T. D. nº 3

Exercices sur les vecteurs gaussiens et les lois conditionnelles

Exercice 1 Densité d'un vecteur gaussien.

Soit X un vecteur gaussien de matrice de covariance C et d'espérance μ . Nous supposons que $C = ADA^t$ où D est diagonale et A orthogonale. Nops considérons le vecteur aléatoire $Y = A^t(X - \mu)$.

- 1. Montrer que Y est un vecteur gaussien.
- 2. Déterminer l'espérance μ_Y de Y.
- 3. Déterminer la matrice de covariance C^Y de Y. En déduire que les Y_k sont indépendants.
- 4. Nous supposons de plus que C est définie positive. Nous avons alors D inversible
 - a. Quelle est la loi de Y_k ? En déduire que Y a une densité que vous expliciterez.
 - b. Montrer que X a une densité que vous déterminerez.

Exercice 2 Vecteur non gaussien à marginales gaussiennes.

Soit X une variable aléatoire de loi $\mathcal{N}(0,1)$ et T indépendante de X telle que :

$$\mathbb{P}\left[T=1\right] = \mathbb{P}\left[T=-1\right] = \frac{1}{2}.$$

Montrer que Y = TX suit une loi $\mathcal{N}(0,1)$ et que le vecteur aléatoire (X,Y) n'est pas gaussien.

Exercice 3 Un exercice pour commencer avec des lois conditionnelles.

Soit (X,Y) un couple gaussien centré de matrice de covariance $\begin{pmatrix} 4/3 & -1 \\ -1 & 1 \end{pmatrix}$.

- 1. Calculer $\mathbb{E}[X|Y-X]$.
- 2. En déduire la loi de $\mathbb{E}[X|Y-X]$.

Exercice 4 Encore un exercice sur les lois conditionnelles

Soit (X,Y) un couple gaussien centré de matrice de covariance $\Gamma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$ sur \mathbb{R}^2 . Nous supposons que det $\Gamma > 0$.

- 1. Justifier le fait que le vecteur (X,Y) admette une densité f. Déterminer f.
- 2. En déduire que la loi conditionnelle de X sachant Y=y est donnée par une densité $f^{X|Y=y}$ que nous expliciterons.
- 3. Quelle est la loi conditionnelle de X sachant Y = y?