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Outline

1. Introduction
• Gene regulatory networks
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Gene Expression

• Genes: Functional regions of DNA that encode proteins and RNA
molecules

• Expression levels of thousands of genes can be measured using
“high-throughput” technologies (e.g., microarrays, serial analysis of
gene expression, next-generation sequencing)
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Time-Course Gene Expression

• Time-course gene expression data can elucidate information about
patterns of relationships of gene expression in a cell

• Large number of genes, few biological replicates or time points...
N � P paradigm

4 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Regulatory Networks
• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

 

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip!on factor 

5 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Regulatory Networks
• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

 

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip!on factor 

• Abundance of TF is difficult to measure ⇒ expression levels of
corresponding genes usually used as proxy

5 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Regulatory Networks
• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

 

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip!on factor 

• Abundance of TF is difficult to measure ⇒ expression levels of
corresponding genes usually used as proxy

5 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Regulatory Networks
• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

 

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip!on factor 

1 

2 

3 

4 

• Abundance of TF is difficult to measure ⇒ expression levels of
corresponding genes usually used as proxy

5 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Regulatory Networks
• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

 

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip!on factor 

1 

2 

3 

4 

• Abundance of TF is difficult to measure ⇒ expression levels of
corresponding genes usually used as proxy

5 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Regulatory Networks
• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

 

DNA 

Gene 1 Gene 2 Gene 3 Gene 4 

TF binding site in promoter region 

Coding DNA (gene) 

Transcrip!on factor 

1 

2 

3 

4 

• Abundance of TF is difficult to measure ⇒ expression levels of
corresponding genes usually used as proxy

5 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Reverse Engineering Gene Regulatory Networks

• Expression levels of thousands of genes
can be measured using “high-throughput”
technologies

 

T = 1 

T = 2 
T = 3 

T = 4 
… 

6 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Reverse Engineering Gene Regulatory Networks

• Expression levels of thousands of genes
can be measured using “high-throughput”
technologies

• Time-course gene expression data can
elucidate information about patterns of
relationships of gene expression
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• Let observed time-course gene expression data be
y = {yt : t = 1, . . . ,T}, where yt = (yt1, ..., ytP )

T .

• Reverse engineering gene networks is a high dimensional problem:
many possible gene-to-gene interactions, few time points and
replicates (P � N)

• Many network structures may yield similarly high likelihoods, so
posterior distributions may be more informative about particular
gene-to-gene interactions

• A priori biological information may be encoded into the prior
distributions (network topology, sparsity, information about pathways
from bioinformatics databases, ...)

• ⇒ Fit model f (y|θ) to observed data y, where parameters are also
random variables following π(θ).

• Conditional distribution of network edges given observed data is
π(θ|y) ∝ f (y|θ)π(θ)
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• Without restrictive distributional assumptions on model parameters,
likelihood may be difficult to calculate

• Approximate Bayesian Computation: Sampling-based Bayesian
approach to infer approximate posterior distribution π(Θ|ρ(y?, y) ≤ ε)
using simulated data y?, a distance function ρ, and tolerance ε

• First applied in population genetics problems (e.g., Pritchard et al.,
1999; Beaumont et al., 2002)

• Some approaches for biological networks (Ratmann et al., 2007; Toni
et al., 2010)

• Novel (and non-standard?) adaptation to reverse engineering gene
regulatory networks

• Approximate when ε > 0 and equivalent to simulating from the prior
when ε → ∞
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ABC-MCMC (Marjoram et al., 2003)

• ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain
(e.g., using Metropolis-Hastings algorithm) with approximate
posterior distribution π(Θ|ρ(y?, y) ≤ ε) as equilibrium distribution
(Marjoram et al., 2003) Details
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• ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain
(e.g., using Metropolis-Hastings algorithm) with approximate
posterior distribution π(Θ|ρ(y?, y) ≤ ε) as equilibrium distribution
(Marjoram et al., 2003) Details

• Let q(·|·) and π(·) be the transition and prior distributions,
respectively.

• Given previous Θi , a proposed Θ? is accepted at the iterations with
(i + 1)st probability

α = min

{

1,
π(Θ?)q(Θi |Θ?)

π(Θi )q(Θ?|Θi )
1(ρ(y?, y) < ε)

}
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Adapting ABC-MCMC to Networks

• Several adaptations must be made to the ABC-MCMC method of
Marjoram et al. (2003) for reverse engineering gene regulatory
networks:

1. Computationally efficient way to simulate expression data y? from a
known regulatory network Θ?

2. Appropriate distance function ρ and tolerance ε to compare simulated
(y?) and observed (y) data

3. Prior and proposal distributions for network structures
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Simulating y? for Network Θ? (continuous)

Generally, we simulate gene expression at time t as a function of the gene
expression at the previous time point:

y?t = ft(yt−1,Θ
?)

In practice, for continuous data (e.g., microarrays):

• Set y?1 = y1.

• Generate one-step-ahead predictors based on first-order VAR model
on gene expression for t = 2, . . . ,T :

y?t = Θ?yt−1

Details
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Simulating y? for Network Θ? (discrete)

For count data (e.g., serial analysis of gene expression, RNA sequencing):

• Set y?1 = y1.

• yt ∼ Poisson(λt), where λt = πty·t ,
∑P

i=1 πit = 1, and

y·t =
∑P

i=1 yit .
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Simulating y? for Network Θ? (discrete)

For count data (e.g., serial analysis of gene expression, RNA sequencing):

• Set y?1 = y1.

• yt ∼ Poisson(λt), where λt = πty·t ,
∑P

i=1 πit = 1, and

y·t =
∑P

i=1 yit .

• Generate one-step-ahead predictors based on first-order VAR model
on the level of gene expression for t = 2, . . . ,T :

π̃?

t = exp
{

1
y
·t−1

Θ?yt−1

}

and π?
t =

1∑P
i=1 π̃

?

it

π̃?

t

y?t ∼ Poisson(π?

t y·t)

Details

13 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Distance Function and Tolerance
Distance functions (ρ):

• Canberra: ρ(y?, y) =

T
∑

t=1

P
∑

i=1

|y?it − yit |

|y?it + yit |

• Euclidean: ρ(y?, y) =

√

√

√

√

T
∑

t=1

P
∑

i=1

(y?it − yit)
2

• Manhattan: ρ(y?, y) =

T
∑

t=1

P
∑

i=1

|y?it − yit |

• Multivariate Time Series (MVT):

ρ(y?, y) = 1
T

T
∑

t=1

[(yt − y?t )− (ŷt − ŷ?t )]
′ Σ̂−1 [(yt − y?t )− (ŷt − ŷ?t )]
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t=1

P
∑

i=1

|y?it − yit |

• Multivariate Time Series (MVT):

ρ(y?, y) = 1
T

T
∑

t=1

[(yt − y?t )− (ŷt − ŷ?t )]
′ Σ̂−1 [(yt − y?t )− (ŷt − ŷ?t )]

Tolerance (ε):

• ε = 1% quantile of distances ρ from 5000 random networks
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of parameters

• To facilitate simulation, we introduce as an auxiliary variable a P × P

adjacency matrix G , where Gij = 1 if gene j regulates gene i , and
Gij = 0 otherwise.

• Note that Gij = 0 ⇔ Θij = 0 and Gij = 1 ⇔ Θij 6= 0
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• Joint distribution of G and Θ may be seen as a completion to the
marginal density of Θ
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Two-Step Proposal Distribution

• Two-step proposal distribution: q(G ?|G i) and q(Θ?|Θi ,G ?):
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Prior Distributions

• Gene regulatory networks typically sparse with spoke-and-hub
structure and few regulators per gene (fan-in)
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Prior distributions:

• π(G ) is uniform over all structures, with maximum fan-in of 5 or less

• π(Θ|G ) is uniform
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ABC-MCMC Network Method

ABC-Net Algorithm:

0. Initialize Θi , G i , i = 0.
1. (a) Propose G ? according to q(G |G i).

(b) Propose Θ? according to q(Θ|Θi ,G ?).
2. Simulate y? from f (·|Θ?,G ?).
3. Set {G i+1, Θi+1} = {G ?, Θ?} with probability

α = min{1, π(G
?)π(Θ?|G?)q(G i |G?)q(Θi |Θ?)

π(G i )π(Θi |G i )q(G?|G i )q(Θ?|Θi )
1 [ρ(y?, y) ≤ ε]}

and {G i+1,Θi+1} = {G i ,Θi} with probability 1− α.
4. Set i = i + 1. If i < N (a pre-set number of iterations), return to 1.

• Burn-in period, number of iterations, chain thinning, ... Details
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Simulations: Raf Signalling Protein Pathway
• Simulations based on currently accepted gold-standard Raf signalling
pathway (Sachs et al., 2005) in human immune system cells for 11
genes (20 total edges)
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Simulations: Raf Signalling Protein Pathway
• Simulations based on currently accepted gold-standard Raf signalling
pathway (Sachs et al., 2005) in human immune system cells for 11
genes (20 total edges)

• Simulate T = 20 time points, R = 1 replicate using VAR model
• Run ABC-Net algorithm for 10 independent chains of length 1× 106

with thinning interval of 50
• Use Gelman-Rubin statistic to assess convergence across chains

19 / 34



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

ABC-Net Simulations

1. Choice of distance function ρ and tolerance ε

2. Suitability of VAR simulator for data generated with alternative
models (nonlinear models, second-order models, and ordinary
differential equations)

3. Sensitivity to prior distribution bounds
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Simulations I: Choice of ρ and ε

• Set ε to be the 1%, 5%, or 10% quantile of distances ρ from 5000
random networks
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Simulations II: Suitability of VAR Simulator
• Alternative models: first-order nonlinear VAR (VAR-NL(1)),
second-order VAR (VAR(2)), second-order nonlinear VAR
(VAR-NL(2)), and ordinary differential equation (ODE)
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Simulations III: Sensitivity to prior distribution bounds
• Vary prior bounds π(Θ|G ) between (-2,2), (-3,3), (-5,5) and (-10,10)
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Simulations III: Prior bounds (-2,2)
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Simulations: Discussion

• “Flexible” and “rigid” edges yield additional information about the
dynamics of the network

• Rigidity and flexibility are closely linked to the network dynamics,
robustness, and sensitivity
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Simulations: Discussion

• “Flexible” and “rigid” edges yield additional information about the
dynamics of the network

• Rigidity and flexibility are closely linked to the network dynamics,
robustness, and sensitivity

• Canberra, Euclidean, and Manhattan distances perform similarly in
terms of AUC; MVT distance does not perform as well

• Performance of ABC-Net deteriorates for alternative models when a
VAR simulator is used

• Alternative simulators may be used in situations where other models
are known to be more appropriate

• Wider prior bounds lead to convergence problems and may require
more iterations
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Data Analysis

• Different inference methods are better suited to different tasks:
• Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et

al. (2010)) is a hierarchical (empirical) Bayesian method for
moderately sized networks (e.g., 50 - 100 genes):

π(Θ|y, ψ̂) ∝ f (y|Θ)π(Θ|ψ̂)π(ψ̂)

Details

• ABC-Net algorithm may be used for detailed analyses of small,
well-characterized networks (e.g., 10 - 20 genes)
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• Different inference methods are better suited to different tasks:
• Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et

al. (2010)) is a hierarchical (empirical) Bayesian method for
moderately sized networks (e.g., 50 - 100 genes):

π(Θ|y, ψ̂) ∝ f (y|Θ)π(Θ|ψ̂)π(ψ̂)

Details

• ABC-Net algorithm may be used for detailed analyses of small,
well-characterized networks (e.g., 10 - 20 genes)

• Using two algorithms on a common task can help elucidate the
strengths and weaknesses of each one:

• S.O.S. DNA repair system in Escherichia coli
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Data Analysis: S.O.S. DNA Repair System in E. coli

• S.O.S. DNA repair system of Escherichia coli (Ronen et al., 2002)
• 8 genes, with lexA as a master regulator that inhibits S.O.S. genes
under normal conditions but activates them when DNA damage is
sensed by recA (“single-input” module architecture)

• 50 time points, 1 replicate
• Maximum fan-in for ABC-Net method constrained to 2
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Results: S.O.S. DNA Repair System
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Discussion: S.O.S. DNA Repair System

• In S.O.S. system, lexA decreases very rapidly, so S.O.S. genes turn on
at about the same time

• Time-delay models (e.g., autoregressive models) show stronger link
between recA and S.O.S. genes
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Discussion: S.O.S. DNA Repair System

• In S.O.S. system, lexA decreases very rapidly, so S.O.S. genes turn on
at about the same time

• Time-delay models (e.g., autoregressive models) show stronger link
between recA and S.O.S. genes

• S.O.S. DNA repair is a simple, yet sophisticated network ⇒ network
is reacting to conditions within the cell

• “Rigid” and “flexible” edges identified by the ABC-Net algorithm can
help clarify results from other inference methods
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Summary

• Inferring gene regulatory networks is intrinsically difficult: complex
network topology, small number of replicates and time points, noise in
expression measurements
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Summary

• Inferring gene regulatory networks is intrinsically difficult: complex
network topology, small number of replicates and time points, noise in
expression measurements

• Approximate Bayesian Computation methods can reveal information
about the dynamics of biological systems from time-series gene
expression data

• ABC-MCMC Network (ABC-Net) approach uses a simulation-based
Bayesian method with few distributional assumptions to infer
approximate posterior distributions in small networks
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Future Work

• Further examine components of ABC-Net method:
• More sophisticated data simulators and techniques to identify optimal

simulators for real data
• Alternative and efficient network structure proposal schemes
• Objective criterion to characterize approximate posterior distributions

(e.g., introduce hierarchical prior on latent indicator variable G in
ABC-Net method, and use local Bayes factor to quantitatively examine
evidence of network edges)
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Future Work

• Further examine components of ABC-Net method:
• More sophisticated data simulators and techniques to identify optimal

simulators for real data
• Alternative and efficient network structure proposal schemes
• Objective criterion to characterize approximate posterior distributions

(e.g., introduce hierarchical prior on latent indicator variable G in
ABC-Net method, and use local Bayes factor to quantitatively examine
evidence of network edges)

• Examine alternative simulators and distance functions for time series
digital gene expression measures (e.g., RNA sequencing data)

• Develop statistical methods to combine results from multiple
inference methods (i.e., consensus networks or model averaging)
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Theorem
Under suitable regularity conditions, π(Θ|ρ(y, y?) ≤ ε) is the stationary

distribution of the chain.

Let r(Θ → Θ?) be the transition mechanism of the chain. We must check
whether f (Θ|ρ(y?, y) ≤ ε)r(Θ → Θ?) = f (Θ?|ρ(y?, y) ≤ ε)r(Θ? → Θ).
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• Suppose we have complete knowledge from the past (yt−1) and we
want to predict (simulate) expression at time t based on the current
network Θ?: y?t = ŷt = E (yt |yt−1,Θ

?).
• Data from previous time point used to determine forecasted

(simulated) values at current time point
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Simulation Procedure

• One-step-ahead predictors: y? = Θ?yt−1

• Suppose we have complete knowledge from the past (yt−1) and we
want to predict (simulate) expression at time t based on the current
network Θ?: y?t = ŷt = E (yt |yt−1,Θ

?).
• Data from previous time point used to determine forecasted

(simulated) values at current time point

• Toni and Stumpf (2010): Numerically solved ordinary differential
equations and added noise to obtain simulated time-course data

• Ratmann et al. (2007): Evolutionary history of protein interaction
networks simulated using mixture evolution model (average summary
statistics over 50 generated networks)

• Marjoram et al. (2003): DNA sequences simulated using coalescent
trees
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LFN Implementation Details

• Burn-in period
• Cooling procedure: Temper acceptance with exponential cooling

scheme, starting at some initial temperature ε0 and cooling to
εi+1 = λεi until the minimal temperature εmin = ε is reached. We use
λ = 0.90 and set ε0 = ελ−10.

• Use each εi for 200 iterations, then cool to next value.
• If εmin is reached and the acceptance rate for the chain ≤ 1%, the

burn-in period is reinitialized.



Appendix

LFN Implementation Details

• Burn-in period
• Cooling procedure: Temper acceptance with exponential cooling

scheme, starting at some initial temperature ε0 and cooling to
εi+1 = λεi until the minimal temperature εmin = ε is reached. We use
λ = 0.90 and set ε0 = ελ−10.

• Use each εi for 200 iterations, then cool to next value.
• If εmin is reached and the acceptance rate for the chain ≤ 1%, the

burn-in period is reinitialized.

• Chain length:
• 10 chains for 1× 106 iterations each (1 × 107 iterations total)
• Thinning interval of 50 (2 × 105 remaining iterations)
• Inference made on samples corresponding to smallest 1% of ρ(y?, y)

(2000 iterations)
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Approximate Bayesian Methods I
Empirical Bayes Dynamic Bayesian Network (EBDBN) Algorithm

• Parameters Θ (i.e., network edges) may be related to one another ⇒
Hierarchical Bayes model samples parameters from a common
distribution: π(Θ|y,ψ) ∝ f (y|Θ)π(Θ|ψ)π(ψ)

• Idea: Use observed data y to estimate ψ

• Common parametric EB models (based on conjugate distributions)
include Poisson-Gamma, Beta-binomial, multinomial-Dirichlet, and
Gaussian-Gaussian

• Let yt and xt be observed gene expression and unobserved hidden
states measured at time t:

xt = Axt−1 + Byt−1 + wt

yt = Cxt +Θyt−1 + vt
wt ∼ N(0, I ), vt ∼ N(0,V−1))
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Let y = {yt}t=1,...,T be observed gene expression and x = {xt}t=1,...,T be
unobserved hidden states measured at the same time points.
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Crows ∼ N(0, (V γ)−1) Θrows ∼ N(0, (V δ)−1)
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unobserved hidden states measured at the same time points.

• Linear Gaussian state space model:

xt = Axt−1 + Byt−1 + wt

yt = Cxt +Θyt−1 + vt
wt ∼ N(0, I ), vt ∼ N(0,V−1))

Arows ∼ N(0, α−1) Brows ∼ N(0, β−1)
Crows ∼ N(0, (V γ)−1) Θrows ∼ N(0, (V δ)−1)
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