Based on soft clustering performed by the Mfuzz package.

# S4 method for micro_array,numeric,numeric
unsupervised_clustering(
  M1,
  clust,
  mestim,
  M2 = NULL,
  data_log = TRUE,
  screen = NULL,
  heatmap = TRUE,
  new.window = TRUE
)

Arguments

M1

Object of micro_array class.

clust

Number of clusters.

mestim

Fuzzification parameter.

M2

[NULL] Object of micro_array class,

data_log

[TRUE] Should data be logged?

screen

[NULL] Specify `mfrow` parameter.

heatmap

[TRUE] Plot heatmaps?

new.window

[TRUE] Use new window?

Value

An object of class micro_array with the group slot updated by groups deduced from the soft clustering result.

Author

Bertrand Frederic, Myriam Maumy-Bertrand.

Examples

if(require(CascadeData)){ data(micro_S, package="CascadeData") M<-as.micro_array(micro_S[51:100,],1:4,6) mc<-unsupervised_clustering_auto_m_c(M) MwithGrp=unsupervised_clustering(M, 4, mc$m, screen=NULL, heatmap=FALSE, new.window = FALSE) # Other options unsupervised_clustering(M, 4, mc$m, screen=c(2,2), heatmap=TRUE, new.window = FALSE) # Plot the clusters plot(MwithGrp) }
#> #> Attachement du package : ‘gplots’
#> The following object is masked from ‘package:plotrix’: #> #> plotCI
#> The following object is masked from ‘package:stats’: #> #> lowess