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e Genes: Functional regions of DNA that encode proteins and RNA
molecules
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Gene Expression

e Genes: Functional regions of DNA that encode proteins and RNA
molecules

e Expression levels of thousands of genes can be measured using
“high-throughput” technologies (e.g., microarrays, serial analysis of
gene expression, next-generation sequencing)
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Time-Course Gene Expression

e Time-course gene expression data can elucidate information about
patterns of relationships of gene expression in a cell

e Large number of genes, few biological replicates or time points...
N < P paradigm
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Gene Regulatory Networks

o Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)
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Reverse Engineering Gene Regulatory Networks

e Expression levels of thousands of genes
can be measured using “high-throughput”
technologies
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Reverse Engineering Gene Regulatory Networks

e Expression levels of thousands of genes
can be measured using “high-throughput
technologies

Adjacency matrix Parameter matrix
e Time-course gene expression data can ABCD ABCD
. . . Al 100 Al 2 0 0
elucidate information about patterns of . Bloooo o Blo 0 00
. . . T Ccloo0o0 1 T Ccjo 0 0 2
relationships of gene expression plo1 oo plo 100
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y={y::t=1,...,T}, where y; = (Y1, ..., yer) .
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Bayesian Framework

Let observed time-course gene expression data be
y={y::t=1,...,T}, where y; = (Y1, ..., yer) .
Reverse engineering gene networks is a high dimensional problem:
many possible gene-to-gene interactions, few time points and
replicates (P < N)
Many network structures may yield similarly high likelihoods, so
posterior distributions may be more informative about particular
gene-to-gene interactions
A priori biological information may be encoded into the prior
distributions (network topology, sparsity, information about pathways
from bioinformatics databases, ...)
= Fit model f(y|f) to observed data y, where parameters are also
random variables following 7(6).

e Conditional distribution of network edges given observed data is

m(0ly) o f(y|0)m(6)
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e Without restrictive distributional assumptions on model parameters,
likelihood may be difficult to calculate
o Approximate Bayesian Computation: Sampling-based Bayesian

approach to infer approximate posterior distribution 7w(©|p(y*,y) < €)
using simulated data y*, a distance function p, and tolerance ¢

e First applied in population genetics problems (e.g., Pritchard et al.,
1999; Beaumont et al., 2002)

e Some approaches for biological networks (Ratmann et al., 2007; Toni
et al., 2010)

e Novel (and non-standard?) adaptation to reverse engineering gene
regulatory networks

e Approximate when ¢ > 0 and equivalent to simulating from the prior
when € — o0
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ABC Motivation

Prior: P(©) M

Posterior: P(O]y) ObTim?jd .
X= serve ata

Rejection sampling
(Pritchard et al., 1999)

(Slide idea from Tina Toni)
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ABC Motivation

e Tolerance/distance criteria

e Summary statistics
(Beaumont et al., 2002)

. e «
Prior: P(©) M

Posterior: P(O]y) Time
* x = Observed data

e Post-sampling regression Rejection sampling
(Leuenberger and Weimann, 2009) (Pritchard et al., 1999)

e Nonparametric estimation
(Beaumont et al., 2002)

(Slide idea from Tina Toni)
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ABC Motivation

e Sequential methods e Tolerance/distance criteria
(s G, AT7)) e Summary statistics
e Markov Chain Monte Carlo (Beaumont et al., 2002)
(Marjoram et al., 2003; Bortot et al., 2007) l
8 ® x
Prior: P(©) M
X
X
X
X

Posterior: P(O]y) Time
* x = Observed data

e Post-sampling regression Rejection sampling
(Leuenberger and Weimann, 2009) (Pritchard et al., 1999)

e Nonparametric estimation
(Beaumont et al., 2002)

(Slide idea from Tina Toni)
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ABC-MCMC (Marjoram et al., 2003)

e ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain
(e.g., using Metropolis-Hastings algorithm) with approximate
posterior distribution 7(©|p(y*,y) < €) as equilibrium distribution
(Marjoram et al., 2003)
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ABC-MCMC (Marjoram et al., 2003)

e ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain
(e.g., using Metropolis-Hastings algorithm) with approximate
posterior distribution 7(©|p(y*,y) < €) as equilibrium distribution
(Marjoram et al., 2003)

e Let g(:|-) and 7(-) be the transition and prior distributions,
respectively.

e Given previous ©', a proposed ©* is accepted at the iterations with
(7 + 1) probability

o f, (@),
o= {1’ m(@)g(eren YY) < )}
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Adapting ABC-MCMC to Networks

e Several adaptations must be made to the ABC-MCMC method of
Marjoram et al. (2003) for reverse engineering gene regulatory
networks:
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Adapting ABC-MCMC to Networks

e Several adaptations must be made to the ABC-MCMC method of
Marjoram et al. (2003) for reverse engineering gene regulatory
networks:

1. Computationally efficient way to simulate expression data y* from a
known regulatory network ©*

2. Appropriate distance function p and tolerance € to compare simulated
(y*) and observed (y) data

3. Prior and proposal distributions for network structures
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Simulating y* for Network ©* (continuous)

Generally, we simulate gene expression at time t as a function of the gene
expression at the previous time point:

y; = ft(yt—lv e*)
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Simulating y* for Network ©* (continuous)

Generally, we simulate gene expression at time t as a function of the gene
expression at the previous time point:

y; = ft(yt—lv @*)

In practice, for continuous data (e.g., microarrays):
e Set y] =yi1.
e Generate one-step-ahead predictors based on first-order VAR model
on gene expression for t =2,..., T:

y); = 0%y
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Simulating y* for Network ©* (discrete)

For count data (e.g., serial analysis of gene expression, RNA sequencing):
e Set y] =yi1.
e y; ~ Poisson(A¢), where Ay = 71y, Z,P:1 mir = 1, and
Y= przl Yit-
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Simulating y* for Network ©* (discrete)

For count data (e.g., serial analysis of gene expression, RNA sequencing):
e Set y] =yi1.
e y; ~ Poisson(A¢), where Ay = 71y, Z,P:1 7w =1, and

P
Yot = D iz it
e Generate one-step-ahead predictors based on first-order VAR model

on the level of gene expression for t =2,..., T:
~x 1 * * 1 ~ %
Ty = exp {—}/~t—1@ yt_l} and 7} = S e

y; ~ Poisson(7}y.+)
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Distance Function and Tolerance
Distance functions (p):

e Canberra: p(y*,y) = ZZ |y/t Vit|

t=1 i=1 13t + iel

T P
e Euclidean: p(y*,y) = ZZ Yie = Yit)®

t=1 i=1

T P

¢ Manhttan: ply.y) = 33 i — i
t=1 i=1

e Multivariate Time Series (MVT):

Ir
=3 lye—y0) = Fe — IOV E 7 (ye — y7) — (9 — 97)]
t=1
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Distance Function and Tolerance
Distance functions (p):

e Canberra: p(y*,y) = ZZ |y/t Vit|

= o Y el
T P
e Euclidean: p(y*,y) = ZZ Yie = yie)?
t=1 i=1

T P
¢ Manhttan: ply.y) = 33 i — i
t=1 i=1
e Multivariate Time Series (MVT):
T
=130 ¥ — G-I £ e~ yD) — 5o~ 50
t=1

Tolerance (e):

e ¢ = 1% quantile of distances p from 5000 random networks
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Network Proposals

e With networks, we must propose both a new structure and a new set
of parameters
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Network Proposals

e With networks, we must propose both a new structure and a new set
of parameters

e To facilitate simulation, we introduce as an auxiliary variable a P x P
adjacency matrix G, where Gj; = 1 if gene j regulates gene i/, and
Gjj = 0 otherwise.

e Note that G; =0 0;=0and Gj =1 0;; #0

ABCD ABCD
Al 100 Al 2 0 0
B[00 00 B0 0 0 0
G=clooo 9=clo o 0 =
D010 0 Dlo -1 0 0

e  “re
OO @
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Network Proposals

e With networks, we must propose both a new structure and a new set
of parameters
e To facilitate simulation, we introduce as an auxiliary variable a P x P
adjacency matrix G, where Gj; = 1 if gene j regulates gene i/, and
Gjj = 0 otherwise.
e Note that G; =0 0;=0and Gj =1 0;; #0
¢

S
e  “re
OO @

D
0

S0

oo o — »
- oo - w

A
B
G= ¢
D

o oo

0
1
0

e Joint distribution of G and © may be seen as a completion to the
marginal density of ©
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Two-Step Proposal Distribution

e Two-step proposal distribution: q(G*|G) and q(©*|©', G*):

Adjacency matrix Parameter matrix
ABC o AR
A0 0 0 o i 00 0
G=8lo o1 ©=B|0 0 2
cl1 0 0 o e o e Ci3 oo
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Two-Step Proposal Distribution

e Two-step proposal distribution: q(G*|G) and q(©*|©', G*):

Adjacency matrix Parameter matrix
A B C
ABC
A0 0 0 o o A0 0 0
G'=B|0 0 1 O'=8B|0 0 2
o @O @—©  cboo
Add, delete, reverse edge
(Husmeier, 2003)
ABC
. A0 0 0O o
oo @—©
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Two-Step Proposal Distribution

e Two-step proposal distribution: q(G*|G) and q(©*|©', G*):

Adjacency matrix Parameter matrix

ABC o A A B C

A(O0O 0 O ) 00 0

G=8lo o1 @'=B|0 0 2

o @O @—©  cboo

Add, delete, reverse edge
(Husmeler 2003) Gaussian proposal

ABC A B C
. A(0O 0 O |:> o A 0O 0 0
G =B|1 0 1 © =B|-04 0 03
cl1 0 0 o e C 27 0 0
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Prior Distributions

o Gene regulatory networks typically sparse with spoke-and-hub
structure and few regulators per gene (fan-in)

e

Spoke- Gene A
and-hub fan-in=3
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Prior Distributions

o Gene regulatory networks typically sparse with spoke-and-hub
structure and few regulators per gene (fan-in)

R PC ®\
o)
® @
Spoke- Gene A
and-hub fan-in=3

Prior distributions:

Discussion

e 7m(G) is uniform over all structures, with maximum fan-in of 5 or less

e m(©|G) is uniform
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ABC-MCMC Network Method

ABC-Net Algorithm:

0. Initialize ©®, G/, i = 0.
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1. (a) Propose G* according to q(G|G').
(b) Propose ©* according to q(©|0', G*).
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ABC-Net Algorithm:

0. Initialize ©', G', i = 0.
1. (a) Propose G* according to q(G|G').
(b) Propose ©* according to q(©|0', G*).
2. Simulate y* from f(:|©*, G*).
3. Set {G'™, @11} = {G*, ©*} with probability

m(G*)m(©*G*)q(G'|G*)q(9'19%)
o = mln{l, 7r(G Y (©7]G7 )qq(G*\G )qq(@*|e) 1 [P(y*,Y) < 6]}

and {G™1, @1} = {G' ©'} with probability 1 — a.
4. Seti=i+1. If i <N (a pre-set number of iterations), return to 1.

e Burn-in period, number of iterations, chain thinning, ...
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Simulations: Raf Signalling Protein Pathway

e Simulations based on currently accepted gold-standard Raf signalling
pathway (Sachs et al., 2005) in human immune system cells for 11
genes (20 total edges)
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Simulations: Raf Signalling Protein Pathway

e Simulations based on currently accepted gold-standard Raf signalling
pathway (Sachs et al., 2005) in human immune system cells for 11
genes (20 total edges)

e Simulate T = 20 time points, R = 1 replicate using VAR model
e Run ABC-Net algorithm for 10 independent chains of length 1 x 10°
with thinning interval of 50

e Use Gelman-Rubin statistic to assess convergence across chains
19 / 34
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ABC-Net Simulations

. Choice of distance function p and tolerance ¢

. Suitability of VAR simulator for data generated with alternative
models (nonlinear models, second-order models, and ordinary
differential equations)

. Sensitivity to prior distribution bounds

20/ 34
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Data Analysis

Simulations |: Choice of p and ¢

e Set € to be the 1%, 5%, or 10% quantile of distances p from 5000
random networks
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Simulations Il: Suitability of VAR Simulator

e Alternative models: first-order nonlinear VAR (VAR-NL(1)),
second-order VAR (VAR(2)), second-order nonlinear VAR
(VAR-NL(2)), and ordinary differential equation (ODE)

Area Under the Curve (By Model)

AUC
| |

040 045 050 055 060 065 070 0.75

VAR(1) VAR-NL()  VAR@Z)  VAR-NL(2) ODE

Model Type
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Simulations Ill: Sensitivity to prior distribution bounds
e Vary prior bounds 7(©|G) between (-2,2), (-3,3), (-5,5) and (-10,10)

Convergence Assessment by Prior Bounds

- Convergence cutoff (= 1.2) ‘ o
o 4
°
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Prior Bounds and Replicate Number
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Simulations Ill: Prior bounds (-2,2)
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Simulations: Discussion

“Flexible” and “rigid” edges yield additional information about the
dynamics of the network

e Rigidity and flexibility are closely linked to the network dynamics,
robustness, and sensitivity
Canberra, Euclidean, and Manhattan distances perform similarly in
terms of AUC; MVT distance does not perform as well

Performance of ABC-Net deteriorates for alternative models when a
VAR simulator is used

o Alternative simulators may be used in situations where other models
are known to be more appropriate

Wider prior bounds lead to convergence problems and may require
more iterations
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Data Analysis

e Different inference methods are better suited to different tasks:

e Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et
al. (2010)) is a hierarchical (empirical) Bayesian method for
moderately sized networks (e.g., 50 - 100 genes):

(Oly, $) o f(y|©)m(OlP)n(4))

o ABC-Net algorithm may be used for detailed analyses of small,
well-characterized networks (e.g., 10 - 20 genes)
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e Different inference methods are better suited to different tasks:

e Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et
al. (2010)) is a hierarchical (empirical) Bayesian method for
moderately sized networks (e.g., 50 - 100 genes):

(Oly, $) o f(y|©)m(OlP)n(4))

o ABC-Net algorithm may be used for detailed analyses of small,
well-characterized networks (e.g., 10 - 20 genes)

e Using two algorithms on a common task can help elucidate the
strengths and weaknesses of each one:

e S.0.S. DNA repair system in Escherichia coli
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Data Analysis: S.0.S. DNA Repair System in E. coli

S.0.S. DNA repair system of Escherichia coli (Ronen et al., 2002)
8 genes, with lexA as a master regulator that inhibits S.0.S. genes
under normal conditions but activates them when DNA damage is
sensed by recA (“single-input” module architecture)

50 time points, 1 replicate

Maximum fan-in for ABC-Net method constrained to 2
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Discussion: S.0.S. DNA Repair System

e In S.0.S. system, lexA decreases very rapidly, so S.0.S. genes turn on
at about the same time

e Time-delay models (e.g., autoregressive models) show stronger link
between recA and S.0.S. genes
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Discussion: S.0.S. DNA Repair System

e In S.0.S. system, lexA decreases very rapidly, so S.0.S. genes turn on

at about the same time
e Time-delay models (e.g., autoregressive models) show stronger link
between recA and S.0.S. genes

e S5.0.S. DNA repair is a simple, yet sophisticated network = network
is reacting to conditions within the cell

e “Rigid" and “flexible” edges identified by the ABC-Net algorithm can
help clarify results from other inference methods
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e Inferring gene regulatory networks is intrinsically difficult: complex
network topology, small number of replicates and time points, noise in
expression measurements
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Summary

e Inferring gene regulatory networks is intrinsically difficult: complex
network topology, small number of replicates and time points, noise in
expression measurements

e Approximate Bayesian Computation methods can reveal information
about the dynamics of biological systems from time-series gene
expression data

e ABC-MCMC Network (ABC-Net) approach uses a simulation-based
Bayesian method with few distributional assumptions to infer
approximate posterior distributions in small networks
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Future Work

e Further examine components of ABC-Net method:

e More sophisticated data simulators and techniques to identify optimal
simulators for real data

e Alternative and efficient network structure proposal schemes

e Objective criterion to characterize approximate posterior distributions
(e.g., introduce hierarchical prior on latent indicator variable G in
ABC-Net method, and use local Bayes factor to quantitatively examine
evidence of network edges)
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Future Work

e Further examine components of ABC-Net method:

e More sophisticated data simulators and techniques to identify optimal
simulators for real data

e Alternative and efficient network structure proposal schemes

e Objective criterion to characterize approximate posterior distributions
(e.g., introduce hierarchical prior on latent indicator variable G in
ABC-Net method, and use local Bayes factor to quantitatively examine
evidence of network edges)

e Examine alternative simulators and distance functions for time series
digital gene expression measures (e.g., RNA sequencing data)

o Develop statistical methods to combine results from multiple
inference methods (i.e., consensus networks or model averaging)
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Theorem

Under suitable regularity conditions, w(©|p(y,y*) < €) is the stationary
distribution of the chain.

Let r(© — ©*) be the transition mechanism of the chain. We must check
whether f(O|p(y*,y) < €)r(© — ©*) = f(©*|p(y*,y) < €)r(6* — ©).
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network ©*: y; = §¢ = E(Ylye—1,0%).
e Data from previous time point used to determine forecasted
(simulated) values at current time point
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Simulation Procedure

e One-step-ahead predictors: y* = ©*y;_1
e Suppose we have complete knowledge from the past (y:—1) and we
want to predict (simulate) expression at time t based on the current
network ©*: y; = §¢ = E(Ylye—1,0%).
e Data from previous time point used to determine forecasted
(simulated) values at current time point
e Toni and Stumpf (2010): Numerically solved ordinary differential
equations and added noise to obtain simulated time-course data

e Ratmann et al. (2007): Evolutionary history of protein interaction
networks simulated using mixture evolution model (average summary
statistics over 50 generated networks)

e Marjoram et al. (2003): DNA sequences simulated using coalescent
trees
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e Burn-in period

e Cooling procedure: Temper acceptance with exponential cooling
scheme, starting at some initial temperature ¢g and cooling to
€i+1 = A€ until the minimal temperature €, = € is reached. We use
A =0.90 and set g = eA™10.

e Use each ¢; for 200 iterations, then cool to next value.

e If €min is reached and the acceptance rate for the chain < 1%, the
burn-in period is reinitialized.
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LFN Implementation Details

e Burn-in period
e Cooling procedure: Temper acceptance with exponential cooling
scheme, starting at some initial temperature ¢g and cooling to
€i+1 = A€ until the minimal temperature €, = € is reached. We use
A =0.90 and set g = eA™10.
e Use each ¢; for 200 iterations, then cool to next value.
e If €min is reached and the acceptance rate for the chain < 1%, the
burn-in period is reinitialized.
e Chain length:

e 10 chains for 1 x 10° iterations each (1 x 107 iterations total)

e Thinning interval of 50 (2 x 10° remaining iterations)

e Inference made on samples corresponding to smallest 1% of p(y*,y)
(2000 iterations)



Appendix
0000e0

Approximate Bayesian Methods |
Empirical Bayes Dynamic Bayesian Network (EBDBN) Algorithm

o Parameters © (i.e., network edges) may be related to one another



Appendix
0000e0

Approximate Bayesian Methods |
Empirical Bayes Dynamic Bayesian Network (EBDBN) Algorithm

o Parameters © (i.e., network edges) may be related to one another =
Hierarchical Bayes model samples parameters from a common

distribution: 7(©ly, ) x f(y|©)n(©]y)m ()



Appendix
0000e0

Approximate Bayesian Methods |
Empirical Bayes Dynamic Bayesian Network (EBDBN) Algorithm

o Parameters © (i.e., network edges) may be related to one another =
Hierarchical Bayes model samples parameters from a common
distribution: 7(©ly, ) x f(y|©)n(©]y)m ()

e |dea: Use observed data y to estimate v

e Common parametric EB models (based on conjugate distributions)
include Poisson-Gamma, Beta-binomial, multinomial-Dirichlet, and
Gaussian-Gaussian



Appendix
0000e0

Approximate Bayesian Methods |
Empirical Bayes Dynamic Bayesian Network (EBDBN) Algorithm

o Parameters © (i.e., network edges) may be related to one another =
Hierarchical Bayes model samples parameters from a common
distribution: 7(©ly, ) x f(y|©)n(©]y)m ()

e |dea: Use observed data y to estimate v

e Common parametric EB models (based on conjugate distributions)
include Poisson-Gamma, Beta-binomial, multinomial-Dirichlet, and
Gaussian-Gaussian

e lLet y; and x; be observed gene expression and unobserved hidden
states measured at time t:

Xt = Axt—1 + Byr—1 + wy
Ye = Cxe + Oyi1 + v
Wi ~ N(O, /),Vt ~ N(O, V_l))
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Rau et al., 2010

Let y = {yt}¢=1,.. T be observed gene expression and x = {x;}+=1,.. 1 be
unobserved hidden states measured at the same time points.
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Rau et al., 2010

Let y = {yt}¢=1,.. T be observed gene expression and x = {x;}+=1,.. 1 be
unobserved hidden states measured at the same time points.
e Linear Gaussian state space model:

Xt = Ax¢—1 + By 1+ wq
Y = Cxy + Oy1 + v
W; ~ N(O, /),Vt ~ N(O, V_l))

Arows ~ N(O a_l) Brows ~ N(Oaﬂ_l)
rows ™ N V’Y 1) rows ™ N(07 (Vé)_l)

Final network
based on
n(Oly,x, a, 6, v, )

Choose hidden 1
: t EM algorithm to Kalman filter and
state dimension, smoother to

Initialize x, @, 8, y, 6 IR @ (A update x

Convergence check



	Introduction
	ABC-MCMC for Networks
	Simulations
	Data Analysis
	Discussion
	Appendix
	Appendix


