Two sided or one sided interval estimation of sigma1^2 / sigma2^2
of two normal samples
interval_var4.Rd
Compute the two sided or one sided interval estimation of sigma1^2 / sigma2^2
of two normal samples when the population means are known or unknown.
Usage
interval_var4(x, y, mu = c(Inf, Inf), side = 0, alpha = 0.05)
Arguments
- x
A numeric vector.
- y
A numeric vector.
- mu
The population means. When it is known, input it, and the function computes the interval endpoints using an F distribution with degree of freedom
(n1, n2)
. When it is unknown, ignore it, and the function computes the interval endpoints using an F distribution with degree of freedom(n1-1, n2-1)
.- side
A parameter used to control whether to compute two sided or one sided interval estimation. When computing the one sided upper limit, input
side = -1
; when computing the one sided lower limit, inputside = 1
; when computing the two sided limits, inputside = 0
(default).- alpha
The significance level, a real number in [0, 1]. Default to 0.05. 1-alpha is the degree of confidence.
Value
A data.frame with variables:
- rate
The estimate of the ratio of population variances,
rate = Sx2/Sy2
. When the population meansmu
is known,Sx2 = 1/n1*sum((x-mu[1])^2)
andSy2 = 1/n2*sum((y-mu[2])^2
. Whenmu
is unknown,Sx2 = var(x)
andSy2 = var(y)
.- df1
The first degree of freedom.
- df2
The second degree of freedom.
- a
The confidence lower limit.
- b
The confidence upper limit.
References
Zhang, Y. Y., Wei, Y. (2013), One and two samples using only an R funtion, doi:10.2991/asshm-13.2013.29 .
Author
Ying-Ying Zhang (Robert) robertzhangyying@qq.com
Examples
x=rnorm(10, mean = 1, sd = 0.2); x
#> [1] 1.3168995 1.0011351 0.8703591 1.3717326 1.1656606 1.2398071 1.1200102
#> [8] 1.0117520 0.7420473 0.9747332
y=rnorm(20, mean = 2, sd = 0.3); y
#> [1] 2.115196 1.837262 2.066782 1.806542 1.875650 1.311562 1.810536 1.840571
#> [9] 2.213104 1.925540 2.202581 1.821395 2.033027 2.111601 1.817043 2.313182
#> [17] 1.909188 2.425184 1.739870 1.334558
interval_var4(x, y, mu = c(1,2), side = -1)
#> rate df1 df2 a b
#> 1 0.5273226 10 20 0 1.462802
interval_var4(x, y)
#> rate df1 df2 a b
#> 1 0.5041512 9 19 0.1750493 1.856959