DPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
The factorization has the form
U**T * U, if UPLO = 'U', or
L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the block version of the algorithm, calling Level 3 BLAS.
dpotrf(UPLO = "U", N = NULL, A, LDA = NULL)
UPLO | a character.
|
---|---|
N | an integer. The order of the matrix A. N >= 0. |
A | a big.matrix, dimension (LDA,N). |
LDA | an integer. Dimension of the array A. LDA >= max(1,N). |
updates the big matrix A with the result, INFO is an integer
successful exit
if INFO = -i, the i-th argument had an illegal value
if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed.
Terms laying out of the computed triangle should be discarded.
#> [,1] [,2] [,3] [,4] #> [1,] 0.8840437 0.876387 1.9545734 -0.49320694 #> [2,] 0.0000000 2.139012 -0.8930167 -0.83237775 #> [3,] 0.0000000 0.000000 1.2194774 -0.68016374 #> [4,] 0.0000000 0.000000 0.0000000 0.05426794dpotrf(UPLO='U', N=4, A=B, LDA=4)#> [1] 0#> [,1] [,2] [,3] [,4] #> [1,] 0.8840437 0.876387 1.9545734 -0.49320694 #> [2,] 0.0000000 2.139012 -0.8930167 -0.83237775 #> [3,] 0.0000000 0.000000 1.2194774 -0.68016374 #> [4,] 0.0000000 0.000000 0.0000000 0.05426794#> [,1] [,2] [,3] [,4] #> [1,] 0 0 0 0 #> [2,] 0 0 0 0 #> [3,] 0 0 0 0 #> [4,] 0 0 0 0#> [,1] [,2] [,3] [,4] #> [1,] 0 0.000000e+00 0.000000e+00 0 #> [2,] 0 0.000000e+00 2.775558e-17 0 #> [3,] 0 2.775558e-17 0.000000e+00 0 #> [4,] 0 0.000000e+00 0.000000e+00 0#> used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) #> Ncells 786128 42.0 1311267 70.1 NA 1311267 70.1 #> Vcells 1474189 11.3 8388608 64.0 65536 2216094 17.0