of one normal sample when the population mean is known or unknown.
Arguments
- x
A numeric vector.
- mu
The population mean. When it is known, input it, and the function computes the interval endpoints using a chi-square distribution with degree of freedom
n
. When it is unknown, ignore it, and the function computes the interval endpoints using a chi-square distribution with degree of freedomn-1
.- side
A parameter used to control whether to compute two sided or one sided interval estimation. When computing the one sided upper limit, input
side = -1
; when computing the one sided lower limit, inputside = 1
; when computing the two sided limits, inputside = 0
(default).- alpha
The significance level, a real number in [0, 1]. Default to 0.05. 1-alpha is the degree of confidence.
Value
A data.frame with variables:
- var
The estimate of the population variance. When the population mean
mu
is known,var = mean((x-mu)^2)
. Whenmu
is unknown,var = var(x)
.- df
The degree of freedom.
- a
The confidence lower limit.
- b
The confidence upper limit.
References
Zhang, Y. Y., Wei, Y. (2013), One and two samples using only an R funtion, doi:10.2991/asshm-13.2013.29 .
Author
Ying-Ying Zhang (Robert) robertzhangyying@qq.com
Examples
x=rnorm(10, mean = 1, sd = 0.2); x
#> [1] 0.9416208 0.8444366 0.9302892 1.2023435 0.9370456 0.9989236 0.7283394
#> [8] 1.3145855 0.7601232 0.9854689
interval_var3(x, mu = 1, side = -1)
#> var df a b
#> 1 0.03078906 10 0 0.07813888
interval_var3(x)
#> var df a b
#> 1 0.03279536 9 0.01551605 0.1093021