T. D. no 13

Réduction des endomorphismes symétriques. Formes quadratiques.

Exercice 1 : D'après le concours d'Attaché de l'INSEE, 2005.

Soit un espace vectoriel E sur \mathbb{R} de dimension finie n.

On considère une base $\Delta = \{e_1, \dots, e_n\}$ de E.

On appelle forme bilinéaire toute application de $E \times E$ dans \mathbb{R} linéaire par rapport à chaque variable lorsque l'autre est fixée. Nous admettons que l'ensemble des formes bilinéaires est un espace vectoriel sur \mathbb{R} .

Formellement, $\phi: E \times E \to \mathbb{R}, \ (x,y) \mapsto \phi(x,y)$ est une forme bilinéaire si et seulement si pour tout (x_1, x_2, y_1, y_2) de E^4 et pour tout $(\lambda_1, \lambda_2, \mu_1, \mu_2)$ de \mathbb{R}^4 :

$$\phi(\lambda_1 x_1 + \lambda_2 x_2, y_1) = \lambda_1 \phi(x_1, y_1) + \lambda_2 \phi(x_2, y_1)
\text{et}
\phi(x_1, \mu_1 y_1 + \mu_2 y_2) = \mu_1 \phi(x_1, y_1) + \mu_2 \phi(x_1, y_2).$$

On considère dans tout ce qui suit une forme bilinéaire $\phi: E \times E \to \mathbb{R}, (x,y) \mapsto$

Soit B la matrice de terme général $(B)_{ij} = \phi(e_i, e_j)$.

- 1. Si v vecteur de E admet le vecteur colonne $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ pour système de coordonnées dans la base Δ et w vecteur de E admet le vecteur colonne Y = $\begin{pmatrix} s_1 \\ \vdots \\ y_n \end{pmatrix}$ pour système de coordonnées dans la base Δ , montrer que $\phi(v,w)=$ ${}^{t}XBY$ où ${}^{t}X$ désigne la transposée de X.
- 2. Montrer que si pour tout (v, w) de E, $\phi(v, w) = \phi(w, v)$ alors ${}^tB = B$.
- 3. Montrer que si ${}^tB=B$ alors pour tout (v,w) de $E, \phi(v,w)=\phi(w,v)$. Une telle forme bilinéaire est alors dite symétrique.
- 4. Montrer que l'ensemble des matrices symétriques à coefficients réels, c'est-àdire des matrices M telles que ${}^tM=M$, est un sous-espace vectoriel sur $\mathbb R$ de l'espace vectoriel des matrices à coefficients réels.
- 5. Montrer que l'ensemble des formes bilinéaires symétriques est un sous-espace vectoriel de l'espace vectoriel des formes bilinéaires de dimension $\frac{n(n+1)}{2}$.
- 6. Soit Ψ une forme bilinéaire symétrique. On définit une application $q: E \to \mathbb{R}$ qui à tout v de E associe $q(v) = \Psi(v,v)$. Une telle application est appelée forme quadratique associée à Ψ .

a. Montrer que :

$$\forall \lambda \in \mathbb{R}, \forall v \in E, q(\lambda v) = \lambda^2 q(v)$$
 et
$$\forall (v, w) \in E \times E, q(v + w) = q(v) + q(w) + 2\Psi(v, w).$$

b. En déduire que pour tout $(v, w) \in E \times E$:

$$\psi(v, w) = \frac{1}{4} [q(v + w) - q(v - w)].$$

7. Montrer que si f est un endomorphisme de E tel que pour tout $v \in E$, q(f(v)) = q(v) alors pour tout $(v, w) \in E \times E$, $\psi(f(v), f(w)) = \Psi(v, w)$.