R/micro_array.R
unsupervised_clustering-micro_array-numeric-numeric-method.RdBased on soft clustering performed by the Mfuzz package.
# S4 method for micro_array,numeric,numeric unsupervised_clustering( M1, clust, mestim, M2 = NULL, data_log = TRUE, screen = NULL, heatmap = TRUE, new.window = TRUE )
| M1 | Object of micro_array class. |
|---|---|
| clust | Number of clusters. |
| mestim | Fuzzification parameter. |
| M2 | [NULL] Object of micro_array class, |
| data_log | [TRUE] Should data be logged? |
| screen | [NULL] Specify `mfrow` parameter. |
| heatmap | [TRUE] Plot heatmaps? |
| new.window | [TRUE] Use new window? |
An object of class micro_array with the group slot updated by groups deduced from the soft clustering result.
Bertrand Frederic, Myriam Maumy-Bertrand.
if(require(CascadeData)){ data(micro_S, package="CascadeData") M<-as.micro_array(micro_S[51:100,],1:4,6) mc<-unsupervised_clustering_auto_m_c(M) MwithGrp=unsupervised_clustering(M, 4, mc$m, screen=NULL, heatmap=FALSE, new.window = FALSE) # Other options unsupervised_clustering(M, 4, mc$m, screen=c(2,2), heatmap=TRUE, new.window = FALSE) # Plot the clusters plot(MwithGrp) }#> #>#> #> #>#> #> #>