T. D. n^o 15 Calcul différentiel. Intégrales multiples.

Exercice 1 : D'après le concours d'inspecteur analyste, 2008.

Déterminer et représenter graphiquement les ensembles de définition des fonctions des variables x et y suivantes :

1. a.
$$f(x,y) = \frac{1}{\sqrt{\frac{25}{4} - x^2 - y^2}}$$

b. $g(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 3x + 4y}}$
c. $h(x,y) = \sqrt{\cos(x^2 + y^2)}$

Indication : l'équation cartésienne d'un cercle de centre $\Omega(a,b)$ et de rayon r est $(x-a)^2+(y-b)^2=r^2$.

2. a.
$$t(x,y) = \frac{1}{\sqrt{x^2 - 1} + \sqrt{4 - y^2}}$$

b. $u(x,y) = \ln(x^2 - y)$

Exercice 2 : D'après Banque Commune d'Épreuves, option économique, première épreuve, 2008.

On admet l'encadrement suivant : 2, 7 < e < 2, 8.

Partie I: Étude d'une fonction

On considère l'application $f:[0;+\infty[\to\mathbb{R}$ définie, pour tout $t\in[0;+\infty[$, par :

$$f(t) = \begin{cases} t \ln t - t & \text{si } t \neq 0 \\ 0 & \text{si } t = 0. \end{cases}$$

- 1. Montrer que f est continue sur $[0; +\infty]$.
- 2. Justifier que f est de classe \mathcal{C}^1 sur $]0; +\infty[$ et calculer f'(t) pour tout $t \in]0; +\infty[$.
- 3. Déterminer la limite de f en $+\infty$.
- 4. Dresser le tableau des variations de f.
- 5. Montrer que f est convexe sur $]0; +\infty[$.
- 6. On note Γ la courbe représentative de f dans un repère orthonormal (O, \vec{i}, \vec{j}) .
 - a. Montrer que Γ admet une demi-tangente en O.

- b. Déterminer les points d'intersection de Γ avec l'axe des abscisses.
- c. Préciser la nature de la branche infinie de Γ .
- d. Tracer Γ .

Partie II: Étude d'une fonction définie par une intégrale

On considère l'application $G:]1; +\infty[\to \mathbb{R}$ définie, pour tout $x \in]1; +\infty[$, par :

$$G(x) = \frac{1}{2} \int_{x-1}^{x+1} f(t)dt.$$

1. Montrer que G est de classe \mathbb{C}^2 sur $]1; +\infty[$ et que, pour tout $x \in]1; +\infty[$:

$$G'(x) = \frac{1}{2} (f(x+1) - f(x-1))$$

et
 $G''(x) = \frac{1}{2} (\ln(x+1) - \ln(x-1)).$

À cet effet, on pourra faire intervenir une primitive F de f sans chercher à calculer F.

- 2. a. Montrer que G' est strictement croissante sur $]1; +\infty[$.
 - b. Vérifier : G'(2) > 0.
 - c. Établir que l'équation G'(x) = 0, d'inconnue $x \in]1; +\infty[$, admet une solution et une seule, notée α , et que $\alpha < 2$.

Partie III : Étude d'une fonction de deux variables réelles

On considère l'application $\Phi:]1; +\infty[^2 \to \mathbb{R}$ définie, pour tout $(x,y) \in]1; +\infty[^2, par:$

$$\Phi(x,y) = (y - f(x+1))^2 + (y - f(x-1))^2,$$

où l'application f est définie dans la partie \mathbf{I} .

- 1. Justifier que Φ est de classe \mathbb{C}^2 sur $]1; +\infty[^2$ et calculer les dérivées partielles premières de Φ en tout (x, y) de $]1; +\infty[^2$.
- 2. Vérifier que $(\alpha, f(\alpha + 1))$ est un point critique de Φ , où α est défini en II 2.c.
- 3. Est-ce que Φ admet un extrémum local en $(\alpha, f(\alpha+1))$?

Exercice 3:

Notons f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{0\}, f(x,y) = (x^2 - y^2) \ln(x^2 + y^2) \text{ et } f(0,0) = 0.$$

1. Étudier la continuité de f sur \mathbb{R} .

2. Sans les calculer, montrer que pour tout $(x, y) \in \mathbb{R}^2$,

$$\frac{\partial f}{\partial y}(x,y) = -\frac{\partial f}{\partial x}(y,x).$$

- 3. Calculer $\frac{\partial f}{\partial x}$.
- 4. f est-elle de classe \mathbb{C}^1 sur \mathbb{R}^2 ?

Exercice 4:

Soit E un espace euclidien muni d'une base orthonormée $e=(e_1,\ldots,e_p)$. En quelles points de E l'application

$$\|\cdot\|: E \to \mathbb{R}$$

$$x \mapsto \|x\|$$

est-elle de classe \mathcal{C}^1 ? En ces points, déterminer la différentielle et le gradient de cette application.

Exercice 5:

Notons

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$$

 $X \mapsto \sqrt{\operatorname{tr}(I_n + {}^t X X)}.$

Calculer les dérivées partielles de f. Montrer que f est de classe \mathcal{C}^1 et calculer sa différentielle.

Exercice 6:

Déterminer les extrema locaux de $f(x,y) = 2(x-y)^2 - x^4 - y^4$.

Exercice 7:

Montrer que

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$

$$X \mapsto X^2$$

est une application de classe \mathcal{C}^1 et calculer sa différentielle.

Exercice 8:

La forme différentielle $\omega = \frac{y^2}{(x+y)^2} dx + \frac{x^2}{(x+y)^2} dx$ est-elle exacte? Dans ce cas, rechercher des primitives de ω .

Exercice 9:

Notons f l'application de \mathbb{R}^2 dans \mathbb{R} définie par f(0,0)=0 et, pour $(x,y)\neq (0,0)$, $f(x,y)=\frac{xy(x^2-y^2)}{x^2+y^2}$.

- 1. Étudier la continuité et la différentiabilité de f sur \mathbb{R}^2 .
- 2. Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$. Que pouvons-nous en déduire?

Exercice 10:

Soient $n \in \mathbb{N}^*$, f de classe \mathbb{C}^2 de \mathbb{R}^n dans \mathbb{R} et u un automorphisme orthogonal de \mathbb{R}^n . Nous posons $\widetilde{f} = f \circ u$.

Montrer que
$$\Delta \widetilde{f} = (\Delta f) \circ u$$
, où $\Delta f = \sum_{k=1}^{n} \frac{\partial^{2} f}{\partial x_{k}^{2}}$.

Exercice 11:

Montrer que la recherche des pavés de \mathbb{R}^3 de volume V dont la surface est minimale se ramène à l'étude des extrema de l'application :

$$f: (\mathbb{R}_+^*)^2 \to \mathbb{R}$$
$$(l,h) \mapsto lh + \frac{V}{l} + \frac{V}{h}.$$

- 1. Déterminer les extrema locaux de f.
- 2. a. Montrer que pour tout m > 0, il existe $(\epsilon, M) \in \mathbb{R}^2$ avec $0 < \epsilon < M$, tel que : $\forall (l, h) \in (\mathbb{R}_+^*)^2 \setminus [\epsilon, M]^2, f(l, h) > m$.
 - b. Déterminer les extrema globaux de f.

Exercice 12:

Soit $k \in \mathbb{R}_+^*$. Résoudre l'équation aux dérivées partielles :

$$\frac{\partial^2 z}{\partial x^2} - \frac{1}{k^2} \frac{\partial^2 z}{\partial y^2} = 0,$$

à l'aide du changement de variables suivant :

$$\begin{cases} u = x + ky \\ v = x - ky. \end{cases}$$

Exercice 13:

1. La forme différentielle $\omega=2xz\mathrm{d}x-2yz\mathrm{d}y-(x^2-y^2)\mathrm{d}z$ est-elle exacte?

- 2. Montrer que la forme différentielle $\omega' = \frac{2xz}{z^2} dx \frac{2yz}{z^2} dy \frac{x^2 y^2}{z^2} dz$ est exacte et déterminer une primitive de ω' .
- 3. Rechercher les applications

$$\phi: I \to \mathbb{R}^3$$

$$t \mapsto (x(t), y(t), z(t))$$

de classe $\mathfrak{C}^1,$ où I est un intervalle inclus dans $\mathbb{R},$ et telles que :

$$\forall t \in I, \quad 2xzx' - 2yzy' - (x^2 - y^2)z' = 0.$$

Exercice 14:

1. Notons $U = \{(\rho, \theta) \mid \rho > 0 \text{ et } \theta \in]-\pi, \pi]\}$ et $V = \mathbb{R}^2 \setminus \{(x, 0) | x \in \mathbb{R}_-\}$. Montrer que la fonction

$$\begin{array}{cccc} f: & U & \to & V \\ & (\rho,\theta) & \mapsto & (\rho\cos\theta,\rho\sin\theta) = (x(\rho,\theta),y(\rho,\theta)) \end{array}$$

est un C^1 -difféomorphisme.

2. Notons

$$\begin{array}{ccccc} f^{-1}: & V & \to & U \\ & (x,y) & \mapsto & g(\rho(x,y),\theta(x,y)). \end{array}$$

Soit

$$g: V \to \mathbb{R}$$

 $(x,y) \mapsto g(x,y)$

une application de classe C^1 . Notons

$$g^* = g \circ f: \quad U \longrightarrow \mathbb{R}$$

 $(\rho, \theta) \mapsto g(x(\rho, \theta), y(\rho, \theta)).$

Exprimer $\frac{\partial g}{\partial x}$ et $\frac{\partial g}{\partial y}$ en fonction de $\frac{\partial g^*}{\partial x}$ et $\frac{\partial g^*}{\partial y}$.

3. Soit D un ouvert de $\mathbb{R}^2 \setminus \{(x,0)|x \in \mathbb{R}_-\}$. Déterminer les applications $g \in \mathcal{C}^1(D,\mathbb{R})$ solutions de l'équation au dérivées partielles :

$$x^{2} + y^{2} + \left(x\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial y}\right)g = 0.$$

4. Supposons que $g \in \mathcal{C}^2(D, \mathbb{R})$. Nous posons $\Delta f = \sum_{k=1}^n \frac{\partial^2 f}{\partial x_k^2}$. Exprimer Δg en coordonnées polaires, c'est-à-dire à l'aide des dérivées partielles de g^* par rapport à ρ et θ .