Feuille de Travaux Dirigés no 4 Les graphiques et R

Les exemples de cette feuille de travaux dirigées sont tirés de l'aide du logiciel R

1 Contenu

Nous allons nous intéresser à différents types de représentations graphiques adaptées à la nature des variables que nous souhaitons représenter.
> library(graphics)

2 dotchart

> dotchart(VADeaths, main = "Death Rates in Virginia - 1940")

Death Rates in Virginia - 1940

Death Rates in Virginia - 1940

3 barplot

```
> require(grDevices)
> tN <- table(Ni <- stats::rpois(100, lambda = 5))
> r <- barplot(tN, col = rainbow(20))
> lines(r, tN, type = "h", col = "red", lwd = 2)
```


> barplot(tN, space = 1.5, axisnames = FALSE, sub = "sous-titre")

sous-titre
> barplot(VADeaths, plot = FALSE)
[1] 0.71 .93 .14 .3

```
> barplot(VADeaths, plot = FALSE, beside = TRUE)
```

```
    [,1] [,2] [,3] [,4]
```

 [,1] [,2] [,3] [,4]
 [1,] 1.5 7.5 13.5 19.5
[1,] 1.5 7.5 13.5 19.5
[2,] 2.5 8.5 14.5 20.5
[2,] 2.5 8.5 14.5 20.5
[3,] 3.5 9.5 15.5 21.5
[3,] 3.5 9.5 15.5 21.5
[4,] 4.5 10.5 16.5 22.5
[4,] 4.5 10.5 16.5 22.5
[5,] 5.5 11.5 17.5 23.5
[5,] 5.5 11.5 17.5 23.5
> mp <- barplot(VADeaths)
> mp <- barplot(VADeaths)
> tot <- colMeans(VADeaths)
> tot <- colMeans(VADeaths)
> text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")

```
> text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")
```


> barplot(VADeaths, beside = TRUE, col = c("lightblue",

+ "mistyrose", "lightcyan", "lavender", "cornsilk"),
$+\quad$ legend $=$ rownames (VADeaths), ylim $=c(0,100)$)
> title(main = "Death Rates in Virginia", font.main = 4)

Death Rates in Virginia


```
> hh <- t(VADeaths)[, 5:1]
> mybarcol <- "gray20"
> mp <- barplot(hh, beside = TRUE, col = c("lightblue",
+ "mistyrose", "lightcyan", "lavender"), legend = colnames(VADeaths),
+ ylim = c(0, 100), main = "Death Rates in Virginia",
+ font.main = 4, sub = "Faked upper 2*sigma error bars",
+ col.sub = mybarcol, cex.names = 1.5)
> segments(mp, hh, mp, hh + 2 * sqrt(1000 * hh/100), col = mybarcol,
+ lwd = 1.5)
> stopifnot(dim(mp) == dim(hh))
> mtext(side = 1, at = colMeans(mp), line = -2, text = paste("Mean",
+ formatC(colMeans(hh))), col = "red")
```


Faked upper 2*sigma error bars
> barplot(VADeaths, angle = $15+10 * 1: 5$, density $=20$,

+ col = "black", legend = rownames(VADeaths))
> title(main = list("Death Rates in Virginia", font = 4))

> barplot(VADeaths, border = "dark blue")

Échelles logarithmiques
> barplot(tN, col = heat.colors(12), log = "y")

> barplot(tN, col = gray.colors(20), log = "xy")

4 hist

```
> op <- par(mfrow = c(2, 2))
> hist(islands)
> utils::str(hist(islands, col = "gray", labels = TRUE))
> hist(sqrt(islands), breaks = 12, col = "lightblue",
+ border = "pink")
> r<- hist(sqrt(islands), breaks =c(4* 0:5, 10* 3:5,
+ 70, 100, 140), col = "blue1")
> text(r$mids, r$density, r$counts, adj = c(0.5, -0.5),
+ col = "blue3")
> sapply(r[2:3], sum)
> sum(r$density * diff(r$breaks))
> lines(r, lty = 3, border = "purple")
> par(op)
```



```
> require(utils)
```

> str(hist(islands, breaks = 12, plot = FALSE))
List of 7
\$ breaks : num [1:10] 020004000600080001000012000140001600018000
\$ counts : int [1:9] 4121111001
\$ intensities: num [1:9] 4.27e-04 2.08e-05 1.04e-05 1.04e-05 1.04e-05 ...
\$ density : num [1:9] 4.27e-04 2.08e-05 1.04e-05 1.04e-05 1.04e-05 ...
\$ mids : num [1:9] 1000300050007000900011000130001500017000
\$ xname : chr "islands"
\$ equidist : logi TRUE
- attr(*, "class")= chr "histogram"
> str(hist(islands, breaks = c(12, 20, 36, 80, 200, 1000,

+ 17000), plot = FALSE))
List of 7
\$ breaks : num [1:7] 12203680200100017000
\$ counts : int [1:6] 12118647
\$ intensities: num [1:6] $0.031250 .0143230 .0037880 .0010420 .000104 \ldots$
$\$$ density : num [1:6] $0.031250 .0143230 .0037880 .0010420 .000104 \ldots$
\$ mids : num [1:6] 1628581406009000
\$ xname : chr "islands"
\$ equidist : logi FALSE
 - attr(*, "class") = chr "histogram"

```
> hist(islands, breaks = c(12, 20, 36, 80, 200, 1000,
+ 17000), freq = TRUE, main = "WRONG histogram")
```


WRONG histogram


```
> require(stats)
> set.seed(14)
> x <- rchisq(100, df = 4)
```

Comparing data with a model distribution should be done with qqplot()!

```
> qqplot(x, qchisq(ppoints(x), df = 4))
> abline(0, 1, col = 2, lty = 2)
```


if you really insist on using hist() ... :

```
> hist(x, freq = FALSE, ylim = c(0, 0.2))
> curve(dchisq(x, df = 4), col = 2, lty = 2, lwd = 2,
+ add = TRUE)
```

Histogram of x

5 Boîtes à moustaches

5.1 boxplot d'une formule

> boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
> boxplot(count ~ spray, data = InsectSprays, notch = TRUE,

+ add = TRUE, col = "blue")

The last command add notches : If the notches of two plots do not overlap this is 'strong evidence' that the two medians differ.

```
> boxplot(decrease ~ treatment, data = OrchardSprays,
+ log = "y", col = "bisque")
```


> rb <- boxplot(decrease ~ treatment, data = OrchardSprays,

```
+ col = "bisque")
```

> title("Comparing boxplot()s and non-robust mean +/- SD")
> mn.t <- tapply(OrchardSprays\$decrease, OrchardSprays\$treatment,

+ mean)
> sd.t <- tapply(OrchardSprays\$decrease, OrchardSprays\$treatment,
$+\quad$ sd)
> xi <- 0.3 + seq(rb\$n)
> points(xi, mn.t, col = "orange", pch = 18)
> arrows(xi, mn.t - sd.t, xi, mn.t + sd.t, code = 3, col = "pink",
$+\quad$ angle $=75$, length $=0.1$)

Comparing boxplot()s and non-robust mean +/- SD

5.2 boxplot d'une matrice

```
> mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),
+ "5T" = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
> boxplot(as.data.frame(mat), main = "boxplot(as.data.frame(mat),
+ main = ...)")
```


> par(las = 1)
> boxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)", $+\quad$ horizontal $=$ TRUE)

Using 'at $=$ ' and adding boxplots - example idea by Roger Bivand :

```
> boxplot(len ~ dose, data = ToothGrowth, boxwex = 0.25,
+ at = 1:3 - 0.2, subset = supp == "VC", col = "yellow",
+ main = "Guinea Pigs' Tooth Growth", xlab = "Vitamin C dose mg",
+ ylab = "tooth length", xlim = c(0.5, 3.5), ylim = c(0,
+ 35), yaxs = "i")
> boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
+ boxwex = 0.25, at = 1:3 + 0.2, subset = supp ==
+ "OJ", col = "orange")
> legend(2, 9, c("Ascorbic acid", "Orange juice"), fill = c("yellow",
+ "orange"))
```

Guinea Pigs' Tooth Growth

6 pie

> require(grDevices)
> pie(rep(1, 24), col = rainbow(24), radius = 0.9)

> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
> names(pie.sales) <- c("Blueberry", "Cherry", "Apple",

+ "Boston Cream", "Other", "Vanilla Cream")
> pie(pie.sales)


```
> pie(pie.sales, col = c("purple", "violetred1", "green3",
+ "cornsilk", "cyan", "white"))
```



```
> pie(pie.sales, col = gray(seq(0.4, 1, length = 6)))
```


> pie(pie.sales, density = 10, angle = $15+10 * 1: 6$)


```
> pie(pie.sales, clockwise = TRUE, main = "pie(*, clockwise=TRUE)")
> segments(0, 0, 0, 1, col = "red", lwd = 2)
> text(0, 1, "init.angle = 90", col = "red")
```

pie(*, clockwise=TRUE)

$>n<-200$
> pie(rep(1, n), labels = "", col = rainbow(n), border = NA,

```
+ main = "Rainbow")
```


Rainbow

7 Tableaux de contingence

7.1 balloonplot

```
> library(gdata)
```

> library(gtools)
> library(gplots)
> balloonplot(as.table(HairEyeColor[, , Sex = "Male"]),
$+\quad$ dotsize = 10)
> balloonplot(as.table(HairEyeColor[, , Sex = "Female"]),
$+\quad$ dotsize $=10$)

Balloon Plot for \mathbf{x} by \mathbf{y}.
Area is proportional to Freq.

7.2 assocplot

\#\# Aggregate over sex :
> x <- margin.table(HairEyeColor, c(1, 2))
$>x$
> assocplot(x, main = "Relation between hair and eye color")

Relation between hair and eye color

7.3 mosaicplot

```
> mosaicplot(Titanic, main = "Survival on the Titanic",
+ color = TRUE)
```


\#\# Formula interface for tabulated data :

```
> mosaicplot(~Sex + Age + Survived, data = Titanic, color = TRUE)
```


> mosaicplot(HairEyeColor, shade = TRUE)

\#\# Independence model of hair and eye color and sex. Indicates that \#\# there are more blue eyed blonde females than expected in the case \#\# of independence and too few brown eyed blonde females. \#\# The corresponding model is :

```
> fm <- loglin(HairEyeColor, list(1, 2, 3))
> pchisq(fm$pearson, fm$df, lower.tail = FALSE)
> mosaicplot(HairEyeColor, shade = TRUE, margin = list(1:2,
+ 3))
```


\#\# Model of joint independence of sex from hair and eye color. Males \#\# are underrepresented among people with brown hair and eyes, and are \#\# overrepresented among people with brown hair and blue eyes. \#\# The corresponding model is :

```
> fm <- loglin(HairEyeColor, list(1:2, 3))
```

> pchisq(fm\$pearson, fm\$df, lower.tail = FALSE)
\#\# Formula interface for raw data : visualize cross-tabulation of numbers \#\# of gears and carburettors in Motor Trend car data.

```
> mosaicplot(~gear + carb, data = mtcars, color = TRUE,
+ las = 1)
```



```
\# color recycling
> mosaicplot(~gear + carb, data = mtcars, color = 2:3,
+ las = 1)
```


7.4 splineplot

\#\# treatment and improvement of patients with rheumatoid arthritis

```
> treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1,
+ 2), labels = c("placebo", "treated"))
> improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7,
+ 7, 13, 7, 21)), levels = c(1, 2, 3), labels = c("none",
+ "some", "marked"))
```

\#\# (dependence on a categorical variable)

```
> (spineplot(improved ~ treatment))
```


\#\# applications and admissions by department at UC Berkeley \#\# (two-way tables)

```
> (spineplot(margin.table(UCBAdmissions, c(3, 2)),
```

$+\quad$ main $=$ "Applications at UCB"))

> (spineplot(margin.table(UCBAdmissions, c(3, 1)),
$+\quad$ main $=$ "Admissions at UCB"))

\#\# NASA space shuttle o-ring failures

```
> fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1,
+ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1), levels = c(1,
+ 2), labels = c("no", "yes"))
> temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68,
+ 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78,
+ 79,81)
```

\#\# (dependence on a numerical variable)
> (spineplot(fail ~ temperature))

> (spineplot(fail ~ temperature, breaks = 3))

> (spineplot(fail ~ temperature, breaks = quantile(temperature)))

\#\# highlighting for failures
> spineplot(fail ~ temperature, ylevels = 2:1)

7.5 cdplot (Conditional Density Plots)

NASA space shuttle o-ring failures

```
> fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1,
+ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1), levels = 1:2,
+ labels = c("no", "yes"))
> temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68,
+ 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78,
+ 79, 81)
> cdplot(fail ~ temperature)
```


> cdplot(fail ~ temperature, $\mathrm{b}_{\mathrm{w}}=2$)

> cdplot(fail ~ temperature, bw = "SJ")

compare with spinogram on the same graph
> layout(1:2)
> cdplot(fail ~ temperature)
> (spineplot(fail ~ temperature, breaks = 3))
> layout(1)

highlighting for failures
> cdplot(fail ~ temperature, ylevels = 2:1)

scatter plot with conditional density

```
> cdens <- cdplot(fail ~ temperature, plot = FALSE)
> plot(I(as.numeric(fail) - 1) ~ jitter(temperature, factor = 2),
+ xlab = "Temperature", ylab = "Conditional failure probability")
> lines(53:81, 1 - cdens[[1]](53:81), col = 2)
```


8 Plot factor variables

```
> require(grDevices)
```

> plot(PlantGrowth)

> plot(weight ~ group, data = PlantGrowth)

> plot(cut(weight, 2) ~ group, data = PlantGrowth)

passing "..." to spineplot() eventually :
> plot(cut(weight, 3) ~ group, data = PlantGrowth, col = hcl(c(0, $+\quad 120,240), 50,70)$)

9 Matrix plot

> pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
$+\quad p c h=21, \mathrm{bg}=c(" r e d "$, "green3", "blue")[unclass(iris\$Species)])

Anderson's Iris Data -- 3 species

formula method

```
> pairs(~Fertility + Education + Catholic, data = swiss,
+ subset = Education < 20, main = "Swiss data, Education < 20")
```

Swiss data, Education < 20

> pairs(USJudgeRatings)

put histograms on the diagonal

```
> panel.hist <- function(x, ...) {
+ usr <- par("usr")
+ on.exit(par(usr))
+ par(usr = c(usr[1:2], 0, 1.5))
+ h <- hist(x, plot = FALSE)
+ breaks <- h$breaks
+ nB <- length(breaks)
+ y <- h$counts
+ y <- y/max(y)
+ rect(breaks[-nB], 0, breaks[-1], y, col = "cyan",
+ ...)
+ }
> pairs(USJudgeRatings[1:5], panel = panel.smooth, cex = 1.5,
+ pch = 24, bg = "light blue", diag.panel = panel.hist,
+ cex.labels = 2, font.labels = 2)
```


put (absolute) correlations on the upper panels, with size proportional to the correlations.

```
> panel.cor <- function(x, y, digits = 2, prefix = "",
+ cex.cor) {
+ usr <- par("usr")
+ on.exit(par(usr))
+ par(usr = c(0, 1, 0, 1))
+ r<- abs(cor(x, y))
+ txt <- format(c(r, 0.123456789), digits = digits)[1]
+ txt <- paste(prefix, txt, sep = "")
+ if (missing(cex.cor))
+ cex.cor <- 0.8/strwidth(txt)
+ text(0.5, 0.5, txt, cex = cex.cor * r)
+ }
> pairs(USJudgeRatings, lower.panel = panel.smooth, upper.panel =
+ panel.cor)
```


10 Simplepanel plots

> pairs(swiss, panel = panel.smooth, pch = ".")

> pairs(swiss, panel = panel.smooth, lwd = 2, cex = 1.5,

+ col = "blue")

11 jitter

```
> require(stats)
> with(faithful, {
+ plot(density(eruptions, bw = 0.15))
+ rug(eruptions)
+ rug(jitter(eruptions, amount = 0.01), side = 3,
+ col = "light blue")
+ })
```


12 curves

> plot(qnorm)


```
> plot(qlogis, main = "The Inverse Logit : qlogis()")
```

> abline(h = 0, v = 0:2/2, lty = 3, col = "gray")

The Inverse Logit : qlogis()

> curve(sin, -2 * pi, 2 * pi)

> curve(tan, main = "curve(tan) --> same x-scale as previous plot")


```
> op <- par(mfrow = c(2, 2))
\(>\) curve (x^3 - 3 * x, -2, 2)
> curve(x^2 - 2, add = TRUE, col = "violet")
> plot(cos, -pi, 3 * pi)
> plot(cos, xlim = c(-pi, 3 * pi), n = 1001, col = "blue",
\(+\quad\) add \(=\) TRUE)
> chippy <- function(x) \(\sin (\cos (x) * \exp (-x / 2))\)
> curve(chippy, -8, 7, n = 2001)
> plot(chippy, -8, -5)
```


> for (ll in c("", "x", "y", "xy")) curve(log(1 + x),
$+1,100, \log =11$, sub = paste("log= '", ll, "'",
$+\quad$ sep $=$ ""))
> par(op)

13 loess (régression non-paramétrique)

```
> cars.lo <- loess(dist ~ speed, cars)
> predict(cars.lo, data.frame(speed = seq(5, 30, 1)),
+ se = TRUE)
$fit
    [1] 7.810489 10.041808 12.567960 15.369183 18.425712 21.828039
    [7] 25.539675 29.350386 33.230660 37.167935 41.205226 45.055736
[13] 48.355889 49.824812 51.986702 56.445263 62.008703 68.529340
[19] 76.193111 85.142467 95.323096 NA NA
[25] NA NA
$se.fit
\begin{tabular}{rrrrrrrr} 
[1] & 7.568539 & 5.943649 & 4.976453 & 4.515801 & 4.316362 & 4.030120 & 3.750561 \\
[8] & 3.715593 & 3.776298 & 4.091044 & 4.708759 & 4.244697 & 4.035236 & 3.752765 \\
[15] & 4.004017 & 4.056945 & 4.005540 & 4.065234 & 4.579053 & 5.948757 & 8.300416 \\
[22] & NA & NA & NA & NA & NA & &
\end{tabular}
```

```
$residual.scale
```

[1] 15.29233
\$df
[1] 44.62733
to allow extrapolation

```
> cars.lo2 <- loess(dist ~ speed, cars,
+ control = loess.control(surface = "direct"))
> predict(cars.lo2, data.frame(speed = seq(5, 30, 1)),
+ se = TRUE)
```

\$fit

[1]	7.741006	9.926596	12.442424	15.281082	18.425712
[6]	21.865315	25.713413	29.350386	33.230660	37.167935
[11]	41.205226	45.781544	48.355889	50.067148	51.986702
[16]	56.445263	62.025404	68.569313	76.193111	85.053364
[21]	95.300523	106.974661	120.092581	134.665851	150.698545
$[26]$	168.190283				

```
$se.fit
    [1] 7.565991 5.959097 5.012013 4.550013 4.321596 4.119331
    [7] 3.939804 3.720098
[13] 4.040129 4.184257 4.008873 4.061865 4.033998
[19] 4.584606 5.952480 8.306901 11.601911 15.792480 20.864660
[25] 26.823827 33.683999
```

\$residual.scale
[1] 15.31087
\$df
[1] 44.55085

```
> plot(cars.lo, xlab = "Speed", ylab = "Dist", pch = "+")
> lines(seq(min(cars$speed), max(cars$speed), 0.1), predict(cars.lo,
+ data.frame(speed = seq(min(cars$speed), max(cars$speed),
+ 0.1)), se = TRUE)$fit, col = "red", lwd = 2)
```



```
> plot(cars.lo2, xlab = "Speed", ylab = "Dist", pch = "+",
+ xlim = c(min(cars$speed) - 5, max(cars$speed) +
+ 5))
> lines(seq(min(cars$speed) - 5, max(cars$speed) + 5,
+ 0.1), predict(cars.lo2, data.frame(speed = seq(min(cars$speed) -
+ 5, max(cars$speed) + 5, 0.1)), se = TRUE)$fit, col = "blue",
+ lwd = 2)
> lines(seq(min(cars$speed) - 5, max(cars$speed) + 5,
+ 0.1), predict(cars.lo, data.frame(speed = seq(min(cars$speed) -
+ 5, max(cars$speed) + 5, 0.1)), se = TRUE)$fit, col = "red",
+ lwd = 2)
```


14 density estimation

```
> require(graphics)
> plot(density(c(-20, rep(0, 98), 20)), xlim = c(-4, 4))
```

density.default(x = c(-20, rep(0, 98), 20))


```
> d <- density(faithful$eruptions, bw = "sj")
>d
```

Call:

```
    density.default(x = faithful$eruptions, bw = "sj")
```

Data: faithful\$eruptions (272 obs.); Bandwidth 'bw' = 0.14

x		y	
Min.	$: 1.180$	Min. $: 0.0001834$	
1st Qu. $: 2.265$	1st Qu.: 0.0422638		
Median	$: 3.350$	Median $: 0.1709243$	
Mean	$: 3.350$	Mean	
3rd Qu. $: 0.2301726$			
Max.	$: 5.535$	3rd Qu. $: 0.4134348$	
		Max.	

> plot(d)

> plot(d, type = "n")
> polygon(d, col = "wheat")
> x <- xx <- faithful\$eruptions
> x[i.out <- sample(length(x), 10)] <- NA
> doR <- density(x, bw = 0.15, na.rm = TRUE)
> lines(doR, col = "blue")
> points(xx[i.out], rep(0.01, 10))


```
> fe <- sort(faithful$eruptions)
> dw <- density(unique(fe), weights = table(fe)/length(fe),
+ bw = d$bw)
> utils::str(dw)
List of 7
```



```
$ bw : num 0.14
$ n : int 126
$ call : language density.default(x = unique(fe), bw = d$bw,
    weights = table(fe)/length(fe))
$ data.name: chr "unique(fe)"
$ has.na : logi FALSE
- attr(*, "class")= chr "density"
> stopifnot(all.equal(d[1:3], dw[1:3]))
> fit <- density(xx)
> N <- 1e+06
> x.new <- rnorm(N, sample(xx, size = N, replace = TRUE),
+ fit$bw)
> plot(fit)
> lines(density(x.new), col = "blue")
```


> (kernels <- eval(formals(density.default)\$kernel))

```
[1] "gaussian" "epanechnikov" "rectangular" "triangular"
[5] "biweight" "cosine" "optcosine"
> plot(density(0, bw = 1), xlab = "", main = "R's density() kernels
+ with bw = 1')
> for (i in 2:length(kernels)) lines(density(0, bw = 1,
+ kernel = kernels[i]), col = i)
> legend(1.5, 0.4, legend = kernels, col = seq(kernels),
+ Ity = 1, cex = 0.8, y.intersp = 1)
```

R's density() kernels with bw = 1

> plot(density(0, from $=-1.2$, to $=1.2$, width $=2$, kernel $=$
$+\quad " g a u s s i a n ")$, type $=" l ", y l i m=c(0,1), x l a b=" "$,
$+\quad$ main $=$ " R 's density() kernels with width $=1 "$)
> for (i in 2:length(kernels)) lines(density(0, width $=2$,
$+\quad$ kernel $=$ kernels[i]), col = i)
> legend(0.6, 1, legend = kernels, col = seq(kernels),
$+\quad$ lty $=1$)

R's density() kernels with width =1

> (RKs <- cbind(sapply(kernels, function(k) density(kernel $=k$, + give.Rkern = TRUE))))

$$
[, 1]
$$

gaussian 0.2820948
epanechnikov 0.2683282
rectangular 0.2886751
triangular 0.2721655
biweight 0.2699746
cosine 0.2711340
optcosine 0.2684756
> 100 * round(RKs["epanechnikov",]/RKs, 4)
[,1]
gaussian 95.12
epanechnikov 100.00
rectangular 92.95
triangular 98.59
biweight 99.39
cosine 98.97
optcosine 99.95

```
> bw <- bw.SJ(precip)
> plot(density(precip, bw = bw), main = "same sd bandwidths,
+ 7 different kernels")
```

```
> for (i in 2:length(kernels)) lines(density(precip, bw = bw,
+ kernel = kernels[i]), col = i)
```


same sd bandwidths, 7 different kernels


```
> h.f <- sapply(kernels, function(k) density(kernel = k,
+ give.Rkern = TRUE))
> (h.f <- (h.f["gaussian"]/h.f)^0.2)
\begin{tabular}{rrrrr} 
gaussian & epanechnikov & rectangular & triangular & biweight \\
1.0000000 & 1.0100567 & 0.9953989 & 1.0071923 & 1.0088217 \\
cosine & optcosine & & & \\
1.0079575 & 1.0099458 & & &
\end{tabular}
> plot(density(precip, bw = bw), main = "equivalent bandwidths,
+ 7 different kernels")
> for (i in 2:length(kernels)) lines(density(precip, bw = bw,
+ adjust = h.f[i], kernel = kernels[i]), col = i)
> legend(55, 0.035, legend = kernels, col = seq(kernels),
+ lty = 1)
```


equivalent bandwidths, 7 different kernels

15 Radar plots

```
> require(grDevices)
> stars(mtcars[, 1:7], key.loc = c(14, 2), main = "Motor Trend Cars :
+ stars(*, full = F)', full = FALSE)
```



```
> stars(mtcars[, 1:7], key.loc = c(14, 1.5), main = "Motor Trend Cars :
+ full stars()", flip.labels = FALSE)
```


Motor Trend Cars : full stars()

Honda Civic Toyota Corollãoyota Cordßadge ChallengefMC Javelin Camaro Z28

Pontiac Firebird Fiat X1-9 Porsche 914-Zotus EuropaFord Pantera LFerrari Dino

> stars(mtcars[, 1:7], locations $=c(0,0)$, radius $=$ FALSE,
$+\quad$ key.loc $=c(0,0)$, main $=$ "Motor Trend Cars", lty $=2)$


```
> palette(rainbow(12, s = 0.6, v = 0.75))
> stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),
+ main = "Motor Trend Cars", draw.segments = TRUE)
```

Motor Trend Cars


```
+ frame.plot = TRUE, nrow = 4, cex = 0.7)
```



```
> USJudge <- apply(USJudgeRatings, 2, function(x) x/max(x))
> Jnam <- row.names(USJudgeRatings)
> Snam <- abbreviate(substring(Jnam, 1, regexpr("[,.]",
+ Jnam) - 1), 7)
> stars(USJudge, labels = Jnam, scale = FALSE, key.loc = c(13,
+ 1.5), main = "Judge not ...", len = 0.8)
```


Judge not ...


``` AARONSON,L.H. ARMENTANO,A.J. BRACKEN,J.J. BURS,E.B. CALLAHAN,R.J.
```



```
MIGNONE,A.F. MULVEY,H.M. O'BRIEN,F.J.
RUBINOW,J.E. SATANIELLO,A.G. SHEA,J.F.JR
PASKEY,L. SADEN.G.A. SHEA,D.M. SIDOR,W.J.
```



```
> stars(USJudge, labels = Snam, scale = FALSE, key.loc = c(13,
```

> stars(USJudge, labels = Snam, scale = FALSE, key.loc = c(13,

+ 1.5), radius = FALSE)

```
+ 1.5), radius = FALSE)
```


> loc <- stars(USJudge, labels = NULL, scale = FALSE,
$+\quad$ radius $=F A L S E$, frame.plot $=T R U E$, key.loc $=c(13$,

```
+ 1.5), main = "Judge not ...", len = 1.2)
> text(loc, Snam, col = "blue", cex = 0.8, xpd = TRUE)
```

 Judge not ...


```
> stars(USJudge, draw.segments = TRUE, scale = FALSE,
+ key.loc = c(13, 1.5))
```



```
> stars(USJudgeRatings, locations = c(0, 0), scale = FALSE,
+ radius = FALSE, col.stars = 1:10, key.loc = c(0,
+ 0), main = "US Judges rated")
```


US Judges rated


```
> stars(USJudgeRatings[1:10, ], locations = 0:1, scale = FALSE,
```

+ draw.segments = TRUE, col.segments = 0, col.stars = 1:10,
+ key.loc $=0: 1$, main $=$ "US Judges 1-10 ")

US Judges 1-10

> palette("default")
> stars(cbind(1:16, 10 * (16:1)), draw.segments = TRUE,

```
+ main = "A Joke -- do *not* use symbols on 2D data!")
```


A Joke -- do *not* use symbols on 2D data!

16 Steam and leaf

```
> stem(islands)
    The decimal point is 3 digit(s) to the right of the |
        | | 000000000000000000000000000001111111222338
        2 | 07
        4 | 5
        6 | 8
        8 | 4
    10 | 5
    12 |
    14 |
    16 | 0
> stem(log10(islands))
    The decimal point is at the |
    1 | 1111112222233444
    1 | 5555556666667899999
    2 | 3344
    2 | 59
    3|
    3 | 5678
    4 | 012
```


17 Conditioning plots

```
> coplot(lat ~ long | depth, data = quakes)
```

```
> coplot(lat ~ long | depth, data = quakes)
```


> given.depth <- co.intervals(quakes\$depth, number = 4,
$+\quad$ overlap $=0.1$)
> coplot(lat ~ long | depth, data = quakes, given.v = given.depth, $+\quad$ rows $=1)$


```
> ll.dm <- lat ~ long | depth * mag
> coplot(ll.dm, data = quakes)
```



```
> coplot(ll.dm, data = quakes, number = c(4, 7), show.given = c(TRUE,
+ FALSE))
```

Given : depth

100	200	300	400	500	600
	1	1			


```
> coplot(ll.dm, data = quakes, number = c(3, 7), overlap = c(-0.5,
+ 0.1))
```



```
> Index <- seq(length = nrow(warpbreaks))
> coplot(breaks ~ Index | wool * tension, data = warpbreaks,
+ show.given = 0:1)
```



```
> coplot(breaks ~ Index | wool * tension, data = warpbreaks,
+ col = "red", bg = "pink", pch = 21, bar.bg = c(fac = "light blue"))
> with(data.frame(state.x77), {
+ coplot(Life.Exp ~ Income | Illiteracy * state.region,
+ number = 3, panel = function(x, y, ...) panel.smooth(x,
+ y, span = 0.8, ...))
+ })
> with(data.frame(state.x77), {
+ coplot(Life.Exp ~ state.region | Income * state.division,
+ panel = panel.smooth)
+ })
```


18 persp

```
> require(grDevices)
```

> require(grDevices)
> x <- seq(-10, 10, length = 30)
> x <- seq(-10, 10, length = 30)
> y <- x
> y <- x
> f <- function(x, y) {
> f <- function(x, y) {

+ r<- sqrt(x^2 + y^2)
+ r<- sqrt(x^2 + y^2)
+ 10*\operatorname{sin}(r)/r
+ 10*\operatorname{sin}(r)/r
+ }
+ }
> z <- outer(x, y, f)
> z <- outer(x, y, f)
> z[is.na(z)] <- 1
> z[is.na(z)] <- 1
> op <- par(bg = "white")
> op <- par(bg = "white")
> persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

```
> persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")
```



```
> res <- persp(x, y, z, theta = 30, phi = 30, expand = 0.5,
+ col = "lightblue", ltheta = 120, shade = 0.75, ticktype =
+ "detailed", xlab = "X", ylab = "Y", zlab = "Sinc( r )")
> round(res, 3)
    [,1] [,2] [,3] [,4]
[1,] 0.087-0.025 0.043-0.043
[2,] 0.050 0.043-0.075 0.075
[3,] 0.000 0.074 0.042 -0.042
[4,] 0.000 -0.273-2.890 3.890
> xE <- c(-10, 10)
> xy <- expand.grid(xE, xE)
> points(trans3d(xy[, 1], xy[, 2], 6, pmat = res), col = 2,
+ pch = 16)
> lines(trans3d(x, y = 10, z = 6 + sin(x), pmat = res),
+ col = 3)
> phi <- seq(0, 2 * pi, len = 201)
> r1 <- 7.725
> xr <- r1 * cos(phi)
> yr <- r1 * sin(phi)
> lines(trans3d(xr, yr, f(xr, yr), res), col = "pink",
+ lwd = 2)
```



```
> z <- 2 * volcano
> x <- 10 * (1:nrow(z))
> y <- 10 * (1:ncol(z))
> par(bg = "slategray")
> persp(x, y, z, theta = 135, phi = 30, col = "green3",
+ scale = FALSE, ltheta = -120, shade = 0.75, border = NA,
+ box = FALSE)
> par(op)
```


Table des matières

1 Contenu 1
2 dotchart 1
3 barplot 2
4 hist 8
5 Boîtes à moustaches 12
5.1 boxplot d'une formule . 12
5.2 boxplot d'une matrice . 14

6 pie 16
7 Tableaux de contingence 20
7.1 balloonplot . 20
7.2 assocplot . 21
7.3 mosaicplot . 22
7.4 splineplot . 26
7.5 cdplot (Conditional Density Plots) 30

8 Plot factor variables 34
9 Matrix plot 36
10 Simplepanel plots 40
11 jitter 41
12 curves 42
13 loess (régression non-paramétrique) 46
14 density estimation 48
15 Radar plots 55
16 Steam and leaf 63
17 Conditioning plots 63
18 persp 67

