Two sided or one sided test of hypothesis of sigma^2
of one normal sample
var_test1.Rd
Compute the two sided or one sided test of hypothesis of sigma^2
of one normal sample when the population mean is known or unknown.
Arguments
- x
A numeric vector.
- sigma2
sigma2
issigma0^2
in the null hypothesis. Default is 1, i.e.,H0: sigma^2 = 1
.- mu
The population mean.
mu < Inf
indicates it is known,mu == Inf
indicates it is unknown. Default to unknown population mean.- side
A parameter used to control two sided or one sided test of hypothesis. When inputting
side = 0
(default), the function computes two sided test of hypothesis, andH1: sigma^2 != sigma0^2
; when inputtingside = -1
(or a number < 0), the function computes one sided test of hypothesis, andH1: sigma^2 < sigma0^2
; when inputtingside = 1
(or a number > 0), the function computes one sided test of hypothesis, andH1: sigma^2 > sigma0^2
.
Value
A data.frame with variables:
- var
The estimate of the population variance. When the population mean
mu
is known,var = mean((x-mu)^2)
. Whenmu
is unknown,var = var(x)
.- df
The degree of freedom.
- chisq2
The chisquare statistic.
- p_value
The P value.
References
Zhang, Y. Y., Wei, Y. (2013), One and two samples using only an R funtion, doi:10.2991/asshm-13.2013.29 .
Author
Ying-Ying Zhang (Robert) robertzhangyying@qq.com
Examples
x=rnorm(10, mean = 1, sd = 0.2); x
#> [1] 1.0682239 0.7741274 1.2866047 1.3960800 0.9265557 0.7911731 1.1139439
#> [8] 0.9729891 1.4803236 0.9921520
var_test1(x, sigma2 = 0.2^2, mu = 1, side = 1)
#> var df chisq2 P_value
#> 1 0.05881824 10 14.70456 0.14321
var_test1(x, sigma2 = 0.2^2, side = 1)
#> var df chisq2 P_value
#> 1 0.0582038 9 13.09586 0.1583167