A shared component hierarchical model to represent how fish assemblages vary as a function of river temperatures and flow regimes

Jeremy PIFFADY^(1,2), Éric PARENT⁽¹⁾ & Yves SOUCHON⁽²⁾

 ⁽¹⁾Équipe Modélisation, Risques, Statistique, Environnement de l'UMR 518 INRA/AgroParisTech, 19, Avenue du Maine, 75732 Paris Cedex 15, France,
⁽²⁾Institut de recherche en sciences et technologies pour l'environnement, Pôle d'Hydrobiologie des cours d'eau,3 bis Quai Chauveau, 69336 Lyon

14 Janvier 2011

How interannual variations of fish assemblages are linked to temperature and flow regimes?

- The Bugey case study location
- The response variables
- The explanatory variables
- Ochallenges to the statistical analyst
 - Challenging features
 - Why not a GLM?
- A shared component hierarchical model
 - A cocktail model structure
 - Inference
 - Results

$Y=f(X,\varepsilon)$

- Y : ecosystem behavior
- X : environmental variations of interest
- ε : unknown perturbations, *noise*
- f: ...functional form of the answer ...to be defined as well

Application to three groupings of juveniles in the upper River Rhone during the 1980-2005 period. Let's find a statistician !? But we do have data, let's have a look...

The Bugey site

The Bugey site cont'd

Many fish species can be found

But only 8 species are permanently caught

These eight species are common fish

• 8 espèces > 5% de l'effectif annuel

Barbeau

Gardon

Alburnus alburnus

Barbus barbus

Leuciscus cephalus

rutilus

gobio

Gobio

Chondrostoma Al nasus

Alburnoides bipunctatus

Leuciscus leuciscus

They can be clustered in three groups

Only the 8 species representing more than 5% each of total abundance were analysed : bleak (Alburnus alburnus), barbel (Barbus barbus), chub (Leuciscus cephalus), roach (Rutilus rutilus), gudgeon (Gobio gobio), nase (Chondrostoma nasus), stream bleak (Alburnoides bipunctatus) and dace (Leuciscus leuciscus). Gp1={bleak and dace} (Cool water group) Gp2={gudgeon, barbel and nase} (Benthic group) $Gp3 = \{$ stream bleak, roach and chub} (Thermophilic group)

These three groups exhibits different time patterns

Temperature rules fish activities(reproduction , etc.)

Flow regimes mainly govern habitat features

Biological knowledge is require to extract yearly significant quantities from the daily temperature signal

Yearly patterns are extracted from flow regimes

Nine possibly explanatory covariates are extracted and standardized indices are designed

Covariate	mean	sd
C12	115.4	11.4
C18	162.5	13.9
Cmx	214.6	16.1
S1	-12.5	88.0
S2	26.4	71.5
Qm1	565.0	176.2
Qmx1	920.3	275.6
Qm2	580.9	152.7
Qmx2	880.2	221.1

Statistical challenges

The Bugey protocol versus traditionnal ecological hypotheses

- Only one pass : no difference can be made between capturability and population size
- Dynamic non linear models such as prey-predator with interactions cannot
- The system is not closed. Emigration/immigration
- The system is influenced by the nuclear plant warming the waters
- **2** The Bugey sampling protocol versus common statistical hypotheses
 - A poorly controlled experiment
 - Variables with different natures and different scales
- Solution Ambition of the study with much lack of contrast
 - Is there anything to see? Abrupt changes?
 - Are flows and temperatures the main drivers? Do they vary enough?
 - Are not the remaining fish the most adapted (less significant of a change) species?

Why not a GLM?

Write for each group s of species

$$Y_{s,t} \sim dPois(\lambda_{s,t})$$
$$\log(\lambda_{s,t}) = X_t \beta_s + \sigma \varepsilon_t$$

with

- Y_s counts of species s in experiment t
- X_t values of the design matrix for experiment t
- β_s coefficient characterizing answer to species s to environmental variations
- $\varepsilon_t \; N(0,1)$ overdispersion due to uncontrolled conditions of experiment t

Pb:

- **()** An additional model selection in search of influential variables
- Poisson assumptions (same capturability, same fishing protocol)
- Model selection to point out relevant explanatory variables may be tricky

Objectives

- Get rid of the main unstationnarities in the sampling protocol
- i-e work conditionnaly to the total number of captures
- Explain the variations of the specific ratios of species
- Avoid model selection traps

Principles

- Join a multivariate analysis and a logistic regression model within a bayesian hierarchical structure
- A latent variable as a shared component : let's call it the hypersignal!
- Similar to a Partial Least Squareregression in the frequentist world

 $X_{\text{p,i}}$

$(Y_{1t}, Y_{2t}, Y_{3t}) \sim dmult(p_{1t}, p_{2t}, p_{3t}, N_t)$

$$p_{1t}, p_{2t}, p_{3t} = f(X_t)$$

which f?

$$\begin{cases} X_t^1 = \alpha_1 Z_t + \sigma_1 \varepsilon_{1t} \\ X_t^2 = \alpha_2 Z_t + \sigma_2 \varepsilon_{2t} \\ \dots \\ X_t^9 = \alpha_9 Z_t + \sigma_9 \varepsilon_{9t} \end{cases}$$

$$\begin{split} Y_{1t}, Y_{2t}, Y_{3t}) &\sim dmult(p_{1t}, p_{2t}, p_{3t}, N_t) \\ \begin{cases} logit(p_{1,t}) &= a_1 Z_t + b_1 + c_{1,site} + d_{1,season} \\ logit(p_{2,t}) &= a_3 Z_t + b_3 + c_{3,site} + d_{3,season} \\ p_{1,t} + p_{2,t} + p_{3,t} &= 1 \end{cases} \\ \begin{cases} X_t^1 &= \alpha_1 Z_t + \sigma_1 \varepsilon_{1,t} \\ X_t^2 &= \alpha_2 Z_t + \sigma_2 \varepsilon_{2,t} \\ & \cdots \\ X_t^9 &= \alpha_9 Z_t + \sigma_9 \varepsilon_{9,t} \end{cases} \end{split}$$

Éric PARENT et al. (Équipe Morse) Bayesian Hypersignal & Fish Assemblage

Inference : trying to explain the hypersignal as a function of environmental covariates

Inference : trying to understand the hypersignal as an explanation for species relative abundance

Back to the data

The four last years were taken as a validation period in predictive mode

$$[Y^{new}|X^{new}, y^{old}] = \int\limits_{\theta, Z} [Y^{new}|\theta, Z, X^{new}][\theta, Z|y^{old}, X^{new}]d\theta dZ$$

with $\theta = (\alpha, \sigma, a, b, c, d)$ and $p_{a,b,c,d}(Z)$ s.t. $logit(p) = aZ + b + c_{site} + d_{season}$

$$[Y^{new}|X^{new}, y^{old}] = \int\limits_{\theta, Z} [Y^{new}|p_{a,b,c,d}(Z), N^{new}][Z, X^{new}, \alpha, \sigma][\theta|y^{old}]d\theta dZ$$

- The protocol variations are somehow stabilized
- An a priori structure might be assumed for the hypersignal : Hidden Markov Model, Shifting level Model, Spline...
- Is the numbering the groups of any relevance?
- What would be the second principal component?

Discussion con'd

- $Y = f(X, \varepsilon)$ easy mathematical formulation but hard to specify
- Observational data with poor control and few constrast
- Much interplay between data exploratory analysis and model design
- Take into account overdispersion, different natures between inputs & outputs, model choice
- None readymade toolbox solution, design the model of your own !

Bibliographie

Parent, E. et Bernier, J. (2007). *Le Raisonnement Bayésien : Modélisation et inférence.* Springer France, Paris.

Boreux, JJ., Parent, E. et Bernier, J. (2010). *Pratique du calcul Bayésien*. Springer France, Paris.

Hoff, P. (2009).

A first course in Bayesian Statistical Methods. Springer .

Marin, J.M. et Robert, C.P. (2007).(chapitre 3) *The Bayesian Core.* Springer .