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Introduction

Setting
Many experiments have the goals of describing how the
response varies as a function of the treatments and
determining treatments that give optimal responses, perhaps
maxima or minima.

Factorial-treatment structures can be used for these kinds of
experiments, but when treatment factors can be varied across a
continuous range of values, other treatment designs may
be more efficient.

Response surface methods are designs and models for
working Response with continuous treatments when finding
optima or describing the response surface methods is the
goal.
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Introduction

Visualizing the Response
In some experiments, the treatment factors can vary
continuously.

When we bake a cake, we bake for a certain time x1 at a
certain temperature x2; time and temperature can vary
continuously. We could, in principle, bake cakes for any time
and temperature combination. Assuming that all the cake
batters are the same, the quality of the cakes y will depend on
the time and temperature of baking.
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Introduction

Visualizing the Response
Response is a function of continuous design variables. We
express this as

yij = f (x1,i , x2,i) + εij ,

meaning that the response y is some function f of the design
variables x1 and x2, plus experimental error. Here j indexes
the replication at the i th unique set of design variables.
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Introduction

Visualizing the Response
One common goal when working with response surface data
is to find the settings for the design variables that optimize
(maximize or minimize) the response.

Often there are complications.

1) For example, there may be several responses, and we
must seek some kind of compromise optimum that makes all
responses good but does not exactly optimize any single
response.
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Introduction

Visualizing the Response
2) Alternatively, there may be constraints on the design
variables, so that the goal is to optimize a response, subject to
the design variables meeting some constraints.

A second goal for response surfaces is to understand “the lie
of the land”.

Where are the hills, valleys, ridge lines, and so on that make up
the topography of the response surface? At any give design
point, how will the response change if we alter the design
variables in a given direction?
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Introduction

Visualizing the Response
We can visualize the function f as a surface of heights over
the x1, x2 plane, like a relief map showing mountains and
valleys.

1) A perspective plot shows the surface when viewed from
the side; Figure 1 is a perspective plot of a fairly complicated
surface that is wiggly for low values of x2, and flat for higher
values of x2.

2) A contour plot shows the contours of the surface, that is,
curves of x1, x2 pairs that have the same response value.
Figure 2 is a contour plot for the same surface as Figure 1.
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Introduction

Visualizing the Response

510 Response Surface Designs
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Figure 19.1: Sample perspective plot, using Minitab.

the response. Often there are complications. For example, there may be
several responses, and we must seek some kind of compromise optimum that
makes all responses good but does not exactly optimize any single response.Compromise or

constrained
optimum

Alternatively, there may be constraints on the design variables, so that the
goal is to optimize a response, subject to the design variables meeting some
constraints.

A second goal for response surfaces is to understand “the lieof the land.”
Where are the hills, valleys, ridge lines, and so on that makeup the topogra-Describe the

shape of the
response

phy of the response surface? At any give design point, how will the response
change if we alter the design variables in a given direction?

We can visualize the functionf as a surface of heights over thex1, x2
plane, like a relief map showing mountains and valleys. A perspective plot
shows the surface when viewed from the side; Figure 19.1 is a perspective
plot of a fairly complicated surface that is wiggly for low values ofx2, andPerspective plots

and contour plots flat for higher values ofx2. A contour plot shows the contours of the surface,
that is, curves ofx1, x2 pairs that have the same response value. Figure 19.2
is a contour plot for the same surface as Figure 19.1.

Graphics and visualization techniques are some of our best tools for un-
derstanding response surfaces. Unfortunately, response surfaces are difficultUse models for f
to visualize when there are three design variables, and become almost im-
possible for more than three. We thus work with models for theresponse

Figure 1: Sample perspective plot, using Minitab.
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Introduction
Visualizing the Response

19.2 First-Order Models 511
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Figure 19.2: Sample contour plot, using Minitab.

functionf .

19.2 First-Order Models

All models are wrong; some models are useful.George Box

We often don’t know anything about the shape or form of the function f , so
any mathematical model that we assume forf is surely wrong. On the other
hand, experience has shown that simple models using low-order polynomial
terms in the design variables are generally sufficient to describe sections of Polynomials are

often adequate
models

a response surface. In other words, we know that the polynomial models
described below are almost surely incorrect, in the sense that the response
surfacef is unlikely to be a true polynomial; but in a “small” region, polyno-
mial models are usually a close enough approximation to the response surface
that we can make useful inferences using polynomial models.

We will considerfirst-order modelsandsecond-order modelsfor response
surfaces. A first-order model withq variables takes the form First-order model

has linear terms

yij = β0 + β1x1i + β2x2i + · · · + βqxqi + ǫij

Figure 2: Sample contour plot, using Minitab.



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Introduction

Visualizing the Response
Graphics and visualization techniques are some of our best
tools for understanding response surfaces.

Unfortunately, response surfaces are difficult to visualize when
there are three design variables, and become almost
impossible for more than three.

We thus work with models for the response function f .
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First-Order Models

Introduction
All models are wrong; some models are useful.
George Box.

We often don’t know anything about the shape or form of the
function f , so any mathematical model that we assume for f is
surely wrong.

On the other hand, experience has shown that simple models
using low-order polynomial terms in the design variables are
generally sufficient to describe sections of a response
surface.
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First-Order Models

Introduction
In other words, we know that the polynomial models
described below are almost surely incorrect, in the sense that
the response surface f is unlikely to be a true polynomial.

But in a “small” region, polynomial models are usually a close
enough approximation to the response surface that we can
make useful inferences using polynomial models.
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First-Order Models

Introduction
We will consider first-order models and second-order
models for response surfaces. A first-order model with q
variables takes the form

yij = β0 + β1x1i + β2x2i + + βqxqi + εij

= β0 +

q∑
k=1

βkxki + εij

= β0 + x ′i β + εij ,

where xi = (x1i , x2i , . . . , xqi)
′ and β = (β1, β2, . . . , βq)′. The

first-order model is an ordinary multiple-regression model,
with design variables as predictors and βk ’s as regression
coefficients.
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First-Order Models

Introduction
First-order models describe inclined planes: flat surfaces,
possibly tilted.

These models are appropriate for describing portions of a
response surface that are separated from maxima, minima,
ridge lines, and other strongly curved regions. For example,
the side slopes of a hill might be reasonably approximated as
inclined planes.
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First-Order Models

Local approximation
These approximations are local, in the sense that you need
different inclined planes to describe different parts of the
mountain.

First-order models can approximate f reasonably well as long
as the region of approximation is not too big and f is not too
curved in that region.

A first-order model would be a reasonable approximation for the
part of the surface in Figures 1 or 2 where x2 is large; a
first-order model would work poorly where x2 is small.
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First-Order Models

Steepest ascent
Bearing in mind that these models are only approximations to
the true response, what can these models tell us about the
surface?

First-order models can tell us which way is up (or down).
Suppose that we are at the design variables x , and we want to
know in which direction to move to increase the response
the most.

This is the direction of steepest ascent.
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First-Order Models

Steepest ascent and descent
It turns out that we should take a step proportional to β, so
that our new design variables are x + rβ, for some r > 0.

If we want the direction of steepest descent, then we move to
x − rβ, for some r > 0.

Note that this direction of steepest ascent is only
approximately correct, even in the region where we have fit
the first-order model. As we move outside that region, the
surface may change and a new direction may be needed.
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First-Order Models

Introduction
Contours or level curves are sets of design variables that
have the same expected response.

For a first-order surface, design points x and x + δ are on the
same contour if

∑
βkδk = 0.

First-order model contours are straight lines for q = 2,
planes for q = 3, and so on. Note that directions of steepest
ascent are perpendicular to contours.
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First-Order Designs

Three basic needs
We have three basic needs from a response surface design.

1) We must be able to estimate the parameters of the model.

2) We must be able to estimate pure error and lack of fit. As
described below, pure error and lack of fit are our tools for
determining if the first-order model is an adequate
approximation to the true mean structure of the data.

3) We need the design to be efficient, both from a variance of
estimation point of view and a use of resources point of view.
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First-Order Designs

Pure error and lack of fit
The concept of pure error needs a little explanation.

Data might not fit a model because of random error (the εij
sort of error); this is pure error.

Data also might not fit a model because the model is
misspecified and does not truly describe the mean structure;
this is lack of fit.
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First-Order Designs

Need to detect lack of fit
Our models are approximations, so we need to know when
the lack of fit becomes large relative to pure error.

This is particularly true for first-order models, which we will
then replace with second-order models.

It is also true for second-order models, though we are more
likely to reduce our region of modeling rather than move to
higher orders.
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First-Order Designs

When can there be LoF?
We do not have lack of fit for factorial models when the full
factorial model is fit.

In that situation, we have fit a degree of freedom for every
factor-level combination—in effect, a mean for each
combination. There can be no lack of fit in that case because
all means have been fit exactly.

We can get lack of fit when our models contain fewer degrees
of freedom than the number of distinct design points used;
in particular, first- and second-order models may not fit the
data.
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First-Order Designs

Coding the variables
Response surface designs are usually given in terms of coded
variables.

Coding simply means that the design variables are rescaled
so that 0 is in the center of the design, and ±1 are reasonable
steps up and down from the center.

For example, if cake baking time should be about 35 minutes,
give or take a couple of minutes, we might rescale time by
(x1 − 35)/2, so that 33 minutes is a −1, 35 minutes is a 0, and
37 minutes is a 1.
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First-Order Designs

Standard first order designs
First-order designs collect data to fit first-order models.

The standard first-order design is a 2q factorial with center
points. The (coded) low and high values for each variable are
±1; the center points are m observations taken with all
variables at 0.

This design has 2q + m points. We may also use any 2q−k

fraction with resolution III or greater.
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First-Order Designs

One stone two birds
The replicated center points serve two uses.

1) The variation among the responses at the center point
provides an estimate of pure error.

2) The contrast between the mean of the center points and
the mean of the factorial points provides a test for lack of fit.
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First-Order Designs

Test for lack of fit
The contrast between the mean of the center points and the
mean of the factorial points has:

1) an expected value zero, when the data follow a first-order
model,

2) an expectation that depends on the pure quadratic terms,
when the data follow a second-order model.
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First-Order Designs

Example 1: Cake baking
Our cake mix recommends 35 minutes at 350°F, but we are
going to try to find a time and temperature that suit our palate
better.

We begin with a first-order design in baking time and
temperature, so we use a 22 factorial with three center points.
We use the coded values:

1) −1, 0, 1 for 33, 35, and 37 minutes for time, and

2) −1, 0, 1 for 340, 350, and 360 degrees for temperature.
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First-Order Designs

Example 1: Cake baking
We will thus have

1) three cakes baked at the package-recommended time and
temperature (our center point),

2) and four cakes with time and temperature spread around
the center.
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First-Order Designs

Example 1: Cake baking
Our response is an average palatability score, with higher
values being desirable:

x1 x2 y
−1 −1 3.89

1 −1 6.36
−1 1 7.65

1 1 6.79
0 0 8.36
0 0 7.63
0 0 8.12
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First-Order Analysis

Possible Goals for a First-Order Design analysis
Here are three possible goals when analyzing data from a
first-order design:

• Determine which design variables affect the response.

• Determine whether there is lack of fit.

• Determine the direction of steepest ascent.

Some experimental situations can involve a sequence of
designs and all these goals.
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First-Order Analysis

Fitting First-Order Models
In all cases, model fitting for response surfaces is done
using multiple linear regression.

The model variables (x1 through xq for the first-order model)
are the “independent” or “predictor” variables of the
regression. The estimated regression coefficients are
estimates of the model parameters βk .
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First-Order Analysis

Fitting First-Order Models
For first-order models using data from 2q factorials with or
without center points, the estimated regression slopes using
coded variables are equal to the ordinary main effects for the
factorial model.

Let b = β̂ be the vector of estimated coefficients for first-order
terms (an estimate of β).
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First-Order Analysis

Model Testing
Model testing is done with F -tests on mean squares from the
ANOVA of the regression; each term has its own line in the
ANOVA table.

Predictor variables are orthogonal to each other in many
designs and models, but not in all cases, and certainly not
when there is missing data; so it seems easiest just to treat all
testing situations as if the model variables were
nonorthogonal.
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First-Order Analysis

Improvement sum of squares
To test the null hypothesis that the coefficients for a set of
model terms are all zero, get:

1) the error sum of squares for the full model and
2) the error sum of squares for the reduced model that does
not contain the model terms being tested.

The difference in these error sums of squares is the
improvement sum of squares for the model terms under test.
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First-Order Analysis

Test’s statistic
The improvement mean square is the improvement sum of
squares divided by its degrees of freedom (the number of
model terms in the multiple regression being tested).

This improvement mean square is divided by the error mean
square from the full model to obtain an F -test of the null
hypothesis.
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First-Order Analysis

Sequential ANOVA. t-tests
The sum of squares for improvement can also be computed
from a sequential (Type I) ANOVA for the model, provided that
the terms being tested are the last terms entered into the
model.

The F -test of βk = 0 (with one numerator degree of freedom)
is equivalent to the t-test for βk that is printed by most
regression software.
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First-Order Analysis

Noise variables
In many response surface experiments, all variables are
important, as there has been preliminary screening to find
important variables prior to exploring the surface.

However, inclusion of noise variables into models can alter
subsequent analysis.

It is worth noting that variables can look inert in some parts
of a response surface, and active in other parts.
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First-Order Analysis

Steepest ascent and inert variables
The direction of steepest ascent in a first-order model is
proportional to the coefficients β. Our estimated direction of
steepest ascent is then proportional to b.

Inclusion of inert variables in the computation of this direction
increases the error in the direction of the active variables. This
effect is worst when the active variables have relatively small
effects.

The net effect is that our response will not increase as quickly
as possible per unit change in the design variables, because
the direction could have a nonnegligible component on the inert
axes.
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Residual variation’s decomposition

Possible Goals for a First-Order Design analysis
Residual variation can be divided into two parts: pure error
and lack of fit.

1) Pure error is variation among responses that have the same
explanatory variables (and are in the same blocks, if there is
blocking). We use replicated points, usually center points, to
get an estimate of pure error.

2) All the rest of residual variation that is not pure error is
lack of fit.
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Residual variation’s decomposition

Possible Goals for a First-Order Design analysis
Thus we can make the decompositions:

SSTot = SSModel + SSLoF + SSPE

n − 1 = dfModel + dfLoF + dfPE.
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First-Order Analysis

Testing lack of fit
The mean square for pure error estimates σ2, the variance
of ε.

If the model we have fit has:

1) the correct mean structure, then the mean square for lack
of fit also estimates σ2, and the F -ratio MSLoF/MSPE will
have an F -distribution with dfLoF and dfPE degrees of freedom.

2) the wrong mean structure -for example, if we fit a first-order
model and a second-order model is correct- then the expected
value of MSLoF is larger than σ2.
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First-Order Analysis

Testing for lack of fit
Thus we can test for lack of fit by comparing the F -ratio
MSLoF/MSPE to an F -distribution with dfLoF and dfPE degrees
of freedom.

Example
For a 2q factorial design with m center points, there are
2q + m − 1 degrees of freedom, with q for the model, m − 1 for
pure error, and all the rest for lack of fit.
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First-Order Analysis

Cannot use model if significant lack of fit
Quantities in the analysis of a first-order model are not (very)
reliable when there is significant lack of fit.

Because the model is not tracking the actual mean structure
of the data, the importance of a variable in the first-order model
may not relate to the variable’s importance in the mean
structure of the data.

Likewise, the direction of steepest ascent from a first-order
model may be meaningless if the the model is not describing
the true mean structure.
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First-Order Analysis

Example 2: Cake baking, continued
Example 1 was a 22 design with three center points.

Our first-order model includes a constant and linear terms
for time and temperature. With seven data points, there will be
4 residual degrees of freedom.

The only replication in the design is at the three center
points, so we have 2 degrees of freedom for pure error. The
remaining 2 residual degrees of freedom are lack of fit.
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First-Order Analysis

Example 2: Cake baking, continued

Estimated Regression Coefficients for y

Term Coef StDev T P
Constant 6.9714 0.5671 12.292 0.000
x1 0.4025 0.7503 0.536 0.620 (A)
x2 1.0475 0.7503 1.396 0.235 (A)

S = 1.501 R-Sq = 35.9% R-Sq(adj) = 3.8%

Listing 1: Minitab output for first-order model of cake baking data.
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First-Order Analysis

Example 2: Cake baking, continued

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P
Regression 2 5.0370 5.0370 2.5185 1.12 0.411
Linear 2 5.0370 5.0370 2.5185 1.12 0.411

Residual Error 4 9.0064 9.0064 2.2516
Lack-of-Fit 2 8.7296 8.7296 4.3648 31.53 0.031 (B)
Pure Error 2 0.2769 0.2769 0.1384

Total 6 14.0435

Listing 1 : Minitab output for first-order model of cake baking data.
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First-Order Analysis

Example 2: Cake baking, continued
Listing 1 shows results for this analysis.

Using the 4-degree-of-freedom residual mean square, neither
time nor temperature has an F -ratio much bigger than one,
so neither appears to affect the response, see (A).

However, look at the test for lack of fit, see (B). This test has
an F -ratio of 31.5 1, indicating that the first-order model is
missing some of the mean structure.

1. and p-value of .03. Yet that p-value cannot be used since the Gaussian
linear model assumptions cannot be checked with such a low sample size
of n = 7.
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First-Order Analysis

Example 2: Cake baking, continued
The 2 degrees of freedom for lack of fit are the interaction in
the factorial points and the contrast between the factorial
points and the center points.

The sums of squares for these contrasts are 2.77 and 5.96, so
most of the lack of fit is due to the center points not lying on
the plane fit from the factorial points.

In fact, the center points are about 1.86 higher on average
than what the first-order model predicts.
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First-Order Analysis

Example 2: Cake baking, continued
The direction of steepest ascent in this model is proportional
to (.40, 1.05), the estimated β1 and β2.

That is, the model says that a maximal increase in response
can be obtained by increasing x1 by .38 (coded) units for
every increase of 1 (coded) unit in x2.

However, we have already seen that there is significant lack
of fit using the first-order model with these data, so this
direction of steepest ascent is not reliable.
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Second-Order Models

Definition
We use second-order models when the portion of the
response surface that we are describing has curvature.

A second-order model contains:

1) all the terms in the first-order model, plus

2) all quadratic terms like β11x2
1i and

3) all cross product terms like β12x1ix2i .
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Second-Order Models
Definition
Specifically, it takes the form

yij = β0 + β1x1i + β2x2i + · · ·+ βqxqi +

β11x2
1i + β22x2

2i + · · ·+ βqqx2
qi +

β12x1ix2i + β13x1ix3i + · · ·+ β1qx1ixqi +

β23x2ix3i + β24x2ix4i + · · ·+ β2qx2ixqi +

· · ·+ β(q−1)qx(q−1)ixqi + εij

= β0 +

q∑
k=1

βkxki +

q∑
k=1

βkkx2
ki +

q−1∑
k=1

q∑
l=k+1

βklxkixli + εij .
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Second-Order Models

Definition
It can also take the matrix form

yij = β0 + xi
′β + xi

′Bxi + εij ,

where xi = (x1i , x2i , . . . , xqi)
′, β = (β1, β2, . . . , βq)′, and B is a

q × q matrix with Bkk = βkk and Bkl = Blk = βkl/2 for k < l .

Note that the model only includes the kl cross product for k < l ;
the matrix form with B includes both kl and lk , so the
coefficients are halved to take this into account.
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Shapes of quadratic surfaces
Second-order models describe quadratic surfaces, and
quadratic surfaces can take several shapes.

Figure 3 shows four of the shapes that a quadratic surface
can take:

First, we have a simple minimum (a) and maximum (b). Then
we have a ridge (c); the surface is curved (here a maximum) in
one direction, but is fairly constant in another direction. Finally,
we see a saddle point (d); the surface curves up in one
direction and curves down in another.
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Shapes of quadratic surfaces
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Figure 19.3: Sample second-order surfaces: (a) minimum, (b) maximum, (c) ridge,
and (d) saddle, using Minitab.

where once againxi = (x1i, x2i, . . ., xqi)
′, β = (β1, β2, . . ., βq)

′, andB is
a q × q matrix with Bkk = βkk andBkl = Blk = βkl/2 for k < l. Note
that the model only includes thekl cross product fork < l; the matrix form
with B includes bothkl andlk, so the coefficients are halved to take this into
account.

Second-order models describe quadratic surfaces, and quadratic surfaces
can take several shapes. Figure 19.3 shows four of the shapesthat a quadratic
surface can take. First, we have a simple minimum and maximum. ThenQuadratic

surfaces take
many shapes

we have a ridge; the surface is curved (here a maximum) in one direction,
but is fairly constant in another direction. Finally, we seea saddle point; the
surface curves up in one direction and curves down in another.

Second-order models are easier to understand if we change from the orig-
inal design variablesx1 andx2 to canonical variablesv1 andv2. Canonical
variables will be defined shortly, but for now consider that they shift the ori-
gin (the zero point) and rotate the coordinate axes to match the second-order

Figure 3: Sample second-order surfaces: (a) minimum, (b)
maximum, (c) ridge, and (d) saddle, using Minitab.
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Second-Order Models

Canonical variables
Second-order models are easier to understand if we change
from the original design variables x1 and x2 to canonical
variables v1 and v2.

Canonical variables will be defined shortly, but for now consider
that they shift the origin (the zero point) and rotate the
coordinate axes to match the second-order surface.
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Second-Order Models

Canonical variables
The second-order model is very simple when expressed in
canonical variables:

fv (v) = fv (0) +

q∑
k=1

λkv2
k .

where v = (v1, v2, . . . , vq)′ is the design variables expressed in
canonical coordinates; fv (v) is the response as a function of
the canonical variables; and λk ’s are numbers computed from
the B matrix.
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Second-Order Models

Stationary point
The x value that maps to 0 in the canonical variables is called
the stationary point and is denoted by x0; thus fv (0) = f (x0).

The key to understanding canonical variables is the stationary
point of the second-order surface.

The stationary point is that combination of design variables
where the surface is at either a maximum or a minimum in all
directions.
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Second-Order Models

Stationary point
1) If the stationary point is a maximum in all directions, then
the stationary point is the maximum response on the whole
modeled surface.

2) If the stationary point is a minimum in all directions, then it
is the minimum response on the whole modeled surface.
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Second-Order Models

Stationary point
3) If the stationary point is a maximum in some directions
and a minimum in other directions, then the stationary point
is a saddle point, and the modeled surface has no overall
maximum or minimum.

4) If a ridge surface is absolutely level in some direction, then
it does not have a unique stationary point; this rarely happens
in practice.
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First canonical axis
The stationary point will be the origin (0 point) for our canonical
variables.

Now imagine yourself situated at the stationary point of a
second-order surface.

The first canonical axis is the direction in which you would
move so that a step of unit length yields a response as large
as possible (either increase the response as much as possible
or decrease it as little as possible).
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Second canonical axis
The second canonical axis is the direction, among all those
directions perpendicular to the first canonical axis, that
yields a response as large as possible.

There are as many canonical axes as there are design
variables. Each additional canonical axis that we find must
be perpendicular to all those we have already found.

Figure 4 shows contours, stationary points, and canonical axes
for the four sample second-order surfaces.
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Figure 19.4: Contours, stationary points, and canonical axes for samplesecond-order
surfaces: (a) minimum, (b) maximum, (c) ridge, and (d) saddle, using S-Plus.

This description of second-order surfaces has been geometric; pictures
are an easy way to understand these surfaces. It is difficult to calculate with
pictures, though, so we also have an algebraic description of the second-order
surface. Recall that the matrix form of the response surfaceis written

f(x) = β0 + x′β + x′Bx .

Figure 4: Contours, stationary points, and canonical axes for Figure 3.
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Second-Order Models

Contours
As shown in this figure (a) and (b), contours for surfaces with
maxima or minima are ellipses. The stationary point x0 is the
center of these ellipses, and the canonical axes are the major
and minor axes of the elliptical contours.

For the ridge system (c), we still have elliptical contours, but
they are very long and skinny, and the stationary point is
outside the region where we have fit the model. If the is
absolutely flat, then the contours are parallel lines.

For the saddle point (d), contours are hyperbolic instead of
elliptical. The stationary point is in the center of the hyperbolas,
and the canonical axes are the axes of the hyperbolas.
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Second-Order Models

Algebraic description
This description of second-order surfaces has been
geometric; pictures are an easy way to understand these
surfaces.

It is difficult to calculate with pictures, though, so we also
have an algebraic description of the second-order surface.
Recall that the matrix form of the response surface is written

f (x) = β0 + x ′β + x ′Bx .
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Second-Order Models

Algebraic description
Our algebraic description of the surface depends on the
following facts:

1) The stationary point for this quadratic surface is at

x0 = −1
2
B−1β,

where B−1 is the matrix inverse of B.

2) For the q × q symmetric matrix B, we can find a q × q matrix
H such that H ′H = HH ′ = Iq and H ′BH = Λ, where Iq is the
q × q identity matrix and Λ is a matrix with elements λ1, . . . , λq
on the diagonal and zeroes off the diagonal.
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Second-Order Models

Change of coordinates
The numbers λk are the eigenvalues of B, and the columns of
H are the corresponding eigenvectors.

We saw in Figure 4 that the stationary point and canonical axes
give us a new coordinate system for the design variables. We
get the new coordinates v ′ = (v1, v2, . . . , vq) via

v = H ′(x − x0).

Subtracting x0 shifts the origin, and multiplying by H ′ rotates to
the canonical axes.
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Second-Order Models

Change of coordinates
Finally, the payoff: in the canonical coordinates, we can
express the response surface as

fv (v) = fv (0) +

q∑
k=1

λkv2
k ,

where
fv (0) = f (x0) = β0 +

1
2

x0
′β.

That is, when looked at in the canonical coordinates, the
response surface is a constant plus a simple squared term
from each of the canonical variables vi .
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Shape analysis
1) If all of the λk ’s are positive, x0 is a minimum.

2) If all of the λk ’s are negative, x0 is a maximum.

3) If all of the λk ’s are of the same sign, but some are near zero
in value, we have a ridge system.

4) If some λk ’s are negative and λk ’s some are positive, x0 is a
saddle point.
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Second-Order Models

Shape analysis
The λk ’s for our four examples in Figure 4 are

1) (.31771, .15886) for the surface with a minimum,

2) (−.31771,−.15886) for the surface with a maximum,

3) (−.021377,−.54561) for the surface with a ridge,

4) and (.30822,−.29613) for the surface with a saddle point.
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Higher order models
In principal, we could also use third- or higher-order models.

This is rarely done, as second-order models are generally
sufficient.
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Central Composite Designs
There are several choices for second-order designs.

One of the most popular is the central composite design
(CCD).

A CCD is composed of factorial points, axial points, and
center points.
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Second-Order Designs

Central Composite Designs
1) Factorial points are the points from a 2q design with levels
coded as ±1 or the points in a 2q−k fraction with resolution V
or greater.

2) Center points are again m points at the origin.

3) Axial points have one design variable at ±α and all other
design variables at 0; there are 2q axial points.

Figure 5 shows a CCD for q = 3.



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Second-Order Designs522 Response Surface Designs

F

F

F

F

F

F

F

F

A

A

AA

A

A

C

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

Figure 19.5: A central composite design in three dimensions,
showing center (C), factorial (F), and axial (A) points.

19.6 Second-Order Designs

There are several choices for second-order designs. One of the most popu-
lar is thecentral composite design(CCD). A CCD is composed of factorialCentral

composite (CCD)
has factorial
points, axial
points, and center
points

points,axial points, and center points. Factorial points are the points from
a 2q design with levels coded as±1 or the points in a2q−k fraction with
resolution V or greater; center points are againm points at the origin. The
axial points have one design variable at±α and all other design variables at
0; there are2q axial points. Figure 19.5 shows a CCD forq = 3.

One of the reasons that CCD’s are so popular is that you can start with
a first-order design using a2q factorial and then augment it with axial pointsAugment

first-order design
to CCD

and perhaps more center points to get a second-order design.For example,
we may find lack of fit for a first-order model fit to data from a first-order
design. Augment the first-order design by adding axial points and center
points to get a CCD, which is a second-order design and can be used to fit
a second-order model. We consider such a CCD to have been run in two
incomplete blocks.

We get to chooseα and the number of center pointsm. Suppose that we
run our CCD in incomplete blocks, with the first block having the factorial
points and center points, and the second block having axial points and cen-

Figure 5: A central composite design in three dimensions,
showing center (C), factorial (F), and axial (A) points.
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Second-Order Designs

From factorial to CCD
One of the reasons that CCD’s are so popular is that

1) you can start with a first-order design using a 2q factorial
and

2) then augment it with axial points

3) and perhaps more center points to get a second-order
design.
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Second-Order Designs

From factorial to CCD
For example, we may find lack of fit for a first-order model fit
to data from a first-order design.

Augment the first-order design by adding axial points and
center points to get a CCD, which is a second-order design and
can be used to fit a second-order model.

We consider such a CCD to have been run in two incomplete
blocks.
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Second-Order Designs

Orthogonal blocking
We get to choose α and the number of center points m.

Suppose that we run our CCD in incomplete blocks, with the
first block having the factorial points and center points, and
the second block having axial points and center points.

Block effects should be orthogonal to treatment effects, so
that blocking does not affect the shape of our estimated
response surface.
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Second-Order Designs

Orthogonal blocking
We can achieve this orthogonality by choosing

1) α and

2) the number of center points in the factorial and axial
blocks

as shown in Table 1 (Box and Hunter 1957).

When blocking the CCD, factorial points and axial points will be
in different blocks. The factorial points may also be blocked
using the confounding schemes of regular fractional
factorial designs.
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q 2 3 4 5 5
rep 1 1 1 1 1

2
Number of blocks 1 2 2 4 1
in factorial
Center points per 3 2 2 2 6
factorial block
α for axial points 1.414 1.633 2.000 2.366 2.000
Center points for 3 2 2 4 1
axial block
Total points 14 20 30 54 33
in design

Table 1: Design parameters for Central Composite Designs
with orthogonal blocking.
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Second-Order Designs

q 6 6 7 7
rep 1 1

2 1 1
2

Number of blocks 8 2 16 8
in factorial
Center points per 1 4 1 1
factorial block
α for axial points 2.828 2.366 3.364 2.828
Center points for 6 2 11 4
axial block
Total points 90 54 169 80
in design

Table 1: Design parameters for Central Composite Designs
with orthogonal blocking.
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Second-Order Designs

Orthogonal blocking
Table 1 deserves some explanation.

The table gives the maximum number of blocks into which
the factorial portion can be confounded, while main effects
and two-way interactions are confounded only with
three-way and higher-order interactions (is still resolution V).

The table also gives the number of center points for each of
these blocks. If fewer blocks are desired, the center points are
added to the combined blocks.
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Second-Order Designs

Orthogonal blocking
For example, the 25 can be run in four blocks, with two center
points per block.

If we instead use two blocks, then each should have four
center points; with only one block, use all eight center
points.

The final block consists of all axial points and additional
center points.
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Rotatable Designs: Definition
There are a couple of heuristics for choosing α and the number
of center points when the CCD is not blocked, but these are just
guidelines and not overly compelling.

If the precision of the estimated response surface at some
point x depends only on the distance from x to the origin,
not on the direction, then the design is said to be rotatable.
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Second-Order Designs

Rotatable CCD
Thus rotatable designs do not favor one direction over
another when we explore the surface. This is reasonable when
we know little about the surface before experimentation.

We get a rotatable design by choosing

1) α = 2q/4 for the full factorial or

2) α = 2(q−k)/4 for a fractional factorial.

Some of the blocked CCD’s given in Table 1 are exactly
rotatable, and all are nearly rotatable.



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Second-Order Designs

Rotatability
Rotatable designs are nice, and I would probably choose
one as a default. However, I don’t obsess on rotatability, for
a couple of reasons.

1) Rotatability depends on the coding we choose. The
property that the precision of the estimated surface does not
depend on direction disappears when we go back to the
original, uncoded variables. It also disappears if we keep the
same design points in the original variables but then express
them with a different coding.
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Second-Order Designs

Rotatability
2) Rotatable designs use five levels of every variable, and
this may be logistically awkward. Thus choosing α = 1 so
that all variables have only three levels may make a more
practical design.

3) Using α =
√

q so that all the noncenter points are on the
surface of a sphere (only rotatable for q = 2) gives a better
design when we are only interested in the response surface
within that sphere.
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Uniform Precision: Definition
A second-order design has uniform precision if the
precision of the fitted surface is the same

- at the origin and

- at a distance of 1 from the origin.
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Second-Order Designs

Uniform Precision: Why ?
Uniform precision is a reasonable criterion, because we are
unlikely to know just how close to the origin a maximum or
other surface feature may be;

- (relatively) too many center points give us much better
precision near the origin, and

- too few give us better precision away from the origin.
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Uniform Precision: How ?
It is impossible to achieve this exactly.

Table 2 shows the number of center points to get as close as
possible to uniform precision for rotatable CCD’s.

q 2 3 4 5 5 6 6 7 7
Replication 1 1 1 1 1

2 1 1
2 1 1

2

Number of center points 5 6 7 10 6 15 9 21 14

Table 2: Parameters for rotatable, uniform precision Central
Composite Designs.
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Second-Order Designs

Example 3: Cake baking, continued
We saw in Example 2 that the first-order model was a poor fit.

In particular, the contrast between the factorial points and the
center points indicated curvature of the response surface.

We will need a second-order model to fit the curved surface,
so we will need a second-order design to collect the data for the
fit.
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Second-Order Designs

Example 3: Cake baking, continued
We already have factorial points and three center points.

Looking in Table 1, we see that adding

1) three more center points and

2) axial points at α = 1.414

will give us a design with two blocks with blocks orthogonal
to treatments.

This design is also rotatable, but not uniform precision.
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Second-Order Designs

Example 3: Cake baking, continued
Here is the complete design. The first block made of the
initial measurements:

Block x1 x2 y
1 −1 −1 3.89
1 1 −1 6.36
1 −1 1 7.65
1 1 1 6.79
1 0 0 8.36
1 0 0 7.63
1 0 0 8.12
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Second-Order Designs

Example 3: Cake baking, continued
The second block including responses for the seven
additional cakes we bake to complete the CCD:

Block x1 x2 y
2 1.414 0 8.40
2 −1.414 0 5.38
2 0 1.414 7.00
2 0 −1.414 4.51
2 0 0 7.81
2 0 0 8.44
2 0 0 8.06
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Full or Fractions of 3q Factorials
There are several other second-order designs in addition to
central composite designs.

The simplest are 3q factorials and fractions with resolution V
or greater.

These designs are not much used for q > 3, as they require
large numbers of design points.
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Box-Behnken Designs
Box-Behnken designs are rotatable, second-order designs
that are incomplete 3q factorials, but not ordinary fractions.

Box-Behnken designs are formed by combining incomplete
block designs with factorials.

For q factors, find an incomplete block design for q treatments
in blocks of size two. (Blocks of other sizes may be used, we
merely illustrate with two.)
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Box-Behnken Designs
Associate the “treatment” letters A, B, C, and so on with
“factor” letters A, B, C, and so on.

When two factor letters appear together in a block,

- use all combinations where those factors are at the ±1
levels, and

- all other factors are at 0.

The combinations from all blocks are then joined with some
center points to form the Box-Behnken design.
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Box-Behnken Designs
For example, for q = 3, we can use the BIBD with three blocks
and (A,B), (A,C), and (B,C) as assignment of treatments to
blocks. From the three blocks, we get the combinations:

A B C
x1 x2 x3
−1 −1 0
−1 1 0

1 −1 0
1 1 0

A B C
x1 x2 x3
−1 0 −1
−1 0 1

1 0 −1
1 0 1

A B C
x1 x2 x3
0 −1 −1
0 −1 1
0 1 −1
0 1 1
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Box-Behnken Designs
To this we add some center points, say five, to form the
complete design.

This design takes only 17 points, instead of the 27 (plus
some for replication) needed in the full factorial.
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Second-Order Analysis

Analysis’ Goals
Here are three possible goals for the analysis of second-order
models:

•Determine which design variables affect the response.

•Determine whether there is lack of fit.

•Determine the stationary point and surface type.
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Inferring
As with first-order models,

- fitting is done with multiple linear regression, and

- testing is done with F -tests.

Let b be the estimated coefficients for first-order terms, and let
B be the estimate of the second-order terms.

The goal of determining which variables affect the response is
a bit more complex for second-order models.
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Testing a variable
To test that a variable –say variable 1– has no effect on the
response, we must test that its

- linear,

- quadratic, and

- cross product coefficients

are all zero: β1 = β11 = · · · = β1q = 0.

This is a q + 1-degree-of-freedom null hypothesis which we
must test using an F-test.



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Second-Order Analysis

Lack of Fit
Testing for lack of fit in the second-order model is completely
analogous to the first-order model.

Compute an estimate of pure error variability from the
replicated points; all other residual variability is lack of fit.
Significant lack of fit indicates that our model is not capturing
the mean structure in our region of experimentation.
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Remedial
When we have significant lack of fit, we should first consider
whether a transformation of the response will improve the
quality of the fit. For example, a second-order model may be a
good fit for the log of the response.

Alternatively, we can investigate higher-order models for the
mean or obtain data to fit the second-order model in a smaller
region.
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Canonical Analysis
Canonical Analysis is

- the determination of the type of second-order surface,

- the location of its stationary point, and

- the canonical directions.

These quantities are functions of the estimated coefficients
b and B computed in the multiple regression.
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Second-Order Analysis

Estimates
We estimate the stationary point as

x̂0 = −B−1b/2,

and the eigenvectors and eigenvalues of B are estimated by
the eigenvectors and eigenvalues of B using special software.
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Precision of Estimation
The results of a canonical analysis have an aura of
precision that is often not justified.

Many software packages can compute and print the estimated
stationary point, but few give a standard error for this
estimate.

In fact, the standard error is difficult to compute and tends to
be rather large. Likewise, there can be considerable error in
the estimated canonical directions.
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Example 4: Cake baking, continued
We now fit a second-order model to the data from the blocked
central composite design of Example 3.

This model will have

- linear terms,

- quadratic terms,

- a cross product term, and

- a block term.

Listing 2 shows the results.
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Second-Order Analysis

Example 4: Cake baking, continued

Estimated Regression Coefficients for y

Term Coef StDev T P
Constant 8.070 0.1842 43.809 0.000 (A)
Block -0.057 0.1206 -0.473 0.651
x1 0.735 0.1595 4.608 0.002
x2 0.964 0.1595 6.042 0.001
x1*x1 -0.628 0.1661 -3.779 0.007
x2*x2 -1.195 0.1661 -7.197 0.000
x1*x2 -0.832 0.2256 -3.690 0.008

S = 0.4512 R-Sq = 95.0% R-Sq(adj) = 90.8%

Listing 2: Minitab output for second-order model of cake baking data.
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Second-Order Analysis

Example 4: Cake baking, continued

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P
Blocks 1 0.0457 0.0455 0.04546 0.22 0.651
Regression 5 27.2047 27.2047 5.44094 26.72 0.000

Linear 2 11.7562 11.7562 5.87808 28.87 0.000
Square 2 12.6763 12.6763 6.33816 31.13 0.000
Interaction 1 2.7722 2.7722 2.77223 13.62 0.008

Residual Error 7 1.4252 1.4252 0.20359
B)Lack-of-Fit 3 0.9470 0.9470 0.31567 2.64 0.186
Pure Error 4 0.4781 0.4781 0.11953

Total 13 28.6756

Listing 2 : Minitab output for second-order model of cake baking data.
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Second-Order Analysis

Example 4: Cake baking, continued
At (A) we see that all first- and second-order terms are
significant, so that no variables need to be deleted from the
model.

We also see that lack of fit is not significant B), so the
second-order model should be a reasonable approximation to
the mean structure in the region of experimentation.
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Second-Order Analysis

Example 4: Cake baking, continued
Figure 6 shows a contour plot of the fitted second-order
model.

We see that the optimum is at about .4 coded time units above
0, and .2 coded temperature units above zero, corresponding to
35.8 minutes and 352°.

We also see that the ellipse slopes northwest to southeast,
meaning that we can trade time for temperature and still get a
cake that we like.
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Second-Order Analysis528 Response Surface Designs
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Figure 19.6: Contour plot of fitted second-order model for cake
baking data, using Minitab.

Listing 19.3: MacAnova output for canonical analysis of cake baking data.

component: b0 ①
(1) 8.07

component: b ②
(1) 0.73515 0.964

component: B ③
(1,1) -0.62756 -0.41625

(2,1) -0.41625 -1.1952

component: x0 ④
(1,1) 0.41383

(2,1) 0.25915

component: y0 ⑤
(1,1) 8.347

component: H ⑥
(1,1) -0.88413 -0.46724

(2,1) 0.46724 -0.88413

component: lambda ⑦
(1) -0.40758 -1.4152

Figure 6: Contour plot of fitted second-order model for cake
baking data, using Minitab.
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Second-Order Analysis

Example 4: Cake baking, continued
Listing 3 shows a canonical analysis for this surface.

The estimated coefficients are at (A) (β̂0), (B) (b), and (C) (B).

The estimated stationary point and its response are at (D)
and (E); I guessed (.4, .2) for the stationary point from Figure
6 –it was actually (.42, .26).
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Second-Order Analysis

Example 4: Cake baking, continued
The estimated eigenvectors and eigenvalues are at (F) and
(G). Both eigenvalues are negative, indicating a maximum.

The smallest decrease is associated with the first
eigenvector (−.884, .467), so increasing the temperature by
.53 coded units for every decrease in 1 coded unit of time
keeps the response as close to maximum as possible.
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Second-Order Analysis

Example 4: Cake baking, continued

component: b0 (A)
(1) 8.07
component: b (B)
(1) 0.73515 0.964
component: B (C)
(1,1) -0.62756 -0.41625
(2,1) -0.41625 -1.1952
component: x0 (D)
(1,1) 0.41383
(2,1) 0.25915

Listing 3: MacAnova output for canonical analysis of cake baking
data.
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Second-Order Analysis

Example 4: Cake baking, continued

component: y0 (E)
(1,1) 8.347
component: H (F)
(1,1) -0.88413 -0.46724
(2,1) 0.46724 -0.88413
component: lambda (G)
(1) -0.40758 -1.4152

Listing 3: MacAnova output for canonical analysis of cake baking
data.
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Mixture Experiments

Introduction
Mixture experiments are a special case of response surface
experiments in which the response depends on the
proportions of the various components, but not on absolute
amounts.

For example, the taste of a punch depends on the proportion of
ingredients, not on the amount of punch that is mixed, and the
strength of an alloy may depend on the proportions of the
various metals in the alloy, but not on the total amount of alloy
produced.
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Mixture Experiments

Simplex
The design variables x1, x2, . . . , xq in a mixture experiment
are proportions, so they must be nonnegative and add to one:

xk > 0, k = 1,2, . . . ,q

and
x1 + x2 + · · ·+ xq = 1.

This design space is called a simplex in q dimensions.
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Mixture Experiments

Temp
In two dimensions, the design space is the segment from
(1,0) to (0,1); in three dimensions, it is bounded by the
equilateral triangle (0,0,1), (0,1,0), and (1,0,0); and so on.

Note that a point in the simplex in q dimensions is determined
by any q − 1 of the coordinates, with the remaining coordinate
determined by the constraint that the coordinates add to one.
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Mixture Experiments

Example 5: Fruit punch
Cornell (1985) gave an example of a three-component fruit
punch mixture experiment, where the goal is to find the most
appealing mixture of watermelon juice (x1), pineapple juice
(x2), and orange juice (x3).

Appeal depends on the recipe, not on the quantity of punch
produced, so it is the proportions of the constituents that
matter.
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Mixture Experiments

Example 5: Fruit punch
Six different punches are produced, and eighteen judges
are assigned at random to the punches, three to a punch.
The recipes and results are given in Table 3.

x1 x2 x3 Appeal
1 0 0 4.3 4.7 4.8
0 1 0 6.2 6.5 6.3
.5 .5 0 6.3 6.1 5.8
0 0 1 7.0 6.9 7.4
.5 0 .5 6.1 6.5 5.9
0 .5 .5 6.2 6.1 6.2

Table 3: Blends of fruit punch.
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Mixture Experiments

Model
As in ordinary response surfaces, we have some response y
that we wish to model as a function of the explanatory
variables:

yij = f (x1i , x2i , . . . , xqi) + εij .

We use a low-order polynomial for this model, not because
we believe that the function really is polynomial, but rather
because we usually don’t know what the correct model form is;
we are willing to settle for a reasonable approximation to the
underlying function.
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Mixture Experiments

Model Purposes
We can use this model for various purposes:

- To predict the response at any combination of design
variables,

- To find combinations of design variables that give best
response, and

- To measure the effects of various factors on the response.
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Designs for mixtures

Simplex Lattice Design
A {q,m} simplex lattice design for q components consists of
all design points on the simplex where each component is of
the form r/m, for some integer r = 0,1,2, . . . ,m.

For example, the {3, 2} simplex lattice consists of the six
combinations (1,0,0), (0,1,0), (0,0,1), (1/2,1/2,0),
(1/2,0,1/2), and (0,1/2,1/2).



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Designs for mixtures

A {3, 2} Simplex Lattice
The fruit punch experiment in Example 5 is a {3, 2} simplex
lattice.

The {3,3} simplex lattice has the ten combinations (1,0,0),
(0,1,0), (0,0,1), (2/3,1/3,0), (2/3,0,1/3), (1/3,2/3,0),
(0,2/3,1/3), (1/3,0,2/3), (0,1/3,2/3), and (1/3,1/3,1/3).
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Designs for mixtures

Which m ?
In general, m needs to be

- at least as large as q to get any points in the interior of the
simplex, and

- larger still to get more points into the interior of the
simplex.

Figure 7(a) illustrates a {3,4} simplex lattice.
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Designs for mixtures

19.8 Mixture Experiments 531

X1 X2

X3

X1 X2

X3

(a) (b)

Figure 19.7: (a){3,4} simplex lattice and (b) three variable
simplex centroid designs.

(1/3, 1/3, 1/3, . . ., 0), and so on to the point(1/q, 1/q, . . ., 1/q). A simplex
centroid design only has one point in the interior of the simplex; all the rest
are on the boundary. Figure 19.7(b) illustrates a simplex centroid in three
factors.

Mixtures in the interior of the simplex—that is, mixtures which include
at least some of each component—are calledcompletemixtures. We some- Complete

mixtures have all
xk > 0

times need to do our experiments with complete mixtures. This may arise
for several reasons, for example, all components may need tobe present for
a chemical reaction to take place.

Factorial ratiosprovide one class of designs for complete mixtures. This
design is a factorial in the ratios of the firstq − 1 components to the last Factorial ratios

vary xk/xqcomponent. We may want to reorder our components to obtain a convenient
“last” component. The design points will have ratiosxk/xq that take a few
fixed values (the factorial levels) for eachk, and we then solve for the actual
proportions of the components. For example, ifx1/x3 = 4 andx2/x3 = 2,
thenx1 = 4/7, x2 = 2/7, andx3 = 1/7. Only complete mixtures occur in a
factorial ratios design with all ratios greater than 0.

Harvey Wallbangers Example 19.6

Sahrmann, Piepel, and Cornell (1987) ran an experiment to find the best pro-
portions for orange juice (O), vodka (V), and Galliano (G) ina mixed drink
called a Harvey Wallbanger. Only complete mixtures are considered, because
it is the mixture of these three ingredients that defines a Wallbanger (as op-
posed to say, orange juice and vodka, which is a drink called ascrewdriver).
Furthermore, preliminary screening established some approximate limits for
the various components.

Figure 7: (a) {3,4} simplex lattice and (b) three variable simplex
centroid designs.
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Designs for mixtures

Simplex centroid designs
The second class of models is the simplex centroid designs.

These designs have 2q − 1 design points for q factors.

The design points are the pure design mixtures, all the
1/2− 1/2 two-component mixtures, all the 1/3− 1/3− 1/3
three component mixtures, and so on, through the equal
mixture of all q components.
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Designs for mixtures

Simplex centroid designs
Alternatively, we may describe this design as

- all the permutations of (1,0, . . . ,0),

- all the permutations of (1/2,1/2, . . . ,0),

- all the permutations of (1/3,1/3,1/3, . . . ,0), and

- so on

- to the point (1/q,1/q, . . . ,1/q).

A simplex centroid design only has one point in the interior of
the simplex; all the rest are on the boundary.

Figure 7(b) illustrates a simplex centroid in three factors.
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Designs for mixtures

Complete mixtures
Mixtures in the interior of the simplex—that is, mixtures which
include at least some of each component—are called
complete mixtures.

We sometimes need to do our experiments with complete
mixtures.

This may arise for several reasons, for example, all
components may need to be present for a chemical reaction
to take place.
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Designs for mixtures

Factorial ratios
Factorial ratios provide one class of designs for complete
mixtures.

This design is a factorial in the ratios of the first q − 1
components to the last component.

We may want to reorder our components to obtain a convenient
“last” component.
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Designs for mixtures

Factorial ratios
The design points will have

- ratios xk/xq that take a few fixed values (the factorial levels)
for each k , and

- we then solve for the actual proportions of the components.

For example, if x1/x3 = 4 and x2/x3 = 2, then x1 = 4/7,
x2 = 2/7, and x3 = 1/7.

Only complete mixtures occur in a factorial ratios design with all
ratios greater than 0.
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Designs for mixtures

Example 6: Harvey Wallbangers
Sahrmann, Piepel, and Cornell (1987) ran an experiment to find
the best proportions for

- orange juice (O),

- vodka (V ), and

- Galliano (G)

in a mixed drink called a Harvey Wallbanger.
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Designs for mixtures

Example 6: Harvey Wallbangers
Only complete mixtures are considered, because it is the
mixture of these three ingredients that defines a
Wallbanger (as opposed to say, orange juice and vodka, which
is a drink called a screwdriver).

Furthermore, preliminary screening established some
approximate limits for the various components.



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Designs for mixtures

Example 6: Harvey Wallbangers
The authors used a factorial ratios model, with three levels of
the ratio V/G (1.2, 2.0, and 2.8) and two levels of the ratio
O/G (4 and 9).

They also ran a center point at V/G = 2 and O/G = 6.5.
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Designs for mixtures

Example 6: Harvey Wallbangers
Their actual design included incomplete blocks (so that no
evaluator consumed more than a small number of drinks).
However, there were no apparent evaluator differences, so
the average score was used as response for each mixture, and
blocks were ignored.

Evaluators rated the drinks on a 1 to 7 scale. The data are
given in Table 4, which also shows the actual proportions of the
three components.
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Designs for mixtures

Example 6: Harvey Wallbangers

O/G V/G G V O Rating
4.0 1.2 .161 .194 .645 3.6
9.0 1.2 .089 .107 .804 5.1
4.0 2.8 .128 .359 .513 3.8
9.0 2.8 .078 .219 .703 3.8
6.5 2.0 .105 .211 .684 4.7
4.0 2.0 .143 .286 .571 2.4
9.0 2.0 .083 .167 .750 4.0

Table 4: Harvey Wallbanger mixture experiment.
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Designs for mixtures

Complete mixtures through pseudo components
A second class of complete-mixture designs arises when we
have lower bounds for each component: xk > dk > 0, where∑

dk = D < 1. Here, we define pseudocomponents

x ′k =
xk − dk

1− D

and do a simplex lattice or simplex centroid design in the
pseudocomponents.
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Designs for mixtures

Complete mixtures through pseudo components
The pseudocomponents map back to the original
components via

xk = dk + (1− D)x ′k .
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Designs for mixtures

Dealing with more complex constraints
Many realistic mixture problems are constrained in some
way so that the available design space is not the full simplex
or even a simplex of pseudocomponents:

- a regulatory constraint might say that ice cream must
contain at least a certain percent fat, so we are constrained to
use mixtures that contain at least the required amount of fat;

- and an economic constraint requires that our recipe cost
less than a fixed amount.

Mixture designs can be adapted to such situations, but we
often need special software to determine a good design for a
specific model over a constrained space.
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Models for mixture designs

Polynomial models
Polynomial models for a mixture response have fewer
parameters than the general polynomial model found in
ordinary response surfaces for the same number of design
variables.

This reduction in parameters arises from the simplex
constraints on the mixture components –some terms
disappear due to the linear restrictions among the mixture
components.
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Models for mixture designs

First-order model
For example, consider a first-order model for a mixture with
three components. In such a mixture, we have
x1 + x2 + x3 = 1. Thus,

f (x1, x2, x3) = β̄0 + β̄1x1 + β̄2x2 + β̄3x3

= β̄0(x1 + x2 + x3) + β̄1x1 + β̄2x2 + β̄3x3

= (β̄1 + β̄0)x1 + (β̄2 + β̄0)x2 + (β̄3 + β̄0)x3

= β1x1 + β2x2 + β3x3
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Models for mixture designs

Canonical Form of first-order Models
In this model, the linear constraint on the mixture components
has allowed us to eliminate the constant from the model.

This reducted model is called the canonical form of the
mixture polynomial.
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Models for mixture designs

Canonical Form of second-order Models
Mixture constraints also permit simplifications in
second-order models.

Not only can we eliminate the constant, but we can also
eliminate the pure quadratic terms! For example:

x2
1 = x1x1

= x1(1− x2 − x3 − · · · − xq)

= x1 − x1x2 − x1x3 − · · · − x1xq.
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Models for mixture designs

Canonical Form of second-order Models
By making similar substitutions for all pure quadratic terms,
we get the canonical form:

f (x1, x2, · · · , xq) =

q∑
k=1

βkxk +

q∑
k<l

βklxkxl .
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Models for mixture designs

Canonical Form of third-order Models
Third-order models are sometimes fit for mixtures; the
canonical form for the full third-order model is:

f (x1, x2, . . . , xq) =

q∑
k=1

βkxk +

q∑
k<l

βklxkxl

+

q∑
k<l

δklxkxl(xk − xl) +

q∑
k<l<n

βklmxkxlxn.
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Models for mixture designs

Special Cubic Models
A subset of the full cubic model called the special cubic
model sometimes appears:

f (x1, x2, . . . , xq) =

q∑
k=1

βkxk +

q∑
k<l

βklxkxl +

q∑
k<l<n

βklnxkxlxn.
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Models for mixture designs

Interpreting polynomial coefficients
Coefficients in mixture canonical polynomials have
interpretations that are somewhat different from standard
polynomials.

If the mixture is pure (that is, contains only a single component,
say component k ), then xk is 1 and the other components are
0. The predicted response is βk . Thus the “linear”
coefficients give the predicted response when the mixture is
simply a single component.
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Models for mixture designs

Interpreting polynomial coefficients
If the mixture is pure (that is, contains only a single
component, say component k ), then xk is 1 and the other
components are 0.

The predicted response is

βk .

Thus the “linear” coefficients give the predicted response
when the mixture is simply a single component.
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Models for mixture designs

Interpreting polynomial coefficients
If the mixture is a 50− 50 mix of components k and l , then
the predicted response is

βk/2 + βl/2 + βkl/4.

Thus the bivariate interaction terms correspond to deviations
from a simple additive fit, and in particular show how the
response for pairwise blends varies from additive.
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Models for mixture designs

Interpreting polynomial coefficients
The three-way interaction term βklm has a similar
interpretation for triples.

The cubic interaction term δkl provides some asymmetry in
the response to two-way blends.
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Models for mixture designs

Fewer factors as an alternative to reduced models
We may use ordinary polynomial models in q − 1 factors
instead of reduced polynomial models in q factors.

For example, the canonical quadratic as model in q = 3 factors
is

y = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3.

We can instead use the model

y = β̃0 + β̃1x1 + β̃2x2 + β̃12x1x2 + β̃11x2
1 + β̃22x2

2 ,

which is the usual quadratic model for q = 2 factors.



Introduction First-Order Response Surfaces Second-Order Response Surfaces Mixture Experiments Appendix

Models for mixture designs

Fewer factors as an alternative to reduced models
The models are equivalent mathematically, and which model
you choose is personal preference.

There are linear relations between the models that allow you
to transfer between the representations.

For example,

β̃0 = β3 (x3 = 1, x1 = x2 = 0),

and
β̃0 + β̃1 + β̃11 = β1 (x1 = 1, x2 = x3 = 0).
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Models for mixture designs

Factorial ratios, model choice
Factorial ratios experiments also have the option of using
polynomials in the components, polynomials in the ratios, or
a combination of the two.

The choice of model can sometimes be determined a priori
but will frequently be determined by choosing the model that
best fits the data.
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Models for mixture designs

Example 7: Harvey Wallbangers, continued
Listing 4 shows the results from fitting the canonical
second-order model to Harvey Wallbanger data (Example 6).

Coef StdErr t
g -518.14 41.143 -12.594
o -12.625 1.1111 -11.363
v 100.56 5.8373 17.226
og 812.73 55.472 14.651
vg 126.64 56.449 2.2435
ov -101.53 5.8706 -17.294

N: 7, MSE: 0.0042851, DF: 1, R^2: 0.99996
Regression F(6,1): 4344.4, Durbin-Watson: 2.1195

Listing 4: MacAnova output for second-order model of Harvey
Wallbanger data.
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Models for mixture designs

Example 7: Harvey Wallbangers, continued
All terms are significant with the exception of the vodka by
Galliano interaction (though there is only 1 degree of
freedom for error, so significance testing is rather
dubious).

It is difficult to interpret the coefficients directly.
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Models for mixture designs

Example 7: Harvey Wallbangers, continued
The usual interpretations for coefficients are for pure
mixtures and two-component mixtures, but this experiment
was conducted on a small region in the interior of the design
space.

Thus using the model for pure mixtures or two-component
mixtures would be an unwarranted extrapolation.

The best approach is to plot the contours of the fitted
response surface, as shown in Figure 8.
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Models for mixture designs536 Response Surface Designs

A

B

C

D
E

F

G

3.5
4
4.5

4.5

5

5.5
5.75

Figure 19.8: Contour plot for Harvey Wallbanger data, using
S-Plus. Letters indicate the points of Table 19.4 in the table order.

19.10 Problems
We run a central composite design and fit a second-order model. TheExercise 19.1

fitted coefficients are:

y = 86 + 9.2x1 + 7.3x2 − 7.8x21 − 3.9x22 − 6.0x1x2 .

Perform the canonical analysis on this response surface.

Fit the second-order model to the fruit punch data of Example19.5.Exercise 19.2
Which mixture gives the highest appeal?

The whiteness of acrylic fabrics after being washed at different deter-Exercise 19.3
gent concentrations (.09 to .21 percent) and temperatures (29 to 41oC) was
measured and the following model was obtained (Prato and Morris 1984):

y = −116.27 + 819.58x1 + 1.77x2 − 1145.34x21 − .01x22 − 3.48x1x2 .

Perform the canonical analysis on this response surface.

Figure 8: Contour plot for Harvey Wallbanger data, using
S-Plus. Letters indicate the points of Table 4 in the table order.
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Models for mixture designs

Example 7: Harvey Wallbangers, continued
We see that

- there is a saddle point near the fifth design point (the
center point denoted by E on Figure 8), and

- the highest estimated responses are on the boundary
between the first two design points (denoted by A and B).
This has the V/G ratio at 1.2 and the O/G ratio between 4.0
and 9.0, but somewhat closer to 9.0.
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Further Reading and Extensions: RSM and Mixtures
As might be expected, there is much more to the subjects we
discussed.

Box and Draper (1987) and Cornell (1990) provide excellent
booklength coverage of response surfaces and mixture
experiments respectively.
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Further Reading and Extensions: Constraints
Earlier we alluded to the issue of constraints on the design
space. These constraints can make it difficult to run standard
response surface or mixture designs.

Special-purpose computer software (for example,
Design-Expert) can construct good designs for constrained
situations.

These designs are generally chosen to be optimal in the sense
of minimizing the estimation variance. See Cook and
Nachtsheim (1980) or Cook and Nachtsheim (1989).
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Further Reading and Extensions: Multiresponse
A second interesting area is trying to optimize when there is
more than one response. Multiple responses are common in
the real world, and methods have been proposed to
compromise among the competing criteria. See Myers, Khuri,
and Carter (1989) and the references cited there.
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Derived power and Schlaifflian matrix
It is convenient in expressing the polynomial model to make
use of derived power vectors and Schlaifflian matrices.

Definition
If z ′ = (z1, . . . , zk ), then z ′[p], the derived power of degree p, is
defined such that

z ′[p]z [p] = (z ′z)p.
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Derived power
For example if z ′ = (z1, . . . , z3), then

z ′[2] = (z2
1 , z

2
2 , z

2
3 ,
√

2z1z2,
√

2z1z3,
√

2z2z3)

and
z ′[1] = z ′ = (z1, . . . , z3).
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Definition
If a vector x is formed from a vector z containing k elements
through the transformation

x = Hz

then the Schlaifflian matrix H [p] is defined such that

x [p] = H [p]z [p].
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Remark 1
It is readily seen that if the transformation H is orthogonal, then
H [p] is also orthogonal. One can write

x ′[p]x [p] = z ′[p]H ′[p]H [p]z [p]. (1)

The left-hand side of Equation 1 is, by definition, (z ′z)p.
Because H is orthogonal,

(x ′x)p = (z ′z)p = z ′[p]z [p]

and thus the Schlaifflian matrix H [p] is orthogonal.
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Remark
Another result which is quite useful in what follows is that, given
two vectors x and z, each having k elements, then

(x ′z)p = x ′[p]z [p]

and thus the Schlaifflian matrix H [p] is orthogonal.
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Response function
For a response function of order d , the estimated response ŷ
can be written in the form

ŷ = x ′[d ]b (2)

where for a point (x1, x2, . . . , xk ) we have

x ′ = (1, x1, x2, . . . , xk )

and the vector b contains the least squares estimators b0, b1,
. . . , and so on, with suitable multipliers.
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Response function (1/2)
For example, for k = 2, d = 2, then x ′ = (1, x1, x2), and b′ and
x ′[2] are given by

b′ = (b0,b1/
√

2,b2/
√

2,b11,b22,b12/
√

2) (3)

x ′[2] = (1,
√

2x1,
√

2x2, x2
1 , x

2
2 ,
√

2x1x2)
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Response function (2/2)
Thus, from Equation 2 we obtain

Var[ŷ(x)] = x ′[d ]Var[b]x [d ] (4)

= σ2x ′[d ](X ′X )−1x [d ]

where σ2(X ′X )−1 is the variance-covariance matrix of vector b.
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Introducing a second point
Consider now a second point (z1, z2, . . . , zk ) which is at the
same distance from the origin as the point described by
(x1, x2, . . . , xk ). Denote by z ′ the vector (1, z1, z2, . . . , zk ).
There is, then, an orthogonal matrix R for which

z = Rx (5)

where R is of the form

R =

(
1 0k

0′k Hk×k

)
. (6)

and H is an orthogonal matrix of order k .
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Variance of a prediction
The variance pf the estimated response at the second point is
then

Var[ŷ(z)] = σ2z ′[d ](X ′X )−1z [d ].

Let R[d ] be the Schlaifflian matrix of the transformation in
Equation 5.

Var[ŷ(z)] = σ2x ′[d ]R′[d ](X ′X )−1R[d ]x [d ]

= σ2x ′[d ](R′[d ]X ′XR[d ])−1x [d ]

because R[d ] is orthogonal.
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Rotatability condition
For the design to be rotatable, Var[ŷ ] is constant on spheres,
which implies that for any orthogonal matrix H we have

X ′X = R′[d ]X ′XR[d ] (7)

where R is of the form indicated in Equation 6. The
requirement in Equation 7 essentially means that the moment
matrix remains the same if the design is rotated.
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Rotating model matrices
The requirement in Equation 7 essentially means that the
moment matrix remains the same if the design is rotated –that
is, if the rows of the design matrix, denoted by D in the equation

1
1
... D
1

 =


1 x11 x21 · · · xk1
1 x12 x22 · · · xk2
...

...
...

...
...

1 x1N x2N · · · xkN

 =


x ′1
x ′2

...
x ′N

 (8)

are rotated via the transformation

z i = R′x i .
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Moment generating function (1/3)
It is easily seen that the rotated design will have moment matrix
(apart from the constant N−1) equal to the right-hand side of
Equation 7.

Consider now a vector t ′ = (1, t1, t2, . . . , tk ) of dummy variables.
The utility of these variables is in the construction of a
generating function for the design moments. Consider the
quantity

M.F . = N−1t ′[d ]X ′Xt [d ].
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Moment generating function (2/3)
The matrix X ′X is alternatively given by

X ′X =
N∑

u=1

x [d ]
u x ′[d ]u

where the vector x ′u = (1, x1u, x2u, . . . , xNu) refers to the uth row
of the design matrix, augmented by 1–that is, the uth of the
matrix in the Equation 8.
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Moment generating function (3/3)
Then

M.F . = N−1
N∑

u=1

(t ′[d ]x [d ]
u x ′[d ]u t [d ])

= N−1
N∑

u=1

(t ′xu)2d . (9)

From Equation 9, it is seen that upon expanding t ′xu we have

M.F . = N−1
N∑

u=1

(1 + t1x1u + t2x2u + · · ·+ tkxku)2d (10)
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Coefficients of M.F.
When Equation 10 is expanded, the terms involve moments of
the design through order 2d . In fact, the coefficient of
tδ1
1 tδ2

2 · · · t
δk
k is

(2d)!

(2d − δ)!
∏k

i=1(δi)!
[1δ12δ2 · · · kδk ] (11)

where
∑k

i=1 δi = δ 6 2d .
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Rotating M.F.
For a rotatable design,

M.F . = N−1t ′[d ](X ′X )t [d ] = N−1t ′[d ](R′[d ]X ′XR[d ])t [d ]

= N−1(t ′R′)[d ]X ′X (Rt)[d ]

where R is a (k + 1)× (k + 1) orthogonal matrix introduced in
Equation 6.
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M.F. is radial if rotatable design
This implies that for a rotatable design, an orthogonal
transformation on t does not affect the M.F.
Because M.F. is a polynomial in the t ’s (also involving the
design moments), for a rotatable design, M.F. must be a
function of

∑k
i=1 t2

i . That is a radial function of the form

M.F . =
d∑

j=0

a2j

(
k∑

i=1

t2
i

)j

. (12)
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Coefficients of a radial function
It is easily seen that the coefficient of tδ1

1 tδ2
2 · · · t

δk
k in Equation 12

is zero if any of the δi are odd.

For the case where all δi are even, the coefficient from the
multinomial expansion of (

∑k
i=1 t2

i )j is given by

aδ(δ/2)!∏k
i=1(δi/2)!

· (13)
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Coefficients of a radial M.F.
We now consider Equation 13 with Equation 11, the former
pertaining to the generating function for the moments in
general, and the latter pertaining to the case of rotatable
design, with the value being zero with any δi odd.

Upon equating the two and solving or the moment, the result is
as given on the next slide.
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Moments of a rotatable design

N−1
N∑

u=1

xδ1
1uxδ2

2u · · · x
δk
ku =

λδ
∏k

i=1(δi)!

2δ/2
∏k

i=1(δi/2)!
(14)

for all δi even and

N−1
N∑

u=1

xδ1
1uxδ2

2u · · · x
δk
ku = 0 (15)

for any δi odd. Here λδ is given by

λδ =
aδ2δ/2(δ/2)!(2d − δ)!

(2d)!
· (16)
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Moments of a first or second order rotatable design
If we consider Equations 14 and 16.

For the first order case, we have d = 1 and thus
• [i] = [ij] = 0, for i 6= j ,
• [ii] = λ1 (fixed by scaling).

For the second order case, we have d = 2 and thus
• [i] = [ij] = [ijk ] = [iij] = [iii] = 0, for i 6= j 6= k ,
• [ii] = λ2 (fixed by scaling) and
• [iiii]/[iijj] = 3.
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Downloading the Datasets
Individual data sets can be accessed over the web as plain text
files with labelled columns using a URL like
http:
//www.stat.umn.edu/~gary/book/fcdae.data/xxxx
The xxx takes the form of exmpl19.1 for example 1 from
chapter 19, ex2.5 for exercise 5 from chapter 2, and pr13.14 for
problem 14 from chapter 13.

http://www.stat.umn.edu/~gary/book/fcdae.data/xxxx
http://www.stat.umn.edu/~gary/book/fcdae.data/xxxx
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Downloading the Datasets
You can access these directly from via, for example,

baseurl="http://users.stat.umn.edu/~gary/book/"
exmpl19.1url=paste(baseurl,"fcdae.data/exmpl19.1"

,sep="")
str(read.table(exmpl19.1url,header=TRUE,

encoding="latin1"))

## 'data.frame': 7 obs. of 3 variables:
## $ time : int -1 1 -1 1 0 0 0
## $ temperature: int -1 -1 1 1 0 0 0
## $ appeal : num 3.89 6.36 7.65 6.79 8.36 7.63 8.12
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