Statistique Approfondie I

Frédéric Bertrand et Myriam $Maumy^1$

17 octobre 2007

 $^{^1\}mathrm{Courriel}$: fbertran@math.u-strasbg.fr et m
maumy@math.u-strasbg.fr 27, rue René Descartes, 67084 STRASBOURG CEDEX

Avant-propos

0.1. Notations

Nous commençons par quelques notations, couramment utilisées en statistique, à la fois pour alléger les formules et pour les rendre plus compréhensibles.

0.1.1. La notation synthétique d'un total : application aux effectifs

Nous considérons un tableau de données provenant de résultats expérimentaux effectués dans certaines conditions symbolisées par un ou plusieurs indices. Ces expériences peuvent être répétées ou non en fonction des indices que nous considérons, chacune des cases du tableau comportant ainsi une ou plusieurs données. Nous notons l'effectif de chaque case du tableau en remplaçant y par n et en conservant les indices associés à y. La somme des effectifs suivant l'un des indices est notée en remplaçant cet indice par le symbole +. Nous adoptons cette notation, classique en statistique, pour alléger et uniformiser les notations. Ainsi par exemple, dans les cas où nos données sont indexées par un, deux ou trois indices, nous obtenons les notations ci-dessous.

1. Nous avons observé n valeurs de la variable Y. Chacune d'entre elle correspond à un résultat expérimental effectué dans la condition i, $1 \le i \le I$. Nous construisons donc un tableau comportant I lignes. L'effectif de chaque case du tableau est alors noté n_i , l'effectif total n_+ est évidemment donné par la formule :

$$n_+ = \sum_{i=1}^{I} n_i.$$

Bien entendu nous avons $n_+ = n$.

- 2. Nous avons observé n valeurs de la variable Y que nous regroupons en fonction des valeurs des deux indices i, $1 \le i \le I$, et j, $1 \le j \le J$, associés aux conditions expérimentales. Nous construisons ainsi un tableau à I lignes et J colonnes.
 - L'effectif de la case (i, j) du tableau, située à l'intersection de la i-ème ligne et de la j-ème colonne est alors noté $n_{i,j}$.
 - La somme des effectifs par rapport à l'indice i, c'est-à-dire le nombre de données dans la colonne j du tableau, est notée $n_{+,j}$.

$$n_{+,j} = \sum_{i=1}^{I} n_{i,j}.$$

– La somme des effectifs par rapport à l'indice j, c'est-à-dire le nombre de données dans la ligne i du tableau, est notée $n_{i,+}$.

$$n_{i,+} = \sum_{j=1}^{J} n_{i,j}.$$

– La somme des effectifs par rapport aux indices i et j, c'est-à-dire le nombre de données dans le tableau, est notée $n_{+,+}$.

$$n_{+,+} = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{i,j}.$$

Bien entendu nous avons $n_{+,+} = n$.

- 2. Nous avons observé n valeurs de la variable Y que nous regroupons en fonction des valeurs des trois indices $i, 1 \le i \le I, j, 1 \le j \le J$, et $k, 1 \le k \le K$, associés aux conditions expérimentales. Nous construisons ainsi un multitableau à I lignes, J colonnes et une profondeur de K.
 - L'effectif de la case (i, j, k) du multitableau, située à l'intersection de la i-ème ligne et de la j-ème colonne à la profondeur k est alors noté $n_{i,j,k}$.
 - La somme des effectifs par rapport à l'indice i, c'est-à-dire le nombre de données dans la colonne j à la profondeur k du multitableau, est notée $n_{+,j,k}$.

$$n_{+,j,k} = \sum_{i=1}^{I} n_{i,j,k}.$$

– La somme des effectifs par rapport à l'indice j, c'est-à-dire le nombre de données dans la ligne i à la profondeur k du multitableau, est notée $n_{i,+,k}$.

$$n_{i,+,k} = \sum_{j=1}^{J} n_{i,j,k}.$$

– La somme des effectifs par rapport à l'indice i, c'est-à-dire le nombre de données dans les cases transversales, c'est-à-dire sur toute la profondeur du tableau, situées aux intersections de la ligne i et de la colonne j du multitableau, est notée $n_{i,j,+}$.

$$n_{i,j,+} = \sum_{k=1}^{K} n_{i,j,k}.$$

– La somme des effectifs par rapport aux indices i et j, c'est-à-dire le nombre de données dans la tranche de profondeur k du multitableau, est notée $n_{+,+,k}$.

$$n_{+,+,k} = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{i,j,k}.$$

– La somme des effectifs par rapport aux indices i et k, c'est-à-dire le nombre de données dans la tranche verticale de position j du multitableau, est notée $n_{+,j,+}$.

$$n_{+,j,+} = \sum_{i=1}^{I} \sum_{k=1}^{K} n_{i,j,k}.$$

– La somme des effectifs par rapport aux indices j et k, c'est-à-dire le nombre de données dans la tranche horizontale de position i du multitableau, est notée $n_{i,+,+}$.

$$n_{i,+,+} = \sum_{j=1}^{J} \sum_{k=1}^{K} n_{i,j,k}.$$

– La somme des effectifs par rapport aux indices i, j et k, c'est-à-dire le nombre de données dans le tableau, est notée $n_{+,+,+}$.

$$n_{+,+,+} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} n_{i,j}.$$

Bien entendu nous avons $n_{+,+,+} = n$.

Nous pouvons bien sûr généraliser cette notation lorsque nous considérons plus de trois indices.

0.1.2. La notation synthétique d'une moyenne

Lorsque nous disposons d'un tableau de données indexées par un ou plusieurs indices nous notons la moyenne par rapport à l'un de ces indices en le remplaçant par le symbole

- •. Nous adoptons cette notation, classique en statistique, pour alléger et uniformiser les notations. Ainsi par exemple, dans les cas où nos données sont indexées par un, deux ou trois indices, nous obtenons les notations ci-dessous.
 - 1. Nous avons observé n=I valeurs de la variable Y indexée par un indice i, notées y_1, \ldots, y_n . La moyenne de ces valeurs y_1, \ldots, y_n par rapport à l'indice i est donc notée y_{\bullet} . Dans ce cas il s'agit simplement de la moyenne \overline{y} :

$$y_{\bullet} = \frac{1}{I} \sum_{i=1}^{I} y_i = \frac{1}{I} y_+.$$

- 2. Nous avons observé $n=I\times J$ valeurs de la variable Y indexée par deux indices i et j, notées $y_{1,1},\ldots,y_{1,J},\,y_{2,1},\ldots,y_{I,J},\ldots,y_{I,J},\ldots,y_{I,J}$.
 - La moyenne de ces valeurs $y_{1,1}, \ldots, y_{I,J}$ par rapport à l'indice i est notée $y_{\bullet,j}$. Il s'agit simplement de la moyenne $\overline{y_j}$ des valeurs de la j-ème colonne du tableau :

$$y_{\bullet,j} = \frac{1}{I} \sum_{i=1}^{I} y_{i,j} = \frac{1}{I} y_{+,j}.$$

– La moyenne de ces valeurs $y_{1,1}, \ldots, y_{I,J}$ par rapport à l'indice j est notée $y_{i,\bullet}$. Il s'agit simplement de la moyenne $\overline{y_i}$ des valeurs de la i-ème ligne :

$$y_{i,\bullet} = \frac{1}{J} \sum_{j=1}^{J} y_{i,j} = \frac{1}{J} y_{i,+}.$$

– La moyenne de ces valeurs $y_{1,1}, \ldots, y_{I,J}$ par rapport aux indices i et j est notée $y_{\bullet,\bullet}$. Il s'agit simplement de la moyenne \overline{y} , parfois aussi appelée grande moyenne du tableau :

$$y_{\bullet,\bullet} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} y_{i,j} = \frac{1}{IJ} y_{+,+}.$$

- 3. Nous avons observé $n=I\times J\times K$ valeurs de la variable Y indexée par trois indices i, j et k, notées $y_{1,1,1},\ldots,y_{1,1,K},y_{2,1,1},\ldots,y_{1,1,K},\ldots,y_{I,1,1},\ldots,y_{I,1,K},\ldots,y_{I,2,K},\ldots,y_{I,J,K}$.
 - La moyenne de ces valeurs $y_{1,1,1},\ldots,y_{I,J,K}$ par rapport à l'indice i est notée $y_{\bullet,j,k}$:

$$y_{\bullet,j,k} = \frac{1}{I} \sum_{i=1}^{I} y_{i,j,k} = \frac{1}{I} y_{+,j,k}.$$

– La moyenne de ces valeurs $y_{1,1,1},\ldots,y_{I,J,K}$ par rapport à l'indice j est notée $y_{i,\bullet,k}$:

$$y_{i,\bullet,k} = \frac{1}{J} \sum_{i=1}^{J} y_{i,j,k} = \frac{1}{J} y_{i,+,k}.$$

- La moyenne de ces valeurs $y_{1,1,1},\ldots,y_{I,J,K}$ par rapport à l'indice k est notée $y_{i,j,\bullet}$:

$$y_{i,j,\bullet} = \frac{1}{K} \sum_{k=1}^{K} y_{i,j,k} = \frac{1}{K} y_{i,j,+}.$$

– La moyenne de ces valeurs $y_{1,1,1},\ldots,y_{I,J,K}$ par rapport aux indices i et j est notée $y_{\bullet,\bullet,k}$:

$$y_{\bullet,\bullet,k} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} y_{i,j,k} = \frac{1}{IJ} y_{+,+,k}.$$

– La moyenne de ces valeurs $y_{1,1,1},\ldots,y_{I,J,K}$ par rapport aux indices i et k est notée $y_{\bullet,j,\bullet}$:

$$y_{\bullet,j,\bullet} = \frac{1}{IK} \sum_{i=1}^{I} \sum_{k=1}^{K} y_{i,j,k} = \frac{1}{IK} y_{+,j,+}.$$

– La moyenne de ces valeurs $y_{1,1,1}, \ldots, y_{I,J,K}$ par rapport aux indices j et k est notée $y_{i,\bullet,\bullet}$:

$$y_{i,\bullet,\bullet} = \frac{1}{JK} \sum_{j=1}^{J} \sum_{k=1}^{K} y_{i,j,k} = \frac{1}{JK} y_{i,+,+}.$$

– La moyenne de ces valeurs $y_{1,1,1}, \ldots, y_{I,J,K}$ par rapport aux indices i, j et k, est notée $y_{\bullet,\bullet,\bullet}$. Il s'agit simplement de la moyenne \overline{y} , parfois aussi appelée grande moyenne du tableau :

$$y_{\bullet,\bullet,\bullet} = \frac{1}{IJK} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} y_{i,j,k} = \frac{1}{IJK} y_{+,+,+}.$$

Nous étendons cette notation à la situation où les valeurs que la variable Y va prendre ne sont pas encore connues, c'est-à-dire lorsque nous remplaçons les nombres y_i , $y_{i,j}$ ou $y_{i,j,k}$ par les variables aléatoires Y_i , $Y_{i,j}$ ou $Y_{i,j,k}$. Ceci permettra d'obtenir des formules simples pour les estimateurs des paramètres des modèles étudiés par la suite.

Nous pouvons bien sûr généraliser cette notation lorsque les valeurs prises par la variable Y dépendent de plus de trois indices.

Table des matières

A		propos	ii
	0.1	Notations	ii ii V
Ta	able o	des matières générale	vii
Ι	Qu	uelques modèles d'analyse de la variance	1
Ta	able o	des matières de la première partie	9
1	Intr 1.1 1.2 1.3	Un peu de vocabulaire	
2	Ana 2.1 2.2	Alyse de la variance à un facteur Modèles à effets fixes	
3	Ana 3.1 3.2 3.3	Modèles à effets fixes 3.1.1 Sans répétition 3.1.2 Avec répétitions Modèles à effets aléatoires 3.2.1 Sans répétition 3.2.2 Avec répétitions Modèles à effets mixtes 3.3.1 Sans répétition 3.3.2 Avec répétitions	27 27 30 33
4	Ana 4.1	Alyse de la variance à deux facteurs emboîtés Modèles à effets fixes	41 42 42
	4.2	Modèles à effets aléatoires	46

		4.3.1	Avec répétitions	 . 48
5	Ana	alyse de	e la variance à trois facteurs	53
	5.1	Modèle	es à effets fixes	. 53
		5.1.1	Sans répétition	. 53
		5.1.2	Avec répétitions	
	5.2	Modèle	es à effets aléatoires	69
		5.2.1	Sans répétition	69
		5.2.2	Avec répétitions	. 75
	5.3	Modèle	es à effets mixtes	. 81
		5.3.1	Sans répétition	. 81
		5.3.2	Avec répétitions	 . 91
6	Ana	alvse de	e la variance à trois facteurs totalement emboîtés	103
	6.1	-	es à effets fixes	
	0	6.1.1	Avec répétitions	
	6.2		es à effets aléatoires	
	_	6.2.1	Avec répétitions	
	6.3	-	es à effets mixtes	
	0.0	6.3.1	Avec répétitions	
			1	
7		•	e la variance à trois facteurs partiellement emboîtés	121
	7.1		uction	
	7.2		fférents modèles partiellement emboîtés	
			Nécessitant des répétitions	
		7.2.2	Ne nécessitant pas de répétitions	 . 122
8	Ana	alyse de	e la variance à l facteurs, $l \geqslant 3$	125
9	Cor	nparais	sons multiples	127
	9.1	-	astes	. 127
			Définition	
		9.1.2	Orthogonalité	
		9.1.3	Estimation	
		9.1.4	Test d'une hypothèse impliquant un constraste	
	9.2		araisons multiples sous l'hypothèse d'homoscédasticité	
		9.2.1	La méthode de Tukey	
		9.2.2	La méthode de Tukey-Kramer	
		9.2.3	La méthode de Hochberg	
		9.2.4	La méthode de Scheffé	
		9.2.5	La méthode de la plus petite différence significative de Fisher .	
		9.2.6	La méthode de Bonferroni	
		9.2.7	La méthode de rejet séquentiel de Bonferroni de Holm	
		9.2.8	La méthode de Dunn-Šidák	
		9.2.9	La méthode de Newman-Keuls	
			La méthode de Duncan	
			La méthode de Dunnett	
	93		araisons multiples sous l'hypothèse d'hétéroscédasticité	

		9.3.1 La méthode de Games et Howell	. 143
	9.4	Deux méthodes recommandées	. 144
		9.4.1 Le test multiple des étendues de Ryan-Einot-Gabriel-Welsch	. 144
		9.4.2 Tests F -multiples	. 146
	9.5	Comparaisons avec le « meilleur »	. 147
		9.5.1 La méthode de Hsu	
		9.5.2 La méthode de Edwards-Hsu	
	9.6	Deux facteurs sans répétition	
		9.6.1 Contrastes	
		9.6.2 Méthode de Tukey	
		9.6.3 Méthode de Scheffé	
		9.6.4 Méthode de Bonferroni et méthodes associées	
	9.7	Deux facteurs avec répétitions	
		9.7.1 Contrastes	
		9.7.2 Méthode de Tukey	
		9.7.3 Méthode de Scheffé	
		9.7.4 Méthode de Bonferroni et méthodes associées	
		9.7.5 Cas d'un plan non équilibré et des comparaisons deux à deux	
	9.8	Deux facteurs emboîtés	
		9.8.1 Contrastes	
		9.8.2 Méthode de Tukey	
		9.8.3 Méthode de Scheffé	
		9.8.4 Méthode de Bonferroni et méthodes associées	
		9.8.5 Cas d'un plan non équilibré et des comparaisons deux à deux	
		one of all plan non equinate of des compensations dean a dean	. 101
10		ssance des tests de l'analyse de la variance	165
	10.1	Analyse de la variance à un facteur	. 166
		10.1.1 Modèle à effets fixes	. 166
		10.1.2 Modèle à effets aléatoires	. 168
	10.2	Analyse de la variance à deux facteurs sans interaction	. 169
		10.2.1 Modèle à effets fixes	. 169
		10.2.2 Modèle à effets aléatoires	. 170
		10.2.3 Modèle à effets mixtes	
	10.3	Analyse de la variance à deux facteurs avec interaction	. 172
		10.3.1 Modèle à effets fixes	
		10.3.2 Modèle à effets aléatoires	. 174
		10.3.3 Modèle à effets mixtes	. 175
	10.4	Analyse de la variance à deux facteurs emboîtés	. 176
		10.4.1 Modèle à effets fixes	. 177
		10.4.2 Modèle à effets aléatoires	. 178
		10.4.3 Modèle à effets mixtes	. 178
	10.5	Analyse de la variance à trois facteurs sans interaction	. 179
		10.5.1 Modèle à effets fixes	. 180
		10.5.2 Modèle à effets aléatoires	. 181
		the state of the s	100
		10.5.3 Modèle à effets mixtes	. 182
	10.6	10.5.3 Modèle à effets mixtes	

		10.6.2 Modèle à effets aléatoires	. 187
		10.6.3 Modèle à effets mixtes	. 189
	10.7	Analyse de la variance à trois facteurs totalement emboîtés	. 193
		10.7.1 Modèle à effets fixes	
		10.7.2 Modèle à effets aléatoires	
		10.7.3 Modèle à effets mixtes	
11	T		001
ΙI		mples Analyse de la variance à un facteur	201
	11.1	v	
	11 9	11.1.1 Carburateurs	
	11.2	Analyse de la variance à deux facteurs	
		11.2.1 Sans répétition	
		11.2.2 Avec répétitions et plan déséquilibré	
	11 9		
	11.5	Analyse de la variance à deux facteurs emboîtés	
	11 /	11.3.1 Plan déséquilibré	
	11.4	Analyse de la variance à trois facteurs	
	11 5	11.4.2 Avec répétitions	
		Analyse de la variance à trois facteurs partiellement emboîtés	
	11.0	Thialyse de la variance a trois facteurs particulament embories	
Li	ste d	es figures de la première partie	25 3
Li	${ m ste} \; { m d}$	es tableaux de la première partie	257
Ri	hling	raphie de la première partie	259
	, D1108	rapino de la promore partie	200
Π	Δ	pproches complémentaires	261
	. 11.	pprocincs complementaries	201
Ta	able o	les matières de la seconde partie	26 3
12	Que	elques tests non paramétriques	26 5
	12.1	Les tests non paramétriques sur un échantillon	. 265
		12.1.1 Test du signe	
		12.1.2 Test des rangs signés de Wilcoxon	. 267
	12.2	Les tests non paramétriques sur deux échantillons	. 269
		12.2.1 Les échantillons sont indépendants : Test de Mann-Whitney	. 269
		12.2.2 Les échantillons sont indépendants : Test de la médiane de Mood	. 271
		12.2.3 Les échantillons sont dépendants : Test de Wilcoxon	. 272
	12.3	Les tests non paramétriques sur k échantillons : 1 facteur	
		12.3.1 Les échantillons sont indépendants : Test de Kruskal-Wallis	. 273
		12.3.2 Les échantillons sont indépendants : Test de Jonckheere-Terpstra .	. 276
		12.3.3 Les échantillons ne sont pas indépendants : Test de Friedman	. 277
	12.4	Les tests non paramétriques sur nk échantillons : 2 facteurs	. 279
		12.4.1 Les échantillons sont indépendants : Test de Friedman	. 279
	19.5	Exercices	281

13 Vale	eurs non représentatives	289
13.1	Valeurs extrêmes, valeurs non représentatives	. 289
13.2	Que vérifier?	. 290
13.3	Que faire avec une valeur potentiellement non-représentative?	. 291
	13.3.1 Notations	. 291
	13.3.2 Test de Grubbs pour une seule valeur non représentative	. 292
	13.3.3 Test de Dixon pour une seule valeur non représentative	. 293
	13.3.4 Test basé sur l'étendue	. 295
13.4	Test simultané de k valeurs non représentatives $\ldots \ldots \ldots \ldots$. 296
	13.4.1 Test de Grubbs pour k valeurs non représentatives	. 296
	13.4.2 Test de Grubbs pour deux valeurs non représentatives	. 297
	13.4.3 Test de Tietjen-Moore pour k valeurs non représentatives	. 298
13.5	Détection d'un nombre de valeurs non représentatives non fixé à l'avance	
	13.5.1 La boîte à moustaches	. 300
	13.5.2 Test basé sur le coefficient d'asymétrie	. 301
	13.5.3 Test basé sur le coefficient d'aplatissement	. 302
13.6	Procédures séquentielles de détections de valeurs non représentatives	. 302
	13.6.1 Procédure séquentielle de Prescott	. 302
	13.6.2 Procédure RST de Rosner	
13.7	Conclusion	. 304
	Exercices	
13.9	Corrigé des exercices	. 306
Liste d	es figures de la deuxième partie	311
Liste d	es tableaux de la deuxième partie	315
Bibliog	raphie de la deuxième partie	317
III (Compléments	319
Table d	des matières des compléments	321
	dèles statistiques	323
	Introduction	
14.2	Modèle statistique	
	14.2.1 Relations	
	14.2.2 Le cas de l'erreur	
	14.2.3 Choix d'une fonction	
	14.2.4 Synthèse	
14.3	Un cas concret l'analyse de la variance à 1 facteur contrôlé	
	14.3.1 Introduction	
	14.3.2 Modèle statistique	
	14.3.3 Les hypothèses	. 326

15 Es	stimation	1	331
15.	.1 Définit	ions et notations	331
	15.1.1	Population, individu, échantillon	331
	15.1.2	Caractères quantitatif et qualitatif	331
	15.1.3	Caractères discret et continu	332
15.	.2 Param	ètres de position	332
	15.2.1	Le mode	332
	15.2.2	La moyenne	333
15.	.3 Param	ètres de dispersion	333
		L'étendue	
		La variance	
		L'écart-type	
15.		orie de l'estimation	
		Introduction	
		Quelques définitions	
	15.4.3	Simplification de notation	335
	15.4.4	Propriétés d'un estimateur	336
	15.4.5	Précision : Cas d'un estimateur sans biais	336
	15.4.6	Précision : Cas d'un estimateur quelconque	337
15.	.5 Des ex	emples d'estimation	337
	15.5.1	Estimation de la moyenne d'une population	337
	15.5.2	Estimation de la variance d'une population	338
	15.5.3	Estimation d'une proportion d'une population	339
Biblic	ographie	e des compléments	340
IV	Annex	ces	341
Table	des ma	tières des annexes	343
A Ta	able de K	Kruskal-Wallis	345
Liste	des tabl	leaux des annexes	347
Liste	e comp	lète des figures	349
$\operatorname{List}_{oldsymbol{\epsilon}}$	e comp	lète des tableaux	349
Bibl	iograpł	nie complète	353

Première partie Quelques modèles d'analyse de la variance¹

¹Les références [Dag98a], [Dag98b], [KRB96], [Fal05], [Par74], [SA00] ayant servi à l'élaboration de cette partie sont mentionnées dans la bibliographie.

Table des Matières

Ta	ble (des matières de la première partie	3
1	Int	roduction	7
	1.1	Un peu de vocabulaire	7
	1.2	Plans équilibrés, plans déséquilibrés	10
	1.3	Risque global associé au tableau de l'analyse de la variance	
2	An	alyse de la variance à un facteur	13
	2.1	Modèles à effets fixes	13
	2.2	Modèles à effets aléatoires	16
3	An	alyse de la variance à deux facteurs	19
	3.1	Modèles à effets fixes	19
		3.1.1 Sans répétition	19
		3.1.2 Avec répétitions	23
	3.2	Modèles à effets aléatoires	27
		3.2.1 Sans répétition	27
		3.2.2 Avec répétitions	30
	3.3	Modèles à effets mixtes	33
		3.3.1 Sans répétition	33
		3.3.2 Avec répétitions	36
4	An	alyse de la variance à deux facteurs emboîtés	41
	4.1	Modèles à effets fixes	42
		4.1.1 Avec répétitions	42
	4.2	Modèles à effets aléatoires	46
		4.2.1 Avec répétitions	46
	4.3	Modèles à effets mixtes	48
		4.3.1 Avec répétitions	48
5	An	alyse de la variance à trois facteurs	5 3
	5.1	Modèles à effets fixes	53
		5.1.1 Sans répétition	53
		5.1.2 Avec répétitions	60
	5.2	Modèles à effets aléatoires	69
		5.2.1 Sans répétition	69

TABLE DES MATIÈRES

		5.2.2	Avec répétitions	75
	5.3	Modèle	es à effets mixtes	81
		5.3.1	Sans répétition	81
		5.3.2	Avec répétitions	91
6	An	alyse d	le la variance à trois facteurs totalement emboîtés	103
	6.1	Modèle	es à effets fixes	103
		6.1.1	Avec répétitions	103
	6.2	Modèle	es à effets aléatoires	109
		6.2.1	Avec répétitions	109
	6.3	Modèle	es à effets mixtes	112
		6.3.1	Avec répétitions	112
7	An	alyse d	le la variance à trois facteurs partiellement emboîtés	121
	7.1	Introd	uction	121
	7.2	Les dif	fférents modèles partiellement emboîtés	121
		7.2.1	Nécessitant des répétitions	121
		7.2.2	Ne nécessitant pas de répétitions	122
8	An	alyse d	le la variance à l facteurs, $l \geqslant 3$	125
9	Co	mparai	sons multiples	127
	9.1	Contra	astes	127
		9.1.1	Définition	127
		9.1.2	Orthogonalité	128
		9.1.3	Estimation	128
		9.1.4	Test d'une hypothèse impliquant un constraste	129
	9.2	Compa	araisons multiples sous l'hypothèse d'homoscédasticité	130
		9.2.1	La méthode de Tukey	
		9.2.2	La méthode de Tukey-Kramer	133
		9.2.3	La méthode de Hochberg	134
		9.2.4	La méthode de Scheffé	135
		9.2.5	La méthode de la plus petite différence significative de Fisher .	137
		9.2.6	La méthode de Bonferroni	138
		9.2.7	La méthode de rejet séquentiel de Bonferroni de Holm	139
		9.2.8	La méthode de Dunn-Šidák	139
		9.2.9	La méthode de Newman-Keuls	140
		9.2.10	La méthode de Duncan	141
		9.2.11	La méthode de Dunnett	142
	9.3	Compa	araisons multiples sous l'hypothèse d'hétéroscédasticité	143
		9.3.1	La méthode de Games et Howell	143
	9.4	Deux 1	méthodes recommandées	

TABLE DES MATIÈRES

		9.4.1	Le test multiple des étendues de Ryan-Einot-Gabriel-Welsch	144
		9.4.2	Tests F -multiples	146
	9.5	Compa	araisons avec le « meilleur »	147
		9.5.1	La méthode de Hsu	148
		9.5.2	La méthode de Edwards-Hsu	149
	9.6	Deux f	facteurs sans répétition	
		9.6.1	Contrastes	151
		9.6.2	Méthode de Tukey	151
		9.6.3	Méthode de Scheffé	152
		9.6.4	Méthode de Bonferroni et méthodes associées	152
	9.7	Deux f	facteurs avec répétitions	153
		9.7.1	Contrastes	153
		9.7.2	Méthode de Tukey	154
		9.7.3	Méthode de Scheffé	156
		9.7.4	Méthode de Bonferroni et méthodes associées	157
		9.7.5	Cas d'un plan non équilibré et des comparaisons deux à deux	158
	9.8	Deux f	facteurs emboîtés	158
		9.8.1	Contrastes	159
		9.8.2	Méthode de Tukey	160
		9.8.3	Méthode de Scheffé	161
		9.8.4	Méthode de Bonferroni et méthodes associées	162
		9.8.5	Cas d'un plan non équilibré et des comparaisons deux à deux	164
10	Pui	ssance	des tests de l'analyse de la variance	165
	10.1	Analys	se de la variance à un facteur	166
		10.1.1	Modèle à effets fixes	166
		10.1.2	Modèle à effets aléatoires	168
	10.2	Analys	se de la variance à deux facteurs sans interaction	169
		10.2.1	Modèle à effets fixes	169
		10.2.2	Modèle à effets aléatoires	170
		10.2.3	Modèle à effets mixtes	171
	10.3		se de la variance à deux facteurs avec interaction	
		10.3.1	Modèle à effets fixes	172
		10.3.2	Modèle à effets aléatoires	174
			Modèle à effets mixtes	
	10.4		se de la variance à deux facteurs emboîtés	
		10.4.1	Modèle à effets fixes	177
			Modèle à effets aléatoires	
		10.4.3	Modèle à effets mixtes	178
	10.5	Analys	se de la variance à trois facteurs sans interaction	179
		10.5.1	Modèle à effets fixes	180
			modele de chous made	

TABLE DES MATIÈRES

	10.5.3 Modèle à effets mixtes	. 182
10.6	Analyse de la variance à trois facteurs avec interaction	. 185
	10.6.1 Modèle à effets fixes	. 186
	10.6.2 Modèle à effets aléatoires	. 187
	10.6.3 Modèle à effets mixtes	. 189
10.7	Analyse de la variance à trois facteurs totalement emboîtés	. 193
	10.7.1 Modèle à effets fixes	. 193
	10.7.2 Modèle à effets aléatoires	. 195
	10.7.3 Modèle à effets mixtes	. 196
11 Exe	emples	201
11.1	Analyse de la variance à un facteur	. 201
	11.1.1 Carburateurs	. 201
11.2	Analyse de la variance à deux facteurs	. 206
	11.2.1 Sans répétition	. 206
	11.2.2 Avec répétitions et plan équilibré	. 215
	11.2.3 Avec répétitions et plan déséquilibré	. 231
11.3	Analyse de la variance à deux facteurs emboîtés	. 234
	11.3.1 Plan déséquilibré	. 234
11.4	Analyse de la variance à trois facteurs	. 238
	11.4.1 Sans répétition	. 238
	11.4.2 Avec répétitions	. 243
11.5	Analyse de la variance à trois facteurs totalement emboîtés	. 252
11.6	Analyse de la variance à trois facteurs partiellement emboîtés	. 253
Liste d	es figures de la première partie	253
Liste d	es tableaux de la première partie	257
Bibliog	raphie de la première partie	259

Chapitre 1

Introduction

1.1. Un peu de vocabulaire

- i. Nous appelons **réponse** une variable dont nous cherchons à comprendre le comportement. Nous considérerons dans le cadre de ce cours des réponses quantitatives continues. Une réponse est généralement notée Y et c'est le cas systématiquement dans la suite.
- ii. Nous appelons facteur toute variable dont nous voulons nous servir pour analyser les variations de la réponse. Nous notons généralement les facteurs par des lettres romaines majuscules A, B, \ldots Dans le contexte de l'analyse de la variance tous les facteurs sont considérés comme des variables qualitatives. Les niveaux ou modalités d'un facteur sont notés en indiçant la majuscule romaine associée au facteur : A_1, \ldots, A_I où I désigne le nombre total de modalités du facteur A. Pour l'analyse d'une réponse à l'aide de variables quantitatives nous utiliserons des techniques de régression, linéaire ou non, et pour l'analyse d'une réponse à l'aide d'un mélange de variables quantitatives et qualitatives nous pourrons nous servir de l'analyse de la covariance.
- iii. Un modèle statistique est une équation reliant les différentes mesures $Y_{i,j,\dots}$ de la réponse Y aux effets des niveaux $A_1,\dots,A_I,\,B_1,\dots,B_J,\dots$ des facteurs $A,\,B,\dots$ pour lesquels ont été réalisés ces différentes mesures au travers d'une relation fonctionnelle f et tout en modélisant les fluctuations expérimentales à l'aide de variables aléatoires d'erreur généralement notée $\epsilon_{i,j,\dots}$ sur lesquelles nous faisons porter certaines hypothèses :

$$Y_{i,j,\dots} = f(A_i, B_j, \dots) + \epsilon_{i,j,\dots}.$$

iv. Les modèles associés à l'analyse de la variance ont une forme particulière : ce sont des modèles linéaires. Dans le cas la relation fonctionnelle f s'écrit simplement comme une somme de différents **termes**. Ainsi nous souhaitons par exemple étudier une réponse continue Y à l'aide d'un facteur qualitatif A à effets fixes, un nombre identique J de répétitions ayant été effectuées pour chacun des niveaux du facteur.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$
 avec la contrainte supplémentaire $\sum_{i=1}^{I} \alpha_i = 0,$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans la condition A_i lors de la j-ème répétition. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant I, \text{ et } 1 \leqslant j,l \leqslant J.$$

Les μ , α_1 , ..., α_I sont donc des **termes du modèle**. $\epsilon_{i,j}$ est parfois appelé le terme d'erreur dans le modèle.

Nous remarquons que les hypothèses faites sur les termes d'erreur $\epsilon_{i,j}$ font partie intégrante de la définiton du modèle. Ceci explique le soin particulier que nous devons avoir pour vérifier que les conditions d'utilisation des modèles sont bien remplies, la validité des conclusions obtenues à l'aide du modèle dépendant fortement de son utilisation opportune ou non.

- v. En fonction du type d'effet auquel les termes du modèle sont associés, ces termes ont un nom différent.
 - Un terme associé à l'effet direct d'un des facteurs du modèle est appelé **effet principal**, nous le notons généralement par la lettre grecque minuscule associée à la majuscule romaine désignant le facteur, par exemple pour le facteur A nous noterons α_i l'effet du niveau A_i , pour $1 \le i \le I$.
 - L'ensemble des termes associés aux effets de l'interaction de deux des facteurs du modèle est appelé **interaction d'ordre 1**. Nous les notons généralement par les lettres grecques minuscules mises entre parenthèses associées aux majuscules romaines désignant les deux facteurs dont nous étudions l'interaction et indicées par les niveaux des deux facteurs. Par exemple si l'interaction d'ordre 2 met en jeu les facteurs A et B, nous notons les termes associés à ces effets par $(\alpha\beta)_{1,1}, (\alpha\beta)_{1,2}, \ldots, (\alpha\beta)_{1,I}, \ldots (\alpha\beta)_{1,I}, \ldots (\alpha\beta)_{1,J}$ pour $1 \le i \le I$ et $1 \le j \le J$.
 - Plus généralement l'ensemble des termes associés aux effets de l'interaction de k des facteurs du modèle, $k \ge 2$, est appelé **interaction d'ordre** k-1. Nous les notons généralement par les lettres grecques minuscules mises entre parenthèses associées aux majuscules romaines désignant les k facteurs dont nous étudions l'interaction et indicées par les niveaux de ces k facteurs. Par exemple $(\alpha\beta\gamma)_{i,j,k}$ pour l'interaction d'ordre k-1 entre les facteurs A, B et C.

Ainsi nous souhaitons par exemple étudier une réponse continue Y à l'aide de trois facteurs qualitatifs à effets fixes A, B et C pour lesquels nous avons fait un nombre de répétitions identiques, noté K, pour chaque combinaison des niveaux des trois facteurs. Le facteur A a I modalités, le facteur B a J modalités et le facteur C a K modalités.

Nous introduisons le modèle :

$$\begin{split} Y_{i,j,k,l} &= \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + (\alpha\beta\gamma)_{i,j,k} + \epsilon_{i,j,k,l}, \\ & i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L, \\ \text{avec les contraintes supplémentaires} & \sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_j = 0 \ \text{et} \ \sum_{k=1}^{K} \gamma_k = 0, \\ & \sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\} \ \text{et} \ \sum_{j=1}^{J} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, \dots, I\}, \\ & \sum_{i=1}^{I} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\} \ \text{et} \ \sum_{k=1}^{K} (\alpha\gamma)_{i,k} = 0, \ \forall i \in \{1, \dots, I\}, \\ & \sum_{j=1}^{J} (\beta\gamma)_{j,k} = 0, \ \forall k \in \{1, \dots, K\} \ \text{et} \ \sum_{k=1}^{K} (\beta\gamma)_{j,k} = 0, \ \forall j \in \{1, \dots, J\}, \\ & \sum_{j=1}^{I} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (j,k) \in \{1, \dots, J\} \times \{1, \dots, K\}, \\ & \sum_{j=1}^{K} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (i,k) \in \{1, \dots, I\} \times \{1, \dots, K\}, \\ & \sum_{k=1}^{K} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (i,j) \in \{1, \dots, I\} \times \{1, \dots, J\}, \end{split}$$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans la condition (A_i, B_j, C_k) lors de la l-ème répétition. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L.$$

Les termes α_i , β_j et γ_k sont donc les **effets principaux** associés aux trois facteurs A, B et C. Les termes $(\alpha\beta)_{i,j}$ sont associés aux **interactions d'ordre 2** entre les facteurs A et B, les termes $(\alpha\gamma)_{i,k}$ sont associés aux **interactions d'ordre 2** entre les facteurs A et C, les termes $(\beta\gamma)_{j,k}$ sont associés aux **interactions d'ordre 2** entre les facteurs B et C, les termes $(\alpha\beta\gamma)_{i,j,k}$ sont associés à **l'interaction d'ordre 3** entre les facteurs A, B et C.

Nous remarquons qu'à nouveau les hypothèses faites sur les termes d'erreur $\epsilon_{i,j,k,l}$ font partie intégrante de la définiton du modèle. Ceci explique le soin particulier que nous devons avoir pour **vérifier que les conditions d'utilisation des modèles sont bien remplies**, la validité des conclusions obtenues à l'aide du modèle dépendant fortement de son utilisation opportune ou non.

• Dans certaines situations particulières, celles où l'un ou plusieurs des facteurs sont dits emboîtés dans un autre facteur, nous introduirons d'autres notations qui seront décrites à la section 4 et à la section 6.

1.2. Plans équilibrés, plans déséquilibrés

De manière générale, tout dispositif expérimental comportant au moins un facteur et comportant un nombre identique de répétitions dans chacune des modalités des facteurs est un plan équilibré. Dans la suite nous appelerons plan équilibré tout plan vérifiant cette condition.¹

Pour de multiples raisons nous conseillons, lors de la phase de planification expérimentale, de prévoir d'utiliser des plans équilibrés pour l'analyse des effets ou des interactions d'un ou plusieurs facteurs qualitatifs sur une réponse expérimentale modélisée par une variable continue. En particulier dans le cas où le plan est équilibré :

- 1. Les estimations des paramètres d'un modèle où les facteurs sont à effets fixes seront faciles à calculer puisque nous sommes dans une situation dénommée en statistique par plan d'expérience orthogonal. Concrètement ceci signifie que pour estimer l'effet d'un des termes du modèle, il n'est pas nécessaire d'estimer les effets des autres termes du modèle. Ceci se traduit dans les formules par le fait que l'estimation des effets des termes du modèle se fait comme si le modèle ne comportait pas d'autres termes que celui que nous cherchons à estimer.
- 2. Lorsque nous ne disposons d'aucune information a priori sur les possibles résultats de l'expérience, la situation la plus propice à mettre en évidence une différence, si elle existe, entre les différents effets pour lesquels des tests sont réalisés est associée à une répartition des essais où le plan équilibré. Nous renvoyons au chapitre 10 pour un exposé plus détaillé du calcul de la puissance associée aux différents tests réalisés lors d'une analyse de la variance.

Néanmoins il est possible d'utiliser tous les modèles exposés dans les chapitres suivants dans le contexte particulier des plans équilibrés lorsqu'en fait le plan est déséquilibré, c'est-à-dire lorsque le nombre de répétitions varie d'une case à l'autre du tableau de données. En aucun cas il n'est légitime de supprimer des observations pour se ramener à une situation où le plan est équilibré. Il y a deux faits qu'il faut absolument avoir à l'esprit lorsque nous nous servons de ce type de modèles, donc pour lesquels le plan est déséquilibré.

1. D'une part, l'estimation des effets des différents niveaux des facteurs ou de leurs interactions n'est plus aussi simple que précédemment, sauf dans le cas d'un modèle d'analyse de la variance à un facteur ou lorsque le plan est dit à effectifs proportionnels. En effet, ces estimations ne sont plus indépendantes les unes des autres. Voir

$$n_{i,j} = \frac{n_{i,+} \times n_{+,j}}{n_{+,+}},$$

où les notattions $n_{i,j}$, $n_{i,+}$, $n_{+,j}$ et $n_{+,+}$ ont été définies au paragraphe 0.1.1. Cette notion se généralise directement au cas où le plan comporte k facteurs avec $k \ge 2$.

¹Cette condition est plus restrictive que celle que nous pouvons définir plus généralement en statistique pour étudier des modèles d'analyse de la variance. Nous pouvons aussi facilement traiter le cas où le plan est déséquilibré mais à effectifs proportionnels. Par exemple, dans le cas où nous considérons deux facteurs, un dispositif expérimental déséquilibré à effectifs proportionnels est tel que :

par exemple la situation étudiée dans le paragraphe 11.2.3 où nous insistons sur les différences qui découlent de cette situation. Nous renvoyons à [Dag98b] pour plus de détails.

2. D'autre part, les lois des statistiques de test que nous utilisons pour tester les différentes hypothèses présentes dans le tableau de l'analyse de la variance ne sont, dans la majorité des cas, connues qu'approximativement. Nous renvoyons à nouveau à [Dag98b] pour plus de détails.

Dans la suite, nous nous bornerons à exposer la théorie de l'analyse de la variance dans le cadre des plans équilibrés, c'est-à-dire dans le cas où le nombre de répétitions est constant d'une case à l'autre du tableau.

1.3. Risque global associé au tableau de l'analyse de la variance

Lorsque nous réalisons une étude de la significativité des effets de deux ou de plus de facteurs, en s'intéressant ou non à la significativité de leurs interactions, avec un modèle d'analyse de la variance, le tableau de l'analyse de la variance que nous étudions permet de prendre plusieurs décisions, chacune associée au test d'une hypothèse nulle. Nous prenons ainsi en fait plusieurs décisions chacune d'entre elles étant associées à un risque de première ou de seconde espèce. Pour plus de détails sur les méthodes de gestion du risque de première espèce associée à la lecture de tableaux récapitulatifs de tests statistiques voir le chapitre de cours consacré à ce problème.

Exemple 1.3.1. Analyse de la variance à deux facteurs à effets fixes, aléatoires ou mixtes et avec répétitions

Pour un exposé complet du modèle d'analyse de la variance à deux facteurs contrôlés avec répétitions voir le paragraphe 3.1.2.

Avec un tel modèle il est possible de tester trois hypothèses nulles, \mathcal{H}_0' d'absence d'effet du premier facteur, \mathcal{H}_0'' d'absence d'effet du second facteur, \mathcal{H}_0''' d'absence d'effet de l'interaction des deux facteurs. Chacune d'elles peut être testée avec un risque différent, α' , α'' et α''' . Le risque global α vérifiera alors la relation :

$$\alpha \leqslant 1 - (1 - \alpha')(1 - \alpha'')(1 - \alpha''') \leqslant \alpha' + \alpha'' + \alpha'''.$$

La dernière inégalité est une application de **l'inégalité de Bonferonni**. Ainsi si nous voulons prendre une décision associée à un risque global de $\alpha = 5 \%$, nous pourrons fixer un seuil individuel de $\alpha' = \alpha'' = \alpha''' = 5/3 \% \approx 2,67 \%$ pour chacun des tests élémentaires de chaque hypothèse \mathcal{H}_0' , \mathcal{H}_0'' et \mathcal{H}_0''' .

L'exemple précédent met en évidence le fait que, plus le tableau de l'analyse de la variance étudié comporte de tests, plus la correction à apporter au niveau individuel de

significativité de chacun des tests réalisés sera importante. Cette correction vise à réduire le nombre de faux positifs, effets jugés à tort comme significatifs, que nous avons détectés. Elle est d'autant plus intéressante à faire que le nombre de tests réalisés est important.

Remarque 1.3.1. La nécessité de l'utilisation de ce type de correction dépend de la formulation des résultats qui est faite par l'utilisateur. Si celui-ci s'intéresse à un risque global portant sur l'ensemble des décisions prises à l'aide d'un modèle d'analyse de la variance il privilégiera une maîrise du risque global. Si l'utilisateur s'intéresse au risque associé à chacune des décisions, il maîtrisera le risque individuel associé à chacune d'entre elles. Quoi qu'il advienne il faut savoir que nous entrons dans le domaine de l'analyse de tableaux de résultats. Nous pourrons consulter [Par74] ou [Ric89] pour plus de précisions.

Chapitre 2

Analyse de la variance à un facteur

Dans tout ce chapitre, nous utilisons les notations définies à la section 0.1.

2.1. Modèles à effets fixes

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Pour chacune des modalités nous effectuons $J \ge 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$
avec la contrainte supplémentaire $\sum_{i=1}^{I} \alpha_i = 0,$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans la condition A_i lors de la j—ème répétition. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leq i \leq I, \ 1 \leq j \leq J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$

 $\operatorname{Cov}(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leq i,k \leq I, \text{ et } 1 \leq j,l \leq J.$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans la condition A_i lors des J répétitions dans le tableau suivant :

Facteur A	Y
A_1	$Y_{1,1},\ldots,Y_{1,J}$
:	i i
A_i	$Y_{i,1},\ldots,Y_{i,J}$
:	i i
A_I	$Y_{I,1},\ldots,Y_{I,J}$

Nous rappelons que la variation théorique due au facteur A est définie par :

$$SC_F = J \sum_{i=1}^{I} (Y_{i,\bullet} - Y_{\bullet,\bullet})^2.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = \sum_{i=1}^{I} \left(\sum_{j=1}^{J} (Y_{i,j} - Y_{i,\bullet})^2 \right).$$

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - Y_{\bullet,\bullet})^2.$$

Nous rappelons la relation fondamentale de l'ANOVA :

$$SC_{TOT} = SC_F + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1},\ldots,y_{1,J},\ldots,y_{2,1},\ldots,y_{2,J},\ldots,y_{I,J}$ permet de construire une réalisation du tableau précédent :

Facteur A	y
A_1	$y_{1,1},\ldots,y_{1,J}$
:	i i
A_i	$y_{i,1},\ldots,y_{i,J}$
:	:
A_I	$y_{I,1},\ldots,y_{I,J}$

La variation due au facteur A observée sur la liste de données y est définie par :

$$sc_F = J \sum_{i=1}^{I} (y_{i,\bullet} - y_{\bullet,\bullet})^2.$$

La variation résiduelle observée sur la liste de données \boldsymbol{y} est quant à elle définie par :

$$sc_R = \sum_{i=1}^{I} \left(\sum_{j=1}^{J} (y_{i,j} - y_{i,\bullet})^2 \right).$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j} - y_{\bullet,\bullet})^2.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données \boldsymbol{y} :

$$sc_{TOT} = sc_F + sc_R$$
.

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Degrés de liberté	Carré Moyen	F	Décision
Facteur	sc_F	I-1	$s_F^2 = \frac{sc_F}{I - 1}$	$f = \frac{s_F^2}{s_R^2}$	\mathcal{H}_0 ou \mathcal{H}_1
Résiduelle	sc_R	n - I = I(J - 1)	$s_R^2 = \frac{sc_R}{n-I}$		
Totale	sc_{TOT}	n-1 = IJ-1			

Nous souhaitons faire le test d'hypothèse suivant :

$$\boxed{ \mathcal{H}_0 : \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1 : \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

Sous l'hypothèse nulle \mathcal{H}_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et n-I degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet,\bullet} = \overline{Y}, \ \widehat{\alpha}_i = Y_{i,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma}^2 = \frac{SC_R}{n-I} = \frac{\sum_{i=1}^I \sum_{j=1}^J (Y_{i,j} - Y_{i,\bullet})^2}{n-I} = S_R^2.$$

Ce sont des estimateurs sans biais¹.

¹La notion de biais d'un estimateur est définie dans le chapitre 15

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i(\boldsymbol{y}) = y_{i,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma}^2(\boldsymbol{y}) = \frac{sc_R}{n-I} = \frac{\sum_{i=1}^I \sum_{j=1}^J (y_{i,j} - y_{i,\bullet})^2}{n-I} = s_R^2.$$

2.2. Modèles à effets aléatoires

Dans ce cas les A_i représentent un échantillon de taille I prélevé dans une population importante. Nous admettrons que les effets des A_i , les α_i , sont distribués suivant une loi normale centrée de variance σ_A^2 . Le modèle ne dépend plus que de trois paramètres μ , σ^2 et σ_A^2 . Pour chacune des modalités nous effectuons $J \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans la condition A_i lors de la j—ème répétition. Nous supposons que :

$$\mathcal{L}\left(\alpha_{i}\right)=\mathcal{N}(0,\sigma_{A}^{2}),\ \forall\ i,1\leqslant i\leqslant I,$$

ainsi que l'indépendance des effets aléatoires :

$$Cov(\alpha_i, \alpha_j) = 0$$
 si $i \neq j$ et $1 \leq i, j \leq I$.

Nous postulons les hypothèses supplémentaires pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant I, \text{ et } 1 \leqslant j,l \leqslant J,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$Cov(\alpha_i, \epsilon_{j,k}) = 0$$
 si $1 \le i, j \le I$, et $1 \le k \le J$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_F , SC_R , SC_{TOT} , SC_F , SC_R , SC_{TOT} introduites à la section 2.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_F + SC_R.$$

Nous résumons les informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Degrés de liberté	Carré Moyen	F	Décision
Facteur	sc_F	I-1	$s_F^2 = \frac{sc_F}{I - 1}$	$f = \frac{s_F^2}{s_R^2}$	\mathcal{H}_0 ou \mathcal{H}_1
Résiduelle	sc_R	n - I = I(J - 1)	$s_R^2 = \frac{sc_R}{n-I}$		
Totale	sc_{TOT}	n-1 = IJ-1			

Nous souhaitons faire le test d'hypothèse suivant :

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1 : \sigma_A^2 &\neq 0. \end{aligned}}$$

Sous l'hypothèse nulle \mathcal{H}_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et n-I degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma^2}$ des paramètres μ , σ_A^2 , σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet,\bullet} = \overline{Y}, \ \widehat{\sigma_A^2} = \frac{1}{J} \left(S_F^2 - S_R^2 \right), \ \widehat{\sigma^2} = \frac{SC_R}{n-I} = S_R^2,$$

où
$$S_F^2 = \frac{SC_F}{I-1}$$
 et $S_R^2 = \frac{SC_R}{n-I}$.

Ce sont des estimateurs sans biais².

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y}), \widehat{\sigma_A^2}(\boldsymbol{y}), \widehat{\sigma^2}(\boldsymbol{y}),$ des paramètres $\mu, \sigma_A^2, \sigma^2$ du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet} = \overline{y}, \ \widehat{\sigma_A^2}(\boldsymbol{y}) = \frac{1}{J} \left(s_F^2 - s_R^2 \right), \ \widehat{\sigma^2}(\boldsymbol{y}) = \frac{sc_R}{n-I} = s_R^2.$$

²La notion de biais d'un estimateur est définie dans le chapitre 15

Chapitre 3

Analyse de la variance à deux facteurs

Dans tout ce chapitre, nous utilisons les notations définies à la section 0.1.

3.1. Modèles à effets fixes

3.1.1. Sans répétition

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles étant notée B_j . Pour chacun des couples de modalités (A_i, B_j) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$
 avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0 \text{ et } \sum_{j=1}^{J} \beta_j = 0,$$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j) . Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant I \text{ et } 1 \leqslant j,l \leqslant J.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans les conditions (A_i, B_j) dans le tableau suivant :

	Facteur B				
Facteur A	B_1		B_j		B_J
A_1	$Y_{1,1}$		$Y_{1,j}$		$Y_{1,J}$
:	:	:	:	:	:
A_i	$Y_{i,1}$		$Y_{i,j}$		$Y_{i,J}$
:	:	:	:	:	:
A_I	$Y_{I,1}$		$Y_{1,j}$		$Y_{I,J}$

Nous rappelons que la variation théorique due au facteur A est définie par :

$$SC_A = J \sum_{i=1}^{I} (Y_{i,\bullet} - Y_{\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique du au facteur B est définie par :

$$SC_B = I \sum_{j=1}^{J} (Y_{\bullet,j} - Y_{\bullet,\bullet})^2.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - Y_{i,\bullet} - Y_{\bullet,j} + Y_{\bullet,\bullet})^2.$$

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - Y_{\bullet,\bullet})^{2}.$$

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_B + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1},\ldots,y_{1,J},\ldots,y_{2,1},\ldots,y_{2,J},\ldots,y_{I,J}$ permet de construire une réalisation du tableau précédent :

	Facteur B				
Facteur A	B_1		B_j		B_J
A_1	$y_{1,1}$		$y_{1,j}$		$y_{1,J}$
:	:	:	:	:	
A_i	$y_{i,1}$		$y_{i,j}$		$y_{i,J}$
:	:	:	•	:	:
A_I	$y_{I,1}$		$y_{1,j}$		$y_{I,J}$

La variation due au facteur A observée sur la liste de données y est définie par :

$$sc_A = J \sum_{i=1}^{I} (y_{i,\bullet} - y_{\bullet,\bullet})^2.$$

La variation due au facteur B observée sur la liste de données y est définie par :

$$sc_B = I \sum_{j=1}^{J} (y_{\bullet,j} - y_{\bullet,\bullet})^2.$$

La variation résiduelle observée sur la liste de données y est quant à elle définie par :

$$sc_R = \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j} - y_{i,\bullet} - y_{\bullet,j} + y_{\bullet,\bullet})^2.$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j} - y_{\bullet,\bullet})^2.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données \boldsymbol{y} :

$$sc_{TOT} = sc_A + sc_B + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Résiduelle	$n_R = (I-1)(J-1)$
Totale	$n_{TOT} = IJ - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \begin{aligned} \mathcal{H}_0^{'}: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \\ \text{contre} \end{aligned}}$$

$$\boxed{ \begin{aligned} \mathcal{H}_1^{'}: \text{Il existe } i_0 \in \{1, 2, \ldots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{aligned}}$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0'': \beta_1 = \beta_2 = \dots = \beta_J = 0$$
 contre
$$\mathcal{H}_1'': \text{Il existe } j_0 \in \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0'' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_J}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet,\bullet} = \overline{Y}, \ \widehat{\alpha}_i = Y_{i,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_j = Y_{\bullet,j} - \widehat{\mu}, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma}^2 = \frac{SC_R}{(I-1)(J-1)} = s_R^2.$$

Ce sont des estimateurs sans biais¹.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_1}(\boldsymbol{y})$, ..., $\widehat{\beta_J}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i(\boldsymbol{y}) = y_{i,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_j(\boldsymbol{y}) = y_{\bullet,j} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma}^2(\boldsymbol{y}) = \frac{sc_R}{(I-1)(J-1)} = s_R^2.$$

3.1.2. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles étant notée B_j . Pour chacun des couples de modalités (A_i, B_j) nous effectuons $K \geqslant 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_j = 0,$$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\} \ \text{et} \ \sum_{i=1}^{J} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, \dots, I\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j) lors du k-ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i, j, k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i, j, k}, \epsilon_{l, m, n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant I, \ 1 \leqslant j, m \leqslant J \text{ et } 1 \leqslant k, n \leqslant K.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans les conditions (A_i, B_j) lors des K répétitions dans le tableau suivant :

¹La notion de biais d'un estimateur est définie dans le chapitre 15

	Facteur B						
Facteur A	B_1		B_j		B_J		
A_1	$Y_{1,1,1}\ldots Y_{1,1,K}$		$Y_{1,j,1}\ldots Y_{1,j,K}$		$Y_{1,J,1}\ldots Y_{1,J,K}$		
i i	i:	:	i :	:	i i		
A_i	$Y_{i,1,1}\ldots Y_{i,1,K}$		$Y_{i,j,1} \dots Y_{i,j,K}$		$Y_{i,J,1} \dots Y_{i,J,K}$		
:	:	:	:	:	i i		
A_I	$Y_{I,1,1}\ldots Y_{I,1,K}$		$Y_{1,j,1}\ldots Y_{1,j,K}$		$Y_{I,J,1} \dots Y_{I,J,K}$		

Nous rappelons que la variation théorique due au facteur A est définie par :

$$SC_A = JK \sum_{i=1}^{I} (Y_{i,\bullet,\bullet} - Y_{\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due au facteur B est définie par :

$$SC_B = IK \sum_{j=1}^{J} (Y_{\bullet,j,\bullet} - Y_{\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs A et B est définie par :

$$SC_{AB} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j,\bullet} - Y_{i,\bullet,\bullet} - Y_{\bullet,j,\bullet} + Y_{\bullet,\bullet,\bullet})^2.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k} - Y_{i,j,\bullet})^2.$$

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k} - Y_{\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_B + SC_{AB} + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1,1},\ldots,y_{1,1,K},\ldots,y_{1,2,1},\ldots,y_{1,2,K},\ldots,y_{I,J,K}$ permet de construire une réalisation du tableau précédent :

	Facteur B						
Facteur A	B_1		B_j		B_J		
A_1	$y_{1,1,1}\ldots y_{1,1,K}$		$y_{1,j,1}\ldots y_{1,j,K}$		$y_{1,J,1}\ldots y_{1,J,K}$		
:	:	:	:	:	i i		
A_i	$y_{i,1,1}\dots y_{i,1,K}$		$y_{i,j,1}\dots y_{i,j,K}$		$y_{i,J,1}\dots y_{i,J,K}$		
:	:	:	:	:	i i		
A_I	$y_{I,1,1}\ldots y_{I,1,K}$		$y_{I,j,1}\dots y_{I,j,K}$		$y_{I,J,1}\dots y_{I,J,K}$		

La variation due au facteur A observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_A = JK \sum_{i=1}^{I} (y_{i,\bullet,\bullet} - y_{\bullet,\bullet,\bullet})^2.$$

La variation due au facteur B observée sur la liste de données y est définie par :

$$sc_B = IK \sum_{j=1}^{J} (y_{\bullet,j,\bullet} - y_{\bullet,\bullet,\bullet})^2.$$

La variation due à l'interaction des facteurs A et B observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{AB} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j,\bullet} - y_{i,\bullet,\bullet} - y_{\bullet,j,\bullet} + y_{\bullet,\bullet,\bullet})^2.$$

La variation résiduelle observée sur la liste de données y est quant à elle définie par :

$$sc_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k} - y_{i,j,\bullet})^2.$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k} - y_{\bullet,\bullet,\bullet})^{2}.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données \boldsymbol{y} :

$$sc_{TOT} = sc_A + sc_B + sc_{AB} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Résiduelle	$n_R = IJ(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Interaction	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \begin{aligned} \mathcal{H}_0': \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \\ \text{contre} \end{aligned} }$$

$$\boxed{ \begin{aligned} \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \ldots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{aligned} }$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0'': \beta_1 = \beta_2 = \dots = \beta_J = 0$$
 contre
$$\mathcal{H}_1'': \text{Il existe } j_0 \in \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et IJ(K-1) degrés de liberté. Nous concluons alors

à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}''_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\left[\mathcal{H}_0''': (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0 \right]$$

$$\text{contre}$$

$$\left[\mathcal{H}_1''': \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_0, j_0} \neq 0. \right]$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_J}$, $(\widehat{\alpha\beta})_{1,1}$, $(\widehat{\alpha\beta})_{1,2}$, ..., $(\widehat{\alpha\beta})_{1,J}$, $(\widehat{\alpha\beta})_{2,1}$, ..., $(\widehat{\alpha\beta})_{I,J}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , $(\alpha\beta)_{1,1}$, $(\alpha\beta)_{1,2}$, ..., $(\alpha\beta)_{1,J}$, $(\alpha\beta)_{2,1}$, ..., $(\alpha\beta)_{I,J}$, σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet, \bullet, \bullet} = \overline{Y}, \ \widehat{\alpha}_i = Y_{i, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_j = Y_{\bullet, j, \bullet} - \widehat{\mu}, \ 1 \leqslant j \leqslant J,$$

$$\widehat{(\alpha \beta)_{i,j}} = Y_{i,j, \bullet} - Y_{i, \bullet, \bullet} - Y_{\bullet, j, \bullet} + Y_{\bullet, \bullet, \bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma}^2 = \frac{SC_R}{IJ(K-1)} = S_R^2.$$

Ce sont des estimateurs sans biais².

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, \ldots , $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, $\widehat{\alpha_2}(\boldsymbol{y})$, des paramètres μ , α_1 , \ldots , α_I , β_1 , \ldots , β_J , $(\alpha\beta)_{1,1}$, $(\alpha\beta)_{1,2}$, \ldots , $(\alpha\beta)_{1,J}$, $(\alpha\beta)_{2,1}$, \ldots , $(\alpha\beta)_{I,J}$, σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i(\boldsymbol{y}) = y_{i,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_j(\boldsymbol{y}) = y_{\bullet,j,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J,$$

$$\widehat{(\alpha\beta)_{i,j}}(\boldsymbol{y}) = y_{i,j,\bullet} - y_{i,\bullet,\bullet} - y_{\bullet,j,\bullet} + y_{\bullet,\bullet,\bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma}^2(\boldsymbol{y}) = \frac{sc_R}{IJ(K-1)} = s_R^2.$$

3.2. Modèles à effets aléatoires

3.2.1. Sans répétition

Dans ce cas les A_i représentent un échantillon de taille I prélevé dans une population importante. Nous admettrons que les effets des A_i , les α_i , sont distribués suivant une loi

²La notion de biais d'un estimateur est définie dans le chapitre 15

normale centrée de variance σ_A^2 . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Pour chacun des couples de modalités (A_i, B_j) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j) . Nous supposons que :

$$\mathcal{L}(\alpha_i) = \mathcal{N}(0, \sigma_A^2), \ \forall i, 1 \leqslant i \leqslant I,$$

$$\mathcal{L}(\beta_i) = \mathcal{N}(0, \sigma_B^2), \ \forall j, 1 \leqslant j \leqslant J,$$

ainsi que l'indépendance des effets aléatoires :

$$\operatorname{Cov}(\alpha_i, \alpha_j) = 0 \text{ si } i \neq j \text{ et } 1 \leqslant i, j \leqslant I, \quad \operatorname{Cov}(\beta_i, \beta_j) = 0 \text{ si } i \neq j \text{ et } 1 \leqslant i, j \leqslant J,$$

 $\operatorname{Cov}(\alpha_i, \beta_i) = 0 \text{ si } 1 \leqslant i \leqslant I \text{ et } 1 \leqslant j \leqslant J.$

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant I \text{ et } 1 \leqslant j,l \leqslant J,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$Cov(\alpha_i, \epsilon_{j,k}) = 0$$
 si $1 \le i, j \le I$ et $1 \le k \le J$,
 $Cov(\beta_i, \epsilon_{j,k}) = 0$ si $1 \le j \le I$ et $1 \le i, k \le J$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_A , SC_B , SC_R , SC_{TOT} , sc_A , sc_B , sc_R et sc_{TOT} introduites à la section 3.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_B + SC_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Résiduelle	$n_R = (I-1)(J-1)$
Totale	$n_{TOT} = IJ - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\left[\begin{array}{c} \mathcal{H}_{0}^{'}:\sigma_{A}^{2}=0 \\ \\ \text{contre} \end{array} \right]$$

$$\left[\begin{array}{c} \mathcal{H}_{1}^{'}:\sigma_{A}^{2}\neq 0. \end{array} \right]$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté.

$$\mathcal{H}_0'': \sigma_B^2 = 0$$
contre
$$\mathcal{H}_1'': \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma^2}$ des paramètres μ , σ_A^2 , σ_B^2 , σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet} = \overline{Y}, \\ \widehat{\sigma_A^2} &= \frac{1}{J} \left(S_A^2 - S_R^2 \right), \ \widehat{\sigma_B^2} = \frac{1}{I} \left(S_B^2 - S_R^2 \right), \\ \widehat{\sigma^2} &= \frac{SC_R}{(I-1)(J-1)} = S_R^2, \end{split}$$

où
$$S_A^2 = \frac{SC_A}{n_A}$$
, $S_B^2 = \frac{SC_B}{n_B}$ et $S_R^2 = \frac{SC_R}{n_R}$.

Ce sont des estimateurs sans biais³.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y}), \widehat{\sigma_A^2}(\boldsymbol{y}), \widehat{\sigma_B^2}(\boldsymbol{y}), \widehat{\sigma^2}(\boldsymbol{y}),$ des paramètres μ , σ_A^2 , σ_B^2 , σ^2 du modèle se déduisent des formules ci-desses :

$$\begin{split} \widehat{\mu}(\boldsymbol{y}) &= y_{\bullet,\bullet} = \overline{y}, \\ \widehat{\sigma_A^2}(\boldsymbol{y}) &= \frac{1}{J} \left(s_A^2 - s_R^2 \right), \ \widehat{\sigma_B^2}(\boldsymbol{y}) = \frac{1}{I} \left(s_B^2 - s_R^2 \right), \\ \widehat{\sigma^2}(\boldsymbol{y}) &= \frac{sc_R}{(I-1)(J-1)} = s_R^2. \end{split}$$

3.2.2. Avec répétitions

Dans ce cas les A_i représentent un échantillon de taille I prélevé dans une population importante. Nous admettrons que les effets des A_i , les α_i , sont distribués suivant une loi normale centrée de variance σ_A^2 . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Pour chacun des couples de modalités (A_i, B_j) nous effectuons $K \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i,B_j) lors du k-ème essai. Nous supposons que

$$\mathcal{L}(\alpha_i) = \mathcal{N}(0, \sigma_A^2), \ \forall i, 1 \leqslant i \leqslant I,$$

$$\mathcal{L}(\beta_j) = \mathcal{N}(0, \sigma_B^2), \ \forall j, 1 \leqslant j \leqslant J,$$

$$\mathcal{L}((\alpha\beta)_{i,j}) = \mathcal{N}(0, \sigma_{AB}^2), \ \forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

ainsi que l'indépendance des effets aléatoires :

$$\operatorname{Cov}(\alpha_{i}, \alpha_{j}) = 0 \text{ si } i \neq j \text{ et } 1 \leqslant i, j \leqslant I, \quad \operatorname{Cov}(\beta_{i}, \beta_{j}) = 0 \text{ si } i \neq j \text{ et } 1 \leqslant i, j \leqslant J,$$

$$\operatorname{Cov}((\alpha\beta)_{i,j}, (\alpha\beta)_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i, k \leqslant I \text{ et } 1 \leqslant j, l \leqslant J,$$

$$\operatorname{Cov}(\alpha_{i}, \beta_{j}) = 0 \text{ si } 1 \leqslant i \leqslant I \text{ et } 1 \leqslant j \leqslant J,$$

$$\operatorname{Cov}(\alpha_{i}, (\alpha\beta)_{j,k}) = 0 \text{ si } 1 \leqslant i, j \leqslant I \text{ et } 1 \leqslant k \leqslant J,$$

$$\operatorname{Cov}(\beta_{i}, (\alpha\beta)_{j,k}) = 0 \text{ si } 1 \leqslant j \leqslant I \text{ et } 1 \leqslant i, k \leqslant J.$$

³La notion de biais d'un estimateur est définie dans le chapitre 15

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant I, \ 1 \leqslant j, m \leqslant J \text{ et } 1 \leqslant k, n \leqslant K,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$Cov(\alpha_i, \epsilon_{j,k,l}) = 0 \text{ si } 1 \leqslant i, j \leqslant I, 1 \leqslant k \leqslant J, \text{ et } 1 \leqslant l \leqslant K,$$

$$Cov(\beta_i, \epsilon_{j,k,l}) = 0 \text{ si } 1 \leqslant j \leqslant I, 1 \leqslant i, k \leqslant J, \text{ et } 1 \leqslant l \leqslant K,$$

$$Cov((\alpha\beta)_{i,j}, \epsilon_{k,l,m}) = 0 \text{ si } 1 \leqslant i, k \leqslant I, 1 \leqslant j, l \leqslant J, \text{ et } 1 \leqslant m \leqslant K.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_A , SC_B , SC_{AB} , SC_R , SC_{TOT} , sc_A , sc_B , sc_{AB} , sc_R et sc_{TOT} introduites à la section 3.1.2.

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_B + SC_{AB} + SC_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Résiduelle	$n_R = IJ(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AB}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{AB}^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Interaction	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \begin{aligned} \mathcal{H}_0' : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\mathcal{H}_1' : \sigma_A^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et IJ(K-1) degrés de liberté.

$$\left[\begin{aligned} \mathcal{H}_0'' : \sigma_B^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1'' : \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et IJ(K-1) degrés de liberté.

$$\begin{aligned} \mathcal{H}_0''' : \sigma_{AB}^2 &= 0 \\ \text{contre} \\ \mathcal{H}_1''' : \sigma_{AB}^2 &\neq 0. \end{aligned}$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet de l'interaction entre les facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma_{AB}^2}$, $\widehat{\sigma^2}$ des paramètres μ , σ_A^2 , σ_B^2 , σ_{AB}^2 , σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet,\bullet,\bullet} = \overline{Y}, \\ \widehat{\sigma_A^2} &= \frac{1}{JK} \left(S_A^2 - S_{AB}^2 \right), \ \widehat{\sigma_B^2} = \frac{1}{IK} \left(S_B^2 - S_{AB}^2 \right), \\ \widehat{\sigma_{AB}^2} &= \frac{1}{K} \left(S_{AB}^2 - S_R^2 \right), \\ \widehat{\sigma^2} &= \frac{SC_R}{(I-1)(J-1)} = S_R^2, \\ \text{où } S_A^2 &= \frac{SC_A}{n_A}, \ S_B^2 = \frac{SC_B}{n_B}, \ S_{AB}^2 = \frac{SC_{AB}}{n_{AB}} \ \text{et} \ S_R^2 = \frac{SC_R}{n_R}. \end{split}$$

Ce sont des estimateurs sans biais⁴.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, des paramètres μ , σ_A^2 , σ_B^2 , σ_{AB}^2 , σ_A^2 du modèle se déduisent des formules ci-dessus :

$$\begin{split} \widehat{\mu}(\boldsymbol{y}) &= y_{\bullet,\bullet,\bullet} = \overline{y}, \\ \widehat{\sigma_A^2}(\boldsymbol{y}) &= \frac{1}{JK} \left(s_A^2 - s_{AB}^2 \right), \ \widehat{\sigma_B^2}(\boldsymbol{y}) = \frac{1}{IK} \left(s_B^2 - s_{AB}^2 \right), \\ \widehat{\sigma_{AB}^2}(\boldsymbol{y}) &= \frac{1}{K} \left(s_{AB}^2 - s_R^2 \right), \\ \widehat{\sigma^2}(\boldsymbol{y}) &= \frac{sc_R}{(I-1)(J-1)} = s_R^2. \end{split}$$

3.3. Modèles à effets mixtes

3.3.1. Sans répétition

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Pour chacun des couples de modalités (A_i, B_j) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$

avec les contraintes supplémentaires $\sum_{i=1}^{I} \alpha_i = 0,$

⁴La notion de biais d'un estimateur est définie dans le chapitre 15

où $Y_{i,j}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j) . Nous supposons que :

$$\mathcal{L}(\beta_j) = \mathcal{N}(0, \sigma_B^2), \ \forall \ j, 1 \leqslant j \leqslant J,$$

ainsi que l'indépendance des effets aléatoires :

$$Cov(\beta_i, \beta_j) = 0$$
 si $i \neq j$ et $1 \leq i, j \leq J$.

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant I \text{ et } 1 \leqslant j,l \leqslant J,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$Cov(\beta_i, \epsilon_{j,k}) = 0$$
 si $1 \le j \le I$ et $1 \le i, k \le J$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_A , SC_B , SC_R , SC_{TOT} , sc_A , sc_B , sc_R et sc_{TOT} introduites à la section 3.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_B + SC_B$$
.

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Résiduelle	$n_R = (I-1)(J-1)$
Totale	$n_{TOT} = IJ - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\mathcal{H}_0': \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\left[\begin{array}{c} \mathcal{H}_0'': \sigma_B^2 = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1'': \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet, \bullet, \bullet} = \overline{Y}, \ \widehat{\alpha}_i = Y_{i, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma_B^2} = \frac{1}{I} \left(S_B^2 - S_R^2 \right),$$

$$\widehat{\sigma^2} = \frac{SC_R}{(I-1)(J-1)} = S_R^2,$$

où
$$S_B^2 = \frac{SC_B}{n_B}$$
 et $S_R^2 = \frac{SC_R}{n_R}$.

Ce sont des estimateurs sans biais⁵.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu} = y_{\bullet,\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i = y_{i,\bullet,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma_B^2} = \frac{1}{I} \left(s_B^2 - s_R^2 \right),$$

$$\widehat{\sigma}^2 = \frac{sc_R}{(I-1)(J-1)} = s_R^2.$$

3.3.2. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Pour chacun des couples de modalités (A_i, B_j) nous effectuons $K \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
 avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0,$$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j) lors du k-ème essai. Nous supposons que

$$\mathcal{L}(\beta_j) = \mathcal{N}(0, \sigma_B^2), \ \forall \ j, 1 \leqslant j \leqslant J,$$

$$\mathcal{L}((\alpha\beta)_{i,j}) = \mathcal{N}(0, \sigma_{AB}^2), \ \forall \ (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

⁵La notion de biais d'un estimateur est définie dans le chapitre 15

ainsi que l'indépendance des effets aléatoires :

$$Cov(\beta_i, \beta_j) = 0 \text{ si } i \neq j \text{ et } 1 \leqslant i, j \leqslant J,$$

$$Cov((\alpha\beta)_{i,j}, (\alpha\beta)_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i, k \leqslant I \text{ et } 1 \leqslant j, l \leqslant J,$$

$$Cov(\beta_i, (\alpha\beta)_{i,k}) = 0 \text{ si } 1 \leqslant j \leqslant I \text{ et } 1 \leqslant i, k \leqslant J.$$

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$
et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant I, \ 1 \leqslant j, m \leqslant J \text{ et } 1 \leqslant k, n \leqslant K,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$\operatorname{Cov}(\beta_i, \epsilon_{j,k,l}) = 0 \text{ si } 1 \leqslant j \leqslant I, 1 \leqslant i, k \leqslant J, \text{ et } 1 \leqslant l \leqslant K,$$

 $\operatorname{Cov}((\alpha\beta)_{i,j}, \epsilon_{k,l,m}) = 0 \text{ si } 1 \leqslant i, k \leqslant I, 1 \leqslant j, l \leqslant J, \text{ et } 1 \leqslant m \leqslant K.$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_A , SC_B , SC_{AB} , SC_R , SC_{TOT} , sc_A , sc_B , sc_{AB} , sc_R et sc_{TOT} introduites à la section 3.1.2.

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_B + SC_{AB} + SC_B$$
.

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Résiduelle	$n_R = IJ(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AB}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Interaction	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\left[\begin{array}{c} \mathcal{H}_0': \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\left[\begin{array}{c} \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{array} \right]$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\left[\begin{aligned} \mathcal{H}_0'' : \sigma_B^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1'' : \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et IJ(K-1) degrés de liberté.

$$\boxed{ \begin{split} \mathfrak{H}_0''' \, : \, \sigma_{AB}^2 &= 0 \\ \text{contre} \\ \hline \mathfrak{H}_1''' \, : \, \sigma_{AB}^2 &\neq 0. \end{split} }$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet de l'interaction entre les facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma_{AB}^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ_{AB}^2 , σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet,\bullet} = \overline{Y}, \ \widehat{\alpha_i} = Y_{i,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma_B^2} = \frac{1}{IK} \left(S_B^2 - S_R^2 \right)$$

$$\widehat{\sigma_{AB}^2} = \frac{1}{K} \left(S_{AB}^2 - S_R^2 \right)$$

$$\widehat{\sigma^2} = \frac{SC_R}{(I-1)(J-1)} = S_R^2,$$

où
$$S_B^2 = \frac{SC_B}{n_B}, S_{AB}^2 = \frac{SC_{AB}}{n_{AB}} \text{ et } S_R^2 = \frac{SC_R}{n_R}.$$

Ce sont des estimateurs sans biais⁶.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_{AB}^2}(\boldsymbol{y})$, $\widehat{\sigma_{AB}^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ_{AB}^2 , σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i(\boldsymbol{y}) = y_{i,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma_B^2}(\boldsymbol{y}) = \frac{1}{IK} \left(s_B^2 - s_R^2 \right)$$

$$\widehat{\sigma_{AB}^2}(\boldsymbol{y}) = \frac{1}{K} \left(s_{AB}^2 - s_R^2 \right)$$

$$\widehat{\sigma^2}(\boldsymbol{y}) = \frac{sc_R}{(I-1)(J-1)} = s_R^2.$$

 $^{^6\}mathrm{La}$ notion de biais d'un estimateur est définie dans le chapitre 15

Chapitre 4

Analyse de la variance à deux facteurs emboîtés

Dans tout ce chapitre, nous utilisons les notations définies à la section 0.1.

Nous sommes dans la situation particulière où les effets des niveaux du facteur B n'ont pas de signification concrète, par exemple ces niveaux dépendent du niveau du facteur A considéré et une étude des effets principaux du facteur B n'a pas de pertinence.

Nous ne pouvons nous servir d'un modèle où les facteurs sont emboîtés¹, que si nous disposons de répétitions. Dans le cas contraire où les essais ne seraient pas répétés, l'effet dû au facteur B ne pourra être étudié et le modèle que nous devrons utiliser pour analyser les données sera l'un de ceux exposés au chapitre 2.

Ainsi par exemple un fabriquant de détergents alimente plusieurs chaînes de distribution : A_1, A_2, \ldots, A_I . Nous pensons que les boîtes de produit livrées à certaines chaînes de distribution contiennent une masse de détergent inférieure à celle des autres chaînes de distribution. Pour étudier cette situation, nous décidons de prélever K boîtes dans J magasins de chaque chaîne. Ainsi le second facteur B_j , associé au j-ème magasin dans la chaîne, est un repère qui n'a aucune signification réelle : il n'y a, par exemple aucune relation entre le magasin n° 3 de la chaîne 1 et le magasin n° 3 de la chaîne 4. Il n'y a donc aucun intérêt à introduire un terme dans le modèle caractérisant l'effet principal du facteur B. Pour indiquer la dépendance des niveaux du second facteur B aux niveaux du premier facteur A nous notons les niveaux du second facteur $B: B_{j(i)}, 1 \leq i \leq I$ et $1 \leq j \leq J$.

¹Ces types de modèles sont également appelés des modèles hiérarchiques ou en anglais *hierarchical* ou nested models.

4.1. Modèles à effets fixes

4.1.1. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles dépendant du niveau A_i du facteur A et étant alors notée $B_{j(i)}$. Pour chacun des couples de modalités $(A_i, B_{j(i)})$ nous effectuons $K \ge 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{i,j,k}, \quad i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
 avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_{j(i)} = 0, \ \forall i \in \{1, \dots, I\}$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)})$ lors du k-ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leq i \leq I, \ 1 \leq j \leq J, \ 1 \leq k \leq K, \ \mathcal{L}(\epsilon_{i, j, k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i, j, k}, \epsilon_{l, m, n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leq i, l \leq I, \ 1 \leq j, m \leq J \text{ et } 1 \leq k, n \leq K.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans les conditions $(A_i, B_{j(i)})$ lors des K essais dans le tableau suivant :

	A_1				A_I	
$B_{1(1)}$		$B_{J(1)}$	 	 $B_{1(I)}$		$B_{J(I)}$
$Y_{1,1,1}$		$Y_{1,J,1}$	 	 $Y_{I,1,1}$		$Y_{I,J,1}$
:	:	:	 	 :	:	:
						$Y_{I,J,K}$

Nous rappelons que la variation théorique du au facteur A est définie par :

$$SC_A = JK \sum_{i=1}^{I} (Y_{i,\bullet,\bullet} - Y_{\bullet,\bullet,\bullet})^2.$$

La variation théorique du facteur B dans le facteur A est définie par :

$$SC_{B|A} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j,\bullet} - Y_{i,\bullet,\bullet})^2.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k} - Y_{i,j,\bullet})^2.$$

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k} - Y_{\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_{B|A} + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1,1},\ldots,y_{1,1,K},\ldots,y_{1,2,1},\ldots,y_{1,2,K},\ldots,y_{I,J,K}$ permet de construire une réalisation du tableau précédent :

	A_1				A_I	
$B_{1(1)}$		$B_{J(1)}$	 	 $B_{1(I)}$		$B_{J(I)}$
$y_{1,1,1}$		$y_{1,J,1}$	 	 $y_{I,1,1}$		$y_{I,J,1}$
:	:	:	 	 :	:	:
$y_{1,1,K}$		$y_{1,J,K}$	 	 $y_{I,1,K}$		$y_{I,J,K}$

La variation due au facteur A observée sur la liste de données y est définie par :

$$sc_A = JK \sum_{i=1}^{I} (y_{i,\bullet,\bullet} - y_{\bullet,\bullet,\bullet})^2.$$

La variation du facteur B dans le facteur A observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{B|A} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j,\bullet} - y_{i,\bullet,\bullet})^2.$$

La variation résiduelle observée sur la liste de données y est quant à elle définie par :

$$sc_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k} - y_{i,j,\bullet})^2.$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k} - y_{\bullet,\bullet,\bullet})^{2}.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données \boldsymbol{y} :

$$sc_{TOT} = sc_A + sc_{B|A} + sc_R.$$

Nous reconnaissons parmi les quantités définies ci-dessus, des quantités similaires à celles, SC_A , SC_B , SC_{AB} , SC_R , SC_{TOT} , sc_A , sc_B , sc_{AB} , sc_R et sc_{TOT} introduites à la section 3.1.2. Nous remarquons également que les nouvelles quantités, $SC_{B|A}$ et $sc_{B|A}$, sont liées aux précédentes par les relations :

$$SC_{B|A} = SC_B + SC_{AB},$$

$$sc_{B|A} = sc_B + sc_{AB}.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Résiduelle	$n_R = IJ(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \begin{aligned} \mathcal{H}_0': \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \end{aligned}}$$
 contre
$$\boxed{ \begin{aligned} \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{aligned}}$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\boxed{ \mathcal{H}_0'': \beta_{1(1)} = \beta_{2(1)} = \dots = \beta_{J(1)} = \beta_{1(2)} = \dots = \beta_{J(I)} = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1'': \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0(i_0)} \neq 0. }$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet des facteurs B dans le facteur A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{B|A}$ est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_{1(1)}}$, $\widehat{\beta_{2(1)}}$, ..., $\widehat{\beta_{J(1)}}$, $\widehat{\beta_{1(2)}}$, ..., $\widehat{\beta_{J(I)}}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , $\beta_{1(1)}$, $\beta_{2(1)}$, ..., $\beta_{J(1)}$, $\beta_{1(2)}$, ..., $\beta_{J(I)}$, σ^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet, \bullet, \bullet} = \overline{Y}, \ \widehat{\alpha}_i = Y_{i, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I,$$

$$\widehat{\beta_{j(i)}} = Y_{i, j, \bullet} - Y_{i, \bullet, \bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma^2} = \frac{SC_R}{IJ(K-1)} = S_R^2.$$

Ce sont des estimateurs sans biais².

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_{1(1)}}(\boldsymbol{y})$, $\widehat{\beta_{2(1)}}(\boldsymbol{y})$, ..., $\widehat{\beta_{J(1)}}(\boldsymbol{y})$, $\widehat{\beta_{1(2)}}(\boldsymbol{y})$, ..., $\widehat{\beta_{J(I)}}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , $\beta_{1(1)}$, $\beta_{2(1)}$, ..., $\beta_{J(1)}$, $\beta_{1(2)}$, ..., $\beta_{J(I)}$, σ^2 du modèle se déduisent des formules suivantes :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i(\boldsymbol{y}) = y_{i,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\beta_{j(i)}}(\boldsymbol{y}) = y_{i,j,\bullet} - y_{i,\bullet,\bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma^2}(\boldsymbol{y}) = \frac{sc_R}{IJ(K-1)} = s_R^2.$$

²La notion de biais d'un estimateur est définie dans le chapitre 15

4.2. Modèles à effets aléatoires

4.2.1. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les $\beta_{j(i)}$ représentent un échantillon de taille J prélevé dans une population importante dépendant du niveau A_i du facteur A. Nous admettrons que les effets des $B_{j(i)}$, les $\beta_{j(i)}$, sont distribués suivant une loi normale centrée de variance $\sigma_{B|A}^2$. Pour chacun des couples de modalités $(A_i, B_{j(i)})$ nous effectuons $K \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{i,j,k}, \quad i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)})$ lors du k-ème essai. Nous supposons que

$$\mathcal{L}(\alpha_i) = \mathcal{N}(0, \sigma_A^2), \ \forall i, 1 \leqslant i \leqslant I,$$

$$\mathcal{L}(\beta_{j(i)}) = \mathcal{N}(0, \sigma_{B|A}^2), \ \forall (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

ainsi que l'indépendance des effets aléatoires :

$$\operatorname{Cov}(\alpha_i, \alpha_j) = 0 \text{ si } i \neq j \text{ et } 1 \leqslant i, j \leqslant I,$$

$$\operatorname{Cov}(\beta_{j(i)}, \beta_{l(k)}) = 0 \text{ si } (i, j) \neq (k, l) \text{ avec } 1 \leqslant i, k \leqslant I \text{ et } 1 \leqslant j, l \leqslant J,$$

$$\operatorname{Cov}(\alpha_i, \beta_{k(j)}) = 0 \text{ si } 1 \leqslant i, j \leqslant I \text{ et } 1 \leqslant k \leqslant J.$$

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leq i \leq I, \ 1 \leq j \leq J, \ 1 \leq k \leq K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leq i, l \leq I, \ 1 \leq j, m \leq J \text{ et } 1 \leq k, n \leq K,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$\operatorname{Cov}(\alpha_i, \epsilon_{j,k,l}) = 0 \text{ si } 1 \leqslant i, j \leqslant I, 1 \leqslant k \leqslant J, \text{ et } 1 \leqslant l \leqslant K,$$

 $\operatorname{Cov}(\beta_{j(i)}, \epsilon_{k,l,m}) = 0 \text{ si } 1 \leqslant i, k \leqslant I, 1 \leqslant j, l \leqslant J, \text{ et } 1 \leqslant m \leqslant K.$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_A , $SC_{B|A}$, SC_R , SC_{TOT} , sc_A , $sc_{B|A}$, sc_R et sc_{TOT} introduites à la section 4.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_{B|A} + SC_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Résiduelle	$n_R = IJ(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{B A}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_R^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\begin{array}{|l|} \boxed{\mathcal{H}_0':\sigma_A^2=0} \\ & \text{contre} \\ \hline \mathcal{H}_1':\sigma_A^2\neq 0. \end{array}$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté.

$$\label{eq:contre} \boxed{ \begin{aligned} \mathcal{H}_0'' : \sigma_{B|A}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1'' : \sigma_{B|A}^2 &\neq 0. \end{aligned} }$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B dans le facteur A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma_{B|A}^2}$, $\widehat{\sigma^2}$ des paramètres μ , σ_A^2 , $\sigma_{B|A}^2$, σ^2 du modèle se déduisent des formules suivantes :

$$\widehat{\mu} = Y_{\bullet,\bullet,\bullet} = \overline{Y}, \ \widehat{\sigma_A^2} = \frac{1}{JK} \left(S_A^2 - S_{B|A}^2 \right),$$

$$\widehat{\sigma_{B|A}^2} = \frac{1}{K} \left(S_{B|A}^2 - S_R^2 \right),$$

$$\widehat{\sigma^2} = \frac{SC_R}{(I-1)(J-1)} = S_R^2,$$

où
$$S_A^2 = \frac{SC_A}{n_A}, \, S_{B|A}^2 = \frac{SC_{B|A}}{n_{B|A}} \text{ et } S_R^2 = \frac{SC_R}{n_R}.$$

Ce sont des estimateurs sans biais³.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_{B|A}^2}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$, des paramètres μ , σ_A^2 , $\sigma_{B|A}^2$, σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y}, \ \widehat{\sigma_A^2}(\boldsymbol{y}) = \frac{1}{JK} \left(s_A^2 - s_{B|A}^2 \right),$$

$$\widehat{\sigma_{B|A}^2}(\boldsymbol{y}) = \frac{1}{K} \left(s_{B|A}^2 - s_R^2 \right),$$

$$\widehat{\sigma^2}(\boldsymbol{y}) = \frac{sc_R}{(I-1)(J-1)} = s_R^2.$$

4.3. Modèles à effets mixtes

Pour le plupart des auteurs d'ouvrages sur l'analyse de la variance, voir [Dag98b] à ce sujet par exemple, un facteur emboîté dans un facteur aléatoire doit être considéré comme aléatoire⁴. Ainsi le seul modèle mixte possible est le cas où le facteur A est fixe et le facteur que nous emboîtons dans A, le facteur B, est aléatoire.

4.3.1. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des $B_{j(i)}$, les $\beta_{j(i)}$, sont distribués suivant une loi normale centrée de variance $\sigma_{B|A}^2$. Pour chacun des couples de modalités $(A_i, B_{j(i)})$ nous effectuons $K \geqslant 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

 $^{^3{\}rm La}$ notion de biais d'un estimateur est définie dans le chapitre 15

⁴Il existe néanmoins certains cas où nous pouvons utiliser un modèle mixte où le facteur emboîté est à effets fixes tandis que le facteur dans lequel il est emboîté est à effets aléatoires.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{i,j,k}, \quad i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
 avec les contraintes supplémentaires $\sum_{i=1}^{I} \alpha_i = 0,$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)})$ lors du k-ème essai. Nous supposons que

$$\mathcal{L}\left(\beta_{j(i)}\right) = \mathcal{N}(0, \sigma_{B|A}^2), \ \forall \ (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

ainsi que l'indépendance des effets aléatoires :

$$Cov(\beta_{j(i)}, \beta_{l(k)}) = 0$$
 si $(i, j) \neq (k, l)$ avec $1 \leq i, k \leq I$ et $1 \leq j, l \leq J$.

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant I, \ 1 \leqslant j, m \leqslant J \text{ et } 1 \leqslant k, n \leqslant K,$$

ainsi que l'indépendance des effets aléatoires et des erreurs :

$$Cov(\beta_{j(i)}, \epsilon_{k,l,m}) = 0 \text{ si } 1 \leq i, k \leq I, 1 \leq j, l \leq J, \text{ et } 1 \leq m \leq K.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités SC_A , $SC_{B|A}$, SC_R , SC_{TOT} , sc_A , $sc_{B|A}$, sc_R et sc_{TOT} introduites à la section 4.1.1.

Nous rappelons la relation fondamentale de l'ANOVA :

$$SC_{TOT} = SC_A + SC_{B|A} + SC_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Résiduelle	$n_R = IJ(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{B A}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_R^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\mathcal{H}_0':\alpha_1=\alpha_2=\cdots=\alpha_I=0$$
 contre
$$\mathcal{H}_1':\text{Il existe }i_0\in\{1,2,\ldots,I\}\text{ tel que }\alpha_{i_0}\neq0.$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\label{eq:H0} \boxed{ \begin{split} \mathcal{H}_0'' \, : \, \sigma_{B|A}^2 &= 0 \\ &\quad \text{contre} \\ \hline \mathcal{H}_1'' \, : \, \sigma_{B|A}^2 &\neq 0. \end{split} }$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B dans A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma_{B|A}^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , $\sigma_{B|A}^2$, σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet,\bullet,\bullet} = \overline{Y}, \ \widehat{\alpha_i} = Y_{i,\bullet,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\sigma_{B|A}^2} &= \frac{1}{K} \left(S_{B|A}^2 - S_R^2 \right), \\ \widehat{\sigma^2} &= \frac{SC_R}{(I-1)(J-1)} = S_R^2, \end{split}$$

où
$$S_{B|A}^2 = \frac{SC_{B|A}}{n_{B|A}}$$
 et $S_R^2 = \frac{SC_R}{n_R}$.

Ce sont des estimateurs sans biais⁵.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\sigma_{B|A}^2}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , $\sigma_{B|A}^2$, σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y}, \ \widehat{\alpha}_i(\boldsymbol{y}) = y_{i,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma_{B|A}^2}(\boldsymbol{y}) = \frac{1}{K} \left(s_{B|A}^2 - s_R^2 \right),$$

$$\widehat{\sigma^2}(\boldsymbol{y}) = \frac{sc_R}{(I-1)(J-1)} = s_R^2.$$

 $^{^5\}mathrm{La}$ notion de biais d'un estimateur est définie dans le chapitre 15

Cho	A mol 1 - 1	moniones à de	foota1. ^	¥4.=
Chapitre 4.	Analyse de la	variance a deux	x facteurs emboî	tes

Chapitre 5

Analyse de la variance à trois facteurs

Dans tout ce chapitre, nous utilisons les notations définies à la section 0.1.

5.1. Modèles à effets fixes

5.1.1. Sans répétition

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles étant notée B_j . Un facteur contrôlé C se présente sous K modalités, chacune d'entre elles étant notée C_k . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + \epsilon_{i,j,k},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
avec les contraintes supplémentaires $\sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_j = 0 \text{ et } \sum_{k=1}^{K} \gamma_k = 0,$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\} \text{ et } \sum_{j=1}^{J} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, \dots, I\},$$

$$\sum_{i=1}^{I} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\} \text{ et } \sum_{k=1}^{K} (\alpha\gamma)_{i,k} = 0, \ \forall i \in \{1, \dots, J\},$$

$$\sum_{j=1}^{J} (\beta\gamma)_{j,k} = 0, \ \forall k \in \{1, \dots, K\} \text{ et } \sum_{k=1}^{K} (\beta\gamma)_{j,k} = 0, \ \forall j \in \{1, \dots, J\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j, C_k) . Nous postulons

les hypothèses classiques suivantes pour les erreurs :

$$\forall \ (i,j,k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0,\sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i,j,k},\epsilon_{l,m,n}) = 0 \text{ si } (i,j,k) \neq (l,m,n) \text{ avec } 1 \leqslant i,l \leqslant I, \ 1 \leqslant j,m \leqslant J \text{ et } 1 \leqslant k,n \leqslant K.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans les conditions (A_i, B_j, C_k) dans le tableau suivant :

Facteur A	Facteur B	Facteur C	Réponse Y
A_1	B_1	C_1	$Y_{1,1,1}$
:	:	:	:
A_I	B_1	C_1	$Y_{I,1,1}$
A_1	B_2	C_1	$Y_{1,2,1}$
:	:	:	:
A_I	B_J	C_1	$Y_{I,J,1}$
:	i :	÷	:
A_1	B_1	C_2	$Y_{1,1,2}$
:	:	:	:
A_I	B_J	C_K	$Y_{I,J,K}$

Nous rappelons que la variation théorique due au facteur A est définie par :

$$SC_A = JK \sum_{i=1}^{I} (Y_{i,\bullet,\bullet} - Y_{\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due au facteur B est définie par :

$$SC_B = IK \sum_{j=1}^{J} (Y_{\bullet,j,\bullet} - Y_{\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due au facteur C est définie par :

$$SC_C = IJ \sum_{k=1}^{K} (Y_{\bullet,\bullet,k} - Y_{\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs A et B est définie par :

$$SC_{AB} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j,\bullet} - Y_{i,\bullet,\bullet} - Y_{\bullet,j,\bullet} + Y_{\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs B et C est définie par :

$$SC_{BC} = I \sum_{i=1}^{J} \sum_{k=1}^{K} (Y_{\bullet,j,k} - Y_{\bullet,j,\bullet} - Y_{\bullet,\bullet,k} + Y_{\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs A et C est définie par :

$$SC_{AC} = J \sum_{i=1}^{I} \sum_{k=1}^{K} (Y_{i,\bullet,k} - Y_{i,\bullet,\bullet} - Y_{\bullet,\bullet,k} + Y_{\bullet,\bullet,\bullet})^{2}.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k} - Y_{i,j,\bullet} - Y_{i,\bullet,k} - Y_{\bullet,j,k} + Y_{i,\bullet,\bullet} + Y_{\bullet,j,\bullet} + Y_{\bullet,\bullet,k} - Y_{\bullet,\bullet,\bullet})^2.$$

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k} - Y_{\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons la relation fondamentale de l'ANOVA :

$$SC_{TOT} = SC_A + SC_B + SC_C + SC_{AB} + SC_{AC} + SC_{BC} + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1,1},\ldots,y_{I,1,1},y_{1,2,1},\ldots,y_{I,J,1},y_{1,1,2},\ldots,y_{I,J,K}$ permet de construire une réalisation du tableau précédent :

Facteur A	Facteur B	Facteur C	Réponse Y
A_1	B_1	C_1	$y_{1,1,1}$
:	:	:	:
A_I	B_1	C_1	$y_{I,1,1}$
A_1	B_2	C_1	$y_{1,2,1}$
:	:	i i	:
A_I	B_J	C_1	$y_{I,J,1}$
:	:	:	÷
A_1	B_1	C_2	$y_{1,1,2}$
:	:	:	:
A_I	B_J	C_K	$y_{I,J,K}$

La variation due au facteur A observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_A = JK \sum_{i=1}^{I} (y_{i,\bullet,\bullet} - y_{\bullet,\bullet,\bullet})^2.$$

La variation due au facteur B observée sur la liste de données y est définie par :

$$sc_B = IK \sum_{j=1}^{J} (y_{\bullet,j,\bullet} - y_{\bullet,\bullet,\bullet})^2.$$

La variation due au facteur C observée sur la liste de données y est définie par :

$$sc_C = IJ \sum_{k=1}^{K} (y_{\bullet,\bullet,k} - y_{\bullet,\bullet,\bullet})^2.$$

La variation due à l'interaction des facteurs A et B observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{AB} = K \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j,\bullet} - y_{i,\bullet,\bullet} - y_{\bullet,j,\bullet} + y_{\bullet,\bullet,\bullet})^2.$$

La variation due à l'interaction des facteurs B et C observée sur la liste de données y est définie par :

$$sc_{BC} = I \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{\bullet,j,k} - y_{\bullet,j,\bullet} - y_{\bullet,\bullet,k} + y_{\bullet,\bullet,\bullet})^2.$$

La variation due à l'interaction des facteurs A et C observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{AC} = J \sum_{i=1}^{I} \sum_{k=1}^{K} (y_{i,\bullet,k} - y_{i,\bullet,\bullet} - y_{\bullet,\bullet,k} + y_{\bullet,\bullet,\bullet})^{2}.$$

La variation résiduelle observée sur la liste de données y est quant à elle définie par :

$$sc_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k} - y_{i,j,\bullet} - y_{i,\bullet,k} - y_{\bullet,j,k} + y_{i,\bullet,\bullet} + y_{\bullet,j,\bullet} + y_{\bullet,\bullet,k} - y_{\bullet,\bullet,\bullet})^2.$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k} - y_{\bullet,\bullet,\bullet})^2.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données \boldsymbol{y} :

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_B$$
.

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Résiduelle	$n_R = (I-1)(J-1)(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	$\mathcal{H}_0^{''}$ ou $\mathcal{H}_1^{''}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_R^2}$	\mathcal{H}_0''' ou \mathcal{H}_1'''
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_R^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \begin{aligned} \mathcal{H}_0': \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \end{aligned}}$$
 contre
$$\boxed{ \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \ldots, I\} \text{ tel que } \alpha_{i_0} \neq 0.}$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0'':\beta_1=\beta_2=\cdots=\beta_J=0$$
 contre
$$\mathcal{H}_1'':\text{Il existe }j_0\in\{1,2,\ldots,J\}\text{ tel que }\beta_{j_0}\neq0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}''_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0''': \gamma_1 = \gamma_2 = \cdots = \gamma_K = 0$$
 contre
$$\mathcal{H}_1''': \text{Il existe } k_0 \in \{1, 2, \dots, K\} \text{ tel que } \gamma_{k_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit une loi de Fisher à K-1 et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0''' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_{0}^{(4)}: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$
contre

$$\mathcal{H}_{1}^{(4)}$$
: Il existe $(i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\}$ tel que $(\alpha \beta)_{i_0, j_0} \neq 0$.

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(5)}: (\alpha\gamma)_{1,1} = (\alpha\gamma)_{1,2} = \dots = (\alpha\gamma)_{1,K} = (\alpha\gamma)_{2,1} = \dots = (\alpha\gamma)_{I,K} = 0$$
contre

$$\mathcal{H}_{1}^{(5)}$$
: Il existe $(i_0, k_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, K\}$ tel que $(\alpha \gamma)_{i_0, k_0} \neq 0$.

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_{0}^{(6)}: (\beta\gamma)_{1,1} = (\beta\gamma)_{1,2} = \dots = (\beta\gamma)_{1,K} = (\beta\gamma)_{2,1} = \dots = (\beta\gamma)_{J,K} = 0$$

$$\text{contre}$$

$$\mathcal{H}_{1}^{(6)}: \text{Il existe } (j_{0}, k_{0}) \in \{1, 2, \dots, J\} \times \{1, 2, \dots, K\} \text{ tel que } (\beta\gamma)_{j_{0}, k_{0}} \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs
$$\widehat{\mu}$$
, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_J}$, $\widehat{\gamma_1}$, ..., $\widehat{\gamma_K}$, $\widehat{(\alpha\beta)_{1,1}}$, ..., $\widehat{(\alpha\beta)_{I,J}}$, $\widehat{(\alpha\gamma)_{1,1}}$, ..., $\widehat{(\alpha\gamma)_{I,K}}$, $\widehat{(\beta\gamma)_{J,K}}$, $\widehat{(\alpha\beta)_{J,K}}$, $\widehat{(\alpha\beta)_{J,K}}$, $\widehat{(\alpha\beta)_{J,K}}$, $\widehat{(\alpha\beta)_{J,K}}$, $\widehat{(\alpha\beta)_{J,K}}$, $\widehat{(\alpha\gamma)_{J,K}}$

par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha}_i &= Y_{i, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\beta}_j &= Y_{\bullet, j, \bullet} - \widehat{\mu}, \ 1 \leqslant j \leqslant J, \\ \widehat{\gamma}_k &= Y_{\bullet, \bullet, k} - \widehat{\mu}, \ 1 \leqslant k \leqslant K, \\ \widehat{(\alpha \beta)_{i,j}} &= Y_{i,j, \bullet} - Y_{i,\bullet, \bullet} - Y_{\bullet,j, \bullet} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{(\alpha \gamma)_{i,k}} &= Y_{i,\bullet,k} - Y_{i,\bullet, \bullet} - Y_{\bullet,\bullet,k} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K, \\ \widehat{(\beta \gamma)_{j,k}} &= Y_{\bullet,j,k} - Y_{\bullet,j, \bullet} - Y_{\bullet,\bullet,k} + \widehat{\mu}, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \\ \widehat{\sigma}^2 &= \frac{SC_R}{(I-1)(J-1)(K-1)} = S_R^2. \end{split}$$

Ce sont des estimateurs sans biais¹.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, \ldots , $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_1}(\boldsymbol{y})$, \ldots , $\widehat{\beta_J}(\boldsymbol{y})$, $\widehat{\gamma_1}(\boldsymbol{y})$, \ldots , $\widehat{\gamma_K}(\boldsymbol{y})$, $\widehat{(\alpha\beta)_{1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\alpha\beta)_{I,J}}(\boldsymbol{y})$, $\widehat{(\alpha\gamma)_{1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\alpha\gamma)_{I,K}}(\boldsymbol{y})$, $\widehat{(\beta\gamma)_{1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\beta\gamma)_{J,K}}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$ des paramètres μ , α_1 , \ldots , α_I , β_1 , \ldots , β_J , γ_1 , \ldots , γ_K , $(\alpha\beta)_{1,1}$, \ldots , $(\alpha\beta)_{I,J}$, $(\alpha\gamma)_{1,1}$, \ldots , $(\alpha\gamma)_{I,K}$, $(\beta\gamma)_{1,1}$, \ldots , $(\beta\gamma)_{J,K}$, σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\beta}_{j}(\boldsymbol{y}) = y_{\bullet,j,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J,$$

$$\widehat{\gamma}_{k}(\boldsymbol{y}) = y_{\bullet,\bullet,k} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant k \leqslant K,$$

$$\widehat{(\alpha\beta)_{i,j}}(\boldsymbol{y}) = y_{i,j,\bullet} - y_{i,\bullet,\bullet} - y_{\bullet,j,\bullet} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{(\alpha\gamma)_{i,k}}(\boldsymbol{y}) = y_{i,\bullet,k} - y_{i,\bullet,\bullet} - y_{\bullet,\bullet,k} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\widehat{(\beta\gamma)_{j,k}}(\boldsymbol{y}) = y_{\bullet,j,k} - y_{\bullet,j,\bullet} - y_{\bullet,\bullet,k} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

$$\widehat{\sigma}^{2}(\boldsymbol{y}) = \frac{sc_{R}}{(I-1)(J-1)(K-1)} = s_{R}^{2}.$$

5.1.2. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles étant notée B_j . Un facteur contrôlé C se présente sous K modalités, chacune d'entre elles étant notée C_k . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons $L \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

¹La notion de biais d'un estimateur est définie dans le chapitre 15

Nous introduisons le modèle :

$$\begin{split} Y_{i,j,k,l} &= \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + (\alpha\beta\gamma)_{i,j,k} + \epsilon_{i,j,k,l}, \\ & i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L, \\ \text{avec les contraintes supplémentaires} & \sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_j = 0 \ \text{et} \ \sum_{k=1}^{K} \gamma_k = 0, \\ & \sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\} \ \text{et} \ \sum_{j=1}^{J} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, \dots, I\}, \\ & \sum_{i=1}^{I} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\} \ \text{et} \ \sum_{k=1}^{K} (\alpha\gamma)_{i,k} = 0, \ \forall i \in \{1, \dots, I\}, \\ & \sum_{j=1}^{J} (\beta\gamma)_{j,k} = 0, \ \forall k \in \{1, \dots, K\} \ \text{et} \ \sum_{k=1}^{K} (\beta\gamma)_{j,k} = 0, \ \forall j \in \{1, \dots, J\}, \\ & \sum_{j=1}^{I} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (j,k) \in \{1, \dots, J\} \times \{1, \dots, K\}, \\ & \sum_{j=1}^{K} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (i,k) \in \{1, \dots, I\} \times \{1, \dots, K\}, \\ & \sum_{k=1}^{K} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (i,j) \in \{1, \dots, I\} \times \{1, \dots, J\}, \end{split}$$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j, C_k) lors du l-ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans les conditions (A_i, B_j, C_k) lors des L essais dans le tableau suivant :

Facteur A	Facteur B	Facteur C	Essai nº	Réponse Y
A_1	B_1	C_1	1	$Y_{1,1,1,1}$
:	:	:	:	:
A_1	B_1	C_1	L	$Y_{1,1,1,L}$
:	:	÷	:	÷
A_I	B_1	C_1	1	$Y_{I,1,1,1}$
:	:	:	:	:
A_I	B_1	C_1	L	$Y_{I,1,1,L}$
A_1	B_2	C_1	1	$Y_{1,2,1,1}$
:	:	÷	:	:
A_I	B_J	C_1	L	$Y_{I,J,1,L}$
:	:	:	:	:
A_1	B_1	C_2	1	$Y_{1,1,2,1}$
:		:	:	
A_I	B_J	C_K	L	$Y_{I,J,K,L}$

Nous rappelons que la variation théorique due au facteur A est définie par :

$$SC_A = JKL \sum_{i=1}^{I} (Y_{i,\bullet,\bullet,\bullet} - Y_{\bullet,\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due au facteur B est définie par :

$$SC_B = IKL \sum_{i=1}^{J} (Y_{\bullet,j,\bullet,\bullet} - Y_{\bullet,\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due au facteur C est définie par :

$$SC_C = IJL \sum_{k=1}^{K} (Y_{\bullet,\bullet,k,\bullet} - Y_{\bullet,\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs A et B est définie par :

$$SC_{AB} = KL \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j,\bullet,\bullet} - Y_{i,\bullet,\bullet,\bullet} - Y_{\bullet,j,\bullet,\bullet} + Y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs B et C est définie par :

$$SC_{BC} = IL \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{\bullet,j,k,\bullet} - Y_{\bullet,j,\bullet,\bullet} - Y_{\bullet,\bullet,k,\bullet} + Y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons que la variation théorique due à l'interaction des facteurs A et C est définie par :

$$SC_{AC} = JL \sum_{i=1}^{I} \sum_{k=1}^{K} (Y_{i,\bullet,k,\bullet} - Y_{i,\bullet,\bullet,\bullet} - Y_{\bullet,\bullet,k,\bullet} + Y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La variation théorique due à l'interaction d'ordre 2 entre les facteurs $A,\,B$ et C est définie par :

$$SC_{ABC} = L\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{k=1}^{K}(Y_{i,j,k,\bullet} - Y_{i,j,\bullet,\bullet} - Y_{i,\bullet,k,\bullet} - Y_{\bullet,j,k,\bullet} + Y_{i,\bullet,\bullet,\bullet} + Y_{\bullet,j,\bullet,\bullet} + Y_{\bullet,\bullet,k,\bullet} - Y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} (Y_{i,j,k,l} - Y_{i,j,k,\bullet})^2.$$

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} (Y_{i,j,k,l} - Y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons la relation fondamentale de l'ANOVA :

$$SC_{TOT} = SC_A + SC_B + SC_C + SC_{AB} + SC_{AC} + SC_{BC} + SC_{ABC} + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1,1,1},\ldots,y_{1,1,1,L},\ldots,y_{I,1,1,1},\ldots,y_{I,1,1,L},y_{1,2,1,1},\ldots,y_{I,J,L},y_{1,1,2,1},\ldots,y_{I,J,K,L}$ permet de construire une réalisation du tableau précédent :

Facteur A	Facteur B	Facteur C	Essai nº	Donnée expérimentale y
A_1	B_1	C_1	1	$y_{1,1,1,1}$
:	:	:	:	÷ :
A_1	B_1	C_1	L	$y_{1,1,1,L}$
:	:	:	:	i:
A_I	B_1	C_1	1	$y_{I,1,1,1}$
:	:	:	:	i i
A_I	B_1	C_1	L	$y_{I,1,1,L}$
A_1	B_2	C_1	1	$y_{1,2,1,1}$
:	:	:	:	:
A_I	B_J	C_1	L	$y_{I,J,1,L}$
:	:	:	:	i i
A_1	B_1	C_2	1	$y_{1,1,2,1}$
:	:	:	:	i i
A_I	B_J	C_K	L	$y_{I,J,K,L}$

La variation due au facteur A observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_A = JKL \sum_{i=1}^{I} (y_{i,\bullet,\bullet,\bullet} - y_{\bullet,\bullet,\bullet,\bullet})^2.$$

La variation due au facteur B observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_B = IKL \sum_{i=1}^{J} (y_{\bullet,j,\bullet,\bullet} - y_{\bullet,\bullet,\bullet,\bullet})^2.$$

La variation due au facteur C observée sur la liste de données y est définie par :

$$sc_C = IJL \sum_{k=1}^{K} (y_{\bullet,\bullet,k,\bullet} - y_{\bullet,\bullet,\bullet,\bullet})^2.$$

La variation due à l'interaction des facteurs A et B observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{AB} = KL \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j,\bullet,\bullet} - y_{i,\bullet,\bullet,\bullet} - y_{\bullet,j,\bullet,\bullet} + y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La variation due à l'interaction des facteurs B et C observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{BC} = IL \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{\bullet,j,k,\bullet} - y_{\bullet,j,\bullet,\bullet} - y_{\bullet,\bullet,k,\bullet} + y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La variation due à l'interaction des facteurs A et C observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{AC} = JL \sum_{i=1}^{I} \sum_{k=1}^{K} (y_{i,\bullet,k,\bullet} - y_{i,\bullet,\bullet,\bullet} - y_{\bullet,\bullet,k,\bullet} + y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La variation due à l'interaction d'ordre 2 entre les facteurs A, B et C observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{ABC} = L\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{k=1}^{K}(y_{i,j,k,\bullet} - y_{i,j,\bullet,\bullet} - y_{i,\bullet,k,\bullet} - y_{\bullet,j,k,\bullet} + y_{i,\bullet,\bullet,\bullet} + y_{\bullet,j,\bullet,\bullet} + y_{\bullet,i,\bullet,\bullet} - y_{\bullet,\bullet,k,\bullet})^{2}.$$

La variation résiduelle observée sur la liste de données y est quant à elle définie par :

$$sc_R = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} (y_{i,j,k,l} - y_{i,j,k,\bullet})^2.$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} (y_{i,j,k,l} - y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données \boldsymbol{y} :

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_{ABC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Interaction ABC	$n_{ABC} = (I-1)(J-1)(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJKL - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_R^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Interaction ABC	sc_{ABC}	n_{ABC}	$s_{ABC}^2 = \frac{sc_{ABC}}{n_{ABC}}$	$f_{ABC} = \frac{s_{ABC}^2}{s_R^2}$	$\mathcal{H}_0^{(7)}$ ou $\mathcal{H}_1^{(7)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\label{eq:contre} \begin{bmatrix} \mathcal{H}_0': \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 \\\\ \text{contre} \\ \\ \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{bmatrix}$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire

qui suit une loi de Fisher à I-1 et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\left[\begin{array}{c} \mathcal{H}_0'': \beta_1 = \beta_2 = \cdots = \beta_J = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1'': \text{Il existe } j_0 \in \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0'' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0''': \gamma_1 = \gamma_2 = \cdots = \gamma_K = 0$$
 contre
$$\mathcal{H}_1''': \text{Il existe } k_0 \in \{1, 2, \dots, K\} \text{ tel que } \gamma_{k_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit une loi de Fisher à K-1 et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0''' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_{0}^{(4)}: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$

$$\text{contre}$$

$$\mathcal{H}_{1}^{(4)}: \text{Il existe } (i_{0}, j_{0}) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_{0}, j_{0}} \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_{0}^{(5)}: (\alpha \gamma)_{1,1} = (\alpha \gamma)_{1,2} = \dots = (\alpha \gamma)_{1,K} = (\alpha \gamma)_{2,1} = \dots = (\alpha \gamma)_{I,K} = 0$$
contre

$$\mathcal{H}_{1}^{(5)}$$
: Il existe $(i_0, k_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, K\}$ tel que $(\alpha \gamma)_{i_0, k_0} \neq 0$.

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(6)}: (\beta\gamma)_{1,1} = (\beta\gamma)_{1,2} = \dots = (\beta\gamma)_{1,K} = (\beta\gamma)_{2,1} = \dots = (\beta\gamma)_{J,K} = 0$$
contre

$$\mathcal{H}_{1}^{(6)}$$
: Il existe $(j_0, k_0) \in \{1, 2, \dots, J\} \times \{1, 2, \dots, K\}$ tel que $(\beta \gamma)_{j_0, k_0} \neq 0$.

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(7)}: (\alpha\beta\gamma)_{1,1,1} = (\alpha\beta\gamma)_{1,1,2} = \dots = (\alpha\beta\gamma)_{1,1,K} = (\alpha\beta\gamma)_{2,1,1} = \dots = (\alpha\beta\gamma)_{I,J,K} = 0$$
contre

$$\mathcal{H}_{1}^{(7)}: \exists (i_{0}, j_{0}, k_{0}) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \times \{1, 2, \dots, K\} \mid (\alpha \beta \gamma)_{i_{0}, j_{0}, k_{0}} \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(7)}$ précédente d'absence d'effet de l'interaction, d'ordre 3, des facteurs A, B et C et lorsque les conditions de validité du modèle sont respectées, f_{ABC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{ABC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs
$$\widehat{\mu}$$
, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_J}$, $\widehat{\gamma_1}$, ..., $\widehat{\gamma_K}$, $\widehat{(\alpha\beta)_{1,1}}$, ..., $\widehat{(\alpha\beta)_{I,J}}$, $\widehat{(\alpha\gamma)_{1,1}}$, ..., $\widehat{(\alpha\gamma)_{I,K}}$, $\widehat{(\beta\gamma)_{I,J,K}}$, $\widehat{(\alpha\beta\gamma)_{I,J,K}}$, $\widehat{(\alpha\beta\gamma)_{I,J,K}}$, $\widehat{\alpha^2}$ des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , γ_1 , ..., γ_K , $(\alpha\beta)_{1,1}$, ..., $(\alpha\beta)_{I,J}$, $(\alpha\gamma)_{1,1}$, ..., $(\alpha\gamma)_{I,K}$, $(\beta\gamma)_{1,1}$, ..., $(\beta\gamma)_{J,K}$,

 $(\alpha\beta\gamma)_{1,1,1},\ldots,(\alpha\beta\gamma)_{I,J,K},\sigma^2$ du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha}_i &= Y_{i, \bullet, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\beta}_j &= Y_{\bullet, \bullet, k, \bullet} - \widehat{\mu}, \ 1 \leqslant j \leqslant J, \\ \widehat{\gamma}_k &= Y_{\bullet, \bullet, k, \bullet} - \widehat{\mu}, \ 1 \leqslant k \leqslant K, \\ \widehat{(\alpha \beta)_{i,j}} &= Y_{i,j, \bullet, \bullet} - Y_{i, \bullet, \bullet, \bullet} - Y_{\bullet,j, \bullet, \bullet} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{(\alpha \gamma)_{i,k}} &= Y_{i, \bullet, k, \bullet} - Y_{i, \bullet, \bullet, \bullet} - Y_{\bullet, \bullet, k, \bullet} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K, \\ \widehat{(\beta \gamma)_{j,k}} &= Y_{\bullet,j,k, \bullet} - Y_{\bullet,j, \bullet, \bullet} - Y_{\bullet, \bullet, k, \bullet} + \widehat{\mu}, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \\ \widehat{(\alpha \beta \gamma)_{i,j,k}} &= Y_{i,j,k, \bullet} - Y_{i,j, \bullet, \bullet} - Y_{i,\bullet,k, \bullet} - Y_{\bullet,j,k, \bullet} + Y_{i,\bullet, \bullet, \bullet} + Y_{\bullet,j, \bullet, \bullet} + Y_{\bullet, \bullet,k, \bullet} - \widehat{\mu}, \\ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \\ \widehat{\sigma^2} &= \frac{SC_R}{IJK(L-1)} = S_R^2. \end{split}$$

Ce sont des estimateurs sans biais².

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, \ldots , $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_1}(\boldsymbol{y})$, \ldots , $\widehat{\beta_J}(\boldsymbol{y})$, $\widehat{\gamma_1}(\boldsymbol{y})$, \ldots , $\widehat{\gamma_K}(\boldsymbol{y})$, $\widehat{(\alpha\beta)_{1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\alpha\beta)_{I,J}}(\boldsymbol{y})$, $\widehat{(\alpha\gamma)_{1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\alpha\gamma)_{I,K}}(\boldsymbol{y})$, $\widehat{(\beta\gamma)_{1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\beta\gamma)_{J,K}}(\boldsymbol{y})$, $\widehat{(\alpha\beta\gamma)_{1,1,1}}(\boldsymbol{y})$, \ldots , $\widehat{(\alpha\beta\gamma)_{I,J,K}}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$ des paramètres μ , α_1 , \ldots , α_I , β_1 , \ldots , β_J , γ_1 , \ldots , γ_K , $\alpha\beta)_{1,1}$, \ldots , $\alpha\beta)_{I,J}$, $\alpha\gamma)_{1,1}$, \ldots , $\alpha\gamma)_{I,K}$, $\alpha\gamma)_{I,1,1}$, \ldots , $\alpha\gamma)_{I,K}$, $\alpha\gamma)_{I,1,1}$, $\alpha\gamma$

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\beta}_{j}(\boldsymbol{y}) = y_{\bullet,j,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J,$$

$$\widehat{\gamma}_{k}(\boldsymbol{y}) = y_{\bullet,\bullet,k,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant k \leqslant K,$$

$$\widehat{(\alpha\beta)_{i,j}}(\boldsymbol{y}) = y_{i,j,\bullet,\bullet} - y_{i,\bullet,\bullet,\bullet} - y_{\bullet,j,\bullet,\bullet} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{(\alpha\gamma)_{i,k}}(\boldsymbol{y}) = y_{i,\bullet,k,\bullet} - y_{i,\bullet,\bullet,\bullet} - y_{\bullet,\bullet,k,\bullet} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\widehat{(\beta\gamma)_{j,k}}(\boldsymbol{y}) = y_{\bullet,j,k,\bullet} - y_{\bullet,j,\bullet,\bullet} - y_{\bullet,\bullet,k,\bullet} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

$$\widehat{(\alpha\beta\gamma)_{i,j,k}}(\boldsymbol{y}) = y_{i,j,k,\bullet} - y_{i,j,\bullet,\bullet} - y_{i,\bullet,k,\bullet} - y_{\bullet,j,k,\bullet} + y_{i,\bullet,\bullet,\bullet} + y_{\bullet,j,\bullet,\bullet} + y_{\bullet,\bullet,k,\bullet} - \widehat{\mu}(\boldsymbol{y}),$$

$$1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

$$\widehat{\sigma^{2}}(\boldsymbol{y}) = \frac{sc_{R}}{IJK(L-1)} = s_{R}^{2}.$$

5.2. Modèles à effets aléatoires

5.2.1. Sans répétition

Les α_i représentent un échantillon de taille I prélevé dans une population importante. Nous admettrons que les effets des A_i , les α_i , sont distribués suivant une loi normale

²La notion de biais d'un estimateur est définie dans le chapitre 15

centrée de variance σ_A^2 . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Les γ_k représentent un échantillon de taille K prélevé dans une population importante. Nous admettrons que les effets des C_k , les γ_k , sont distribués suivant une loi normale centrée de variance σ_C^2 . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + \epsilon_{i,j,k},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j, C_k) . Nous supposons que :

$$\mathcal{L}(\alpha_{i}) = \mathcal{N}(0, \sigma_{A}^{2}), \ \forall \ i, 1 \leqslant i \leqslant I,$$

$$\mathcal{L}(\beta_{j}) = \mathcal{N}(0, \sigma_{B}^{2}), \ \forall \ j, 1 \leqslant j \leqslant J,$$

$$\mathcal{L}(\gamma_{k}) = \mathcal{N}(0, \sigma_{C}^{2}), \ \forall \ k, 1 \leqslant k \leqslant K,$$

$$\mathcal{L}((\alpha\beta)_{i,j}) = \mathcal{N}(0, \sigma_{AB}^{2}), \ \forall \ (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\mathcal{L}((\alpha\gamma)_{i,k}) = \mathcal{N}(0, \sigma_{AC}^{2}), \ \forall \ (i, k), 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}((\beta\gamma)_{j,k}) = \mathcal{N}(0, \sigma_{BC}^{2}), \ \forall \ (j, k), 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires α_i , β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$ et $(\beta\gamma)_{j,k}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i, j, k}) = \mathcal{N}(0, \sigma^2),$$
$$Cov(\epsilon_{i, j, k}, \epsilon_{l, m, n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec } 1 \leqslant i, l \leqslant I, \ 1 \leqslant j, m \leqslant J \text{ et } 1 \leqslant k, n \leqslant K,$$

ainsi que l'indépendance des effets aléatoires α_i , β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$ et $(\beta\gamma)_{j,k}$ et des erreurs $\epsilon_{i,j,k}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , sc_B , sc_C , sc_{AB} , sc_{AC} , sc_{BC} , sc_R et sc_{TOT} introduites à la section 5.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Résiduelle	$n_R = (I-1)(J-1)(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AB}^2 + s_{AC}^2 - s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{AB}^2 + s_{BC}^2 - s_R^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_{AC}^2 + s_{BC}^2 - s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_R^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\left[\begin{array}{c} \mathcal{H}_0' : \sigma_A^2 = 0 \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1' : \sigma_A^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit **approximativement**³ une loi de Fisher à I-1 et n' degrés de liberté avec :

$$n' = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_R^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table.

$$\boxed{ \begin{aligned} \mathcal{H}_0'' : \sigma_B^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1'' : \sigma_B^2 &\neq 0. \end{aligned} }$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit **approximativement**⁵ une loi de Fisher à J-1 et n'' degrés de liberté avec :

$$n'' = \frac{\left(s_{AB}^2 + s_{BC}^2 - s_R^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{BC}^2\right)^2}{(J-1)(K-1)} + \frac{\left(s_R^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{aligned} \mathcal{H}_0^{\prime\prime\prime} &: \sigma_C^2 = 0 \end{aligned} \right] \\ \text{contre} \\ \mathcal{H}_1^{\prime\prime\prime} &: \sigma_C^2 \neq 0. \end{aligned}$$

³Nous utilisons ici l'approximation dite de Satterthwaite.

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit **approximativement**⁵ une loi de Fisher à K-1 et n''' degrés de liberté avec :

$$n''' = \frac{\left(s_{AC}^2 + s_{BC}^2 - s_R^2\right)^2}{\frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{BC}^2\right)^2}{(J-1)(K-1)} + \frac{\left(s_{BC}^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(4)} : \sigma_{AB}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1^{(4)} : \sigma_{AB}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{aligned} \mathcal{H}_0^{(5)} : \sigma_{AC}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1^{(5)} : \sigma_{AC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\label{eq:H0} \boxed{ \begin{aligned} \mathcal{H}_0^{(6)}: \sigma_{BC}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1^{(6)}: \sigma_{BC}^2 \neq 0. \end{aligned} }$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et (I-1)(J-1)(K-1)

degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma_C^2}$, $\widehat{\sigma_{AB}^2}$, $\widehat{\sigma_{AC}^2}$, $\widehat{\sigma_{BC}^2}$, $\widehat{\sigma^2}$ des paramètres μ , σ_A^2 , σ_B^2 , σ_C^2 , σ_{AB}^2 , σ_{AC}^2 , σ_{BC}^2 , σ_{BC}^2 , σ_{BC}^2 , σ_A^2 du modèle sont donnés par les formules suivantes :

$$\widehat{\mu} = Y_{\bullet,\bullet,\bullet} = \overline{Y},$$

$$\widehat{\sigma_{A}^{2}} = \frac{1}{JK} \left(S_{A}^{2} - S_{AB}^{2} - S_{AC}^{2} + S_{R}^{2} \right),$$

$$\widehat{\sigma_{B}^{2}} = \frac{1}{IK} \left(S_{B}^{2} - S_{AB}^{2} - S_{BC}^{2} + S_{R}^{2} \right),$$

$$\widehat{\sigma_{C}^{2}} = \frac{1}{IJ} \left(S_{C}^{2} - S_{AC}^{2} - S_{BC}^{2} + S_{R}^{2} \right),$$

$$\widehat{\sigma_{AB}^{2}} = \frac{1}{K} \left(S_{AB}^{2} - S_{R}^{2} \right),$$

$$\widehat{\sigma_{AC}^{2}} = \frac{1}{J} \left(S_{AC}^{2} - S_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}} = \frac{1}{I} \left(S_{BC}^{2} - S_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}} = \frac{1}{I} \left(S_{BC}^{2} - S_{R}^{2} \right),$$

$$\widehat{\sigma^{2}} = \frac{SC_{R}}{(I-1)(J-1)(K-1)} = S_{R}^{2},$$
où $S_{A}^{2} = \frac{SC_{A}}{n_{A}}, S_{B}^{2} = \frac{SC_{B}}{n_{B}}, S_{C}^{2} = \frac{SC_{C}}{n_{C}}, S_{AB}^{2} = \frac{SC_{AB}}{n_{AB}}, S_{AC}^{2} = \frac{SC_{AC}}{n_{AC}}, S_{BC}^{2} = \frac{SC_{BC}}{n_{BC}} \text{ et }$

$$S_{R}^{2} = \frac{SC_{R}}{n_{R}}.$$

Ce sont des estimateurs sans biais⁶.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_C^2}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, modèle se déduisent des formules ci-dessus :

$$\begin{split} \widehat{\mu}(\boldsymbol{y}) &= y_{\bullet,\bullet,\bullet} = \overline{y}, \\ \widehat{\sigma_A^2}(\boldsymbol{y}) &= \frac{1}{JK} \left(s_A^2 - s_{AB}^2 - s_{AC}^2 + s_R^2 \right), \\ \widehat{\sigma_B^2}(\boldsymbol{y}) &= \frac{1}{IK} \left(s_B^2 - s_{AB}^2 - s_{BC}^2 + s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{IJ} \left(s_C^2 - s_{AC}^2 - s_{BC}^2 + s_R^2 \right), \\ \widehat{\sigma_{AB}^2}(\boldsymbol{y}) &= \frac{1}{K} \left(s_{AB}^2 - s_R^2 \right), \\ \widehat{\sigma_{AC}^2}(\boldsymbol{y}) &= \frac{1}{J} \left(s_{AC}^2 - s_R^2 \right), \\ \widehat{\sigma_{BC}^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y}) &= \frac{1}{I} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_C^2}(\boldsymbol{y})$$

 $^{^6\}mathrm{La}$ notion de biais d'un estimateur est définie dans le chapitre 15

Remarque 5.2.1. Ainsi lorsque les trois facteurs sont aléatoires, et que nous cherchons à tester l'existence d'un effet de l'un d'entre eux nous devons utiliser une approximation. Cette situation se démarque nettement de celle où tous les facteurs sauf au plus un sont à effets fixes voir les paragraphes 5.1.1 et 5.3.1.

5.2.2. Avec répétitions

Les α_i représentent un échantillon de taille I prélevé dans une population importante. Nous admettrons que les effets des A_i , les α_i , sont distribués suivant une loi normale centrée de variance σ_A^2 . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Les γ_k représentent un échantillon de taille K prélevé dans une population importante. Nous admettrons que les effets des C_k , les γ_k , sont distribués suivant une loi normale centrée de variance σ_C^2 . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons $L \geqslant 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + (\alpha\beta\gamma)_{i,j,k} + \epsilon_{i,j,k,l},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L,$$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans les conditions (A_i,B_j,C_k) lors du l-ème essai. Nous supposons que :

$$\mathcal{L}\left(\alpha_{i}\right) = \mathcal{N}(0,\sigma_{A}^{2}), \ \forall \ i,1\leqslant i\leqslant I,$$

$$\mathcal{L}\left(\beta_{j}\right) = \mathcal{N}(0,\sigma_{B}^{2}), \ \forall \ j,1\leqslant j\leqslant J,$$

$$\mathcal{L}\left(\gamma_{k}\right) = \mathcal{N}(0,\sigma_{C}^{2}), \ \forall \ k,1\leqslant k\leqslant K,$$

$$\mathcal{L}\left((\alpha\beta)_{i,j}\right) = \mathcal{N}(0,\sigma_{AB}^{2}), \ \forall \ (i,j),1\leqslant i\leqslant I, \ 1\leqslant j\leqslant J,$$

$$\mathcal{L}\left((\alpha\gamma)_{i,k}\right) = \mathcal{N}(0,\sigma_{AC}^{2}), \ \forall \ (i,k),1\leqslant i\leqslant I, \ 1\leqslant k\leqslant K,$$

$$\mathcal{L}\left((\beta\gamma)_{j,k}\right) = \mathcal{N}(0,\sigma_{BC}^{2}), \ \forall \ (j,k),1\leqslant j\leqslant J, \ 1\leqslant k\leqslant K,$$

$$\mathcal{L}\left((\alpha\beta\gamma)_{i,j,k}\right) = \mathcal{N}(0,\sigma_{ABC}^{2}), \ \forall \ (i,j,k),1\leqslant i\leqslant I, \ 1\leqslant j\leqslant J, \ 1\leqslant k\leqslant K,$$

$$\mathcal{L}\left((\alpha\beta\gamma)_{i,j,k}\right) = \mathcal{N}(0,\sigma_{ABC}^{2}), \ \forall \ (i,j,k),1\leqslant i\leqslant I, \ 1\leqslant j\leqslant J, \ 1\leqslant k\leqslant K,$$

ainsi que l'indépendance des effets aléatoires α_i , β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$, $(\beta\gamma)_{j,k}$ et $(\alpha\beta\gamma)_{i,j,k}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L,$$

ainsi que l'indépendance des effets aléatoires α_i , β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$, $(\beta\gamma)_{j,k}$ et $(\alpha\beta\gamma)_{i,j,k}$ et des erreurs $\epsilon_{i,j,k}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , sc_B , sc_C , sc_{AB} , sc_{AC} , sc_{BC} , sc_{ABC} , sc_R et sc_{TOT} introduites à la section 5.1.2.

Nous rappelons la relation fondamentale de l'ANOVA :

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_{ABC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Interaction ABC	$n_{ABC} = (I-1)(J-1)(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AB}^2 + s_{AC}^2 - s_{ABC}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{AB}^2 + s_{BC}^2 - s_{ABC}^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_{AC}^2 + s_{BC}^2 - s_{ABC}^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_{ABC}^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_{ABC}^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_{ABC}^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Interaction ABC	sc_{ABC}	n_{ABC}	$s_{ABC}^2 = \frac{sc_{ABC}}{n_{ABC}}$	$f_{ABC} = \frac{s_{ABC}^2}{s_R^2}$	$\mathcal{H}_0^{(7)}$ ou $\mathcal{H}_1^{(7)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{\mathcal{H}_0':\sigma_A^2=0}$$

contre

$$\mathcal{H}_{1}^{'}:\sigma_{A}^{2}\neq0.$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit **approximativement**⁷ une loi de Fisher à I-1 et n' degrés de liberté avec :

$$n' = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_{ABC}^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{ABC}^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{array}{c} \mathcal{H}_0'': \sigma_B^2 = 0 \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1'': \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit **approximativement**⁶ une loi de Fisher à J-1 et n'' degrés de liberté avec :

$$n'' = \frac{\left(s_{AB}^2 + s_{BC}^2 - s_{ABC}^2\right)^2}{\left(I - 1\right)(J - 1)} + \frac{\left(s_{BC}^2\right)^2}{(J - 1)(K - 1)} + \frac{\left(s_{ABC}^2\right)^2}{(I - 1)(J - 1)(K - 1)}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

$$\begin{bmatrix} \mathcal{H}_0''' : \sigma_C^2 = 0 \\ \text{contre} \\ \end{bmatrix}$$

$$\mathcal{H}_1''' : \sigma_C^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit **approximativement**⁶ une loi de Fisher à K-1 et n''' degrés de liberté avec :

$$n''' = \frac{\left(s_{AC}^2 + s_{BC}^2 - s_{ABC}^2\right)^2}{\frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{BC}^2\right)^2}{(J-1)(K-1)} + \frac{\left(s_{ABC}^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

⁷Nous utilisons ici l'approximation dite de Satterthwaite.

$$\mathcal{H}_0^{(4)} : \sigma_{AB}^2 = 0$$
contre
$$\mathcal{H}_1^{(4)} : \sigma_{AB}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{array}{c} \mathcal{H}_0^{(5)} : \sigma_{AC}^2 = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1^{(5)} : \sigma_{AC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\label{eq:H0} \boxed{ \begin{aligned} \mathcal{H}_0^{(6)} : \sigma_{BC}^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\boxed{ \begin{aligned} \mathcal{H}_1^{(6)} : \sigma_{BC}^2 &\neq 0. \end{aligned} }$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(7)} : \sigma_{ABC}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1^{(7)} : \sigma_{ABC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(7)}$ précédente d'absence d'effet de l'interaction d'ordre trois des facteurs A, B et C et lorsque les conditions de validité du modèle sont respectées, f_{ABC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{ABC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma_C^2}$, $\widehat{\sigma_{AB}^2}$, $\widehat{\sigma_{AC}^2}$, $\widehat{\sigma_{BC}^2}$, $\widehat{\sigma_{ABC}^2}$, $\widehat{\sigma^2}$ des paramètres μ , σ_A^2 , σ_B^2 , σ_C^2 , σ_{ABC}^2 , σ_{AC}^2 , σ_{AC}

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\sigma_A^2} &= \frac{1}{JKL} \left(S_A^2 - S_{AB}^2 - S_{AC}^2 + S_{ABC}^2 \right), \\ \widehat{\sigma_B^2} &= \frac{1}{IKL} \left(S_B^2 - S_{AB}^2 - S_{BC}^2 + S_{ABC}^2 \right), \\ \widehat{\sigma_C^2} &= \frac{1}{IJL} \left(S_C^2 - S_{AC}^2 - S_{BC}^2 + S_{ABC}^2 \right), \\ \widehat{\sigma_{AB}^2} &= \frac{1}{KL} \left(S_{AB}^2 - S_{ABC}^2 \right), \\ \widehat{\sigma_{AC}^2} &= \frac{1}{JL} \left(S_{AC}^2 - S_{ABC}^2 \right), \\ \widehat{\sigma_{BC}^2} &= \frac{1}{IL} \left(S_{BC}^2 - S_{ABC}^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_{ABC}^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right),$$

où
$$S_A^2 = \frac{SC_A}{n_A}$$
, $S_B^2 = \frac{SC_B}{n_B}$, $S_C^2 = \frac{SC_C}{n_C}$, $S_{AB}^2 = \frac{SC_{AB}}{n_{AB}}$, $S_{AC}^2 = \frac{SC_{AC}}{n_{AC}}$, $S_{BC}^2 = \frac{SC_{BC}}{n_{BC}}$, $S_{ABC}^2 = \frac{SC_{ABC}}{n_{ABC}}$ et $S_R^2 = \frac{SC_R}{n_R}$.

Ce sont des estimateurs sans biais⁷.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_C^2}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$,

$$\widehat{\rho}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\sigma_A^2}(\boldsymbol{y}) = \frac{1}{JKL} \left(s_A^2 - s_{AB}^2 - s_{AC}^2 + s_{ABC}^2 \right),$$

$$\widehat{\sigma_B^2}(\boldsymbol{y}) = \frac{1}{IKL} \left(s_B^2 - s_{AB}^2 - s_{BC}^2 + s_{ABC}^2 \right),$$

$$\widehat{\sigma_C^2}(\boldsymbol{y}) = \frac{1}{IJL} \left(s_C^2 - s_{AC}^2 - s_{BC}^2 + s_{ABC}^2 \right),$$

$$\widehat{\sigma_{AB}^2}(\boldsymbol{y}) = \frac{1}{KL} \left(s_{AB}^2 - s_{ABC}^2 \right),$$

⁷La notion de biais d'un estimateur est définie dans le chapitre 15

$$\begin{split} \widehat{\sigma_{AC}^2}(\boldsymbol{y}) &= \frac{1}{JL} \left(s_{AC}^2 - s_{ABC}^2 \right), \\ \widehat{\sigma_{BC}^2}(\boldsymbol{y}) &= \frac{1}{IL} \left(s_{BC}^2 - s_{ABC}^2 \right), \\ \widehat{\sigma_{ABC}^2}(\boldsymbol{y}) &= \frac{1}{L} \left(s_{ABC}^2 - s_R^2 \right), \\ \widehat{\sigma^2}(\boldsymbol{y}) &= \frac{sc_R}{IJK(L-1)} = s_R^2. \end{split}$$

5.3. Modèles à effets mixtes

5.3.1. Sans répétition

Il existe deux possibilités : soit deux facteurs sont fixes et un est aléatoire, soit un facteur est fixe et deux sont aléatoires.

Premier cas : Deux facteurs sont à effets fixes et un facteur est à effets aléatoires.

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles étant notée B_j . Les γ_k représentent un échantillon de taille K prélevé dans une population importante. Nous admettrons que les effets des C_k , les γ_k , sont distribués suivant une loi normale centrée de variance σ_C^2 . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + \epsilon_{i,j,k},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_j = 0,$$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\}, \ \sum_{j=1}^{J} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, \dots, I\},$$

$$\sum_{i=1}^{I} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\} \ \text{et} \ \sum_{j=1}^{K} (\beta\gamma)_{j,k} = 0, \ \forall k \in \{1, \dots, K\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i,B_j,C_k) . Nous supposons que :

$$\mathcal{L}\left(\gamma_{k}\right) = \mathcal{N}(0, \sigma_{C}^{2}), \ \forall \ k, 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\alpha\gamma)_{i,k}\right) = \mathcal{N}(0, \sigma_{AC}^{2}), \ \forall \ (i, k), 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\beta\gamma)_{j,k}\right) = \mathcal{N}(0, \sigma_{BC}^{2}), \ \forall \ (j, k), 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires γ_k , $(\alpha \gamma)_{i,k}$ et $(\beta \gamma)_{j,k}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j,k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0,\sigma^2),$$
$$\operatorname{Cov}(\epsilon_{i,j,k},\epsilon_{l,m,n}) = 0 \text{ si } (i,j,k) \neq (l,m,n) \text{ avec } 1 \leqslant i,l \leqslant I, \ 1 \leqslant j,m \leqslant J \text{ et } 1 \leqslant k,n \leqslant K,$$

ainsi que l'indépendance des effets aléatoires γ_k , $(\alpha \gamma)_{i,k}$ et $(\beta \gamma)_{j,k}$ et des erreurs $\epsilon_{i,j,k}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , sc_B , sc_C , sc_{AB} , sc_{AC} , sc_{BC} , sc_R et sc_{TOT} introduites à la section 5.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Résiduelle	$n_R = (I-1)(J-1)(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AC}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{BC}^2}$	$\mathcal{H}_0^{''}$ ou $\mathcal{H}_1^{''}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_R^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\mathcal{H}_0': \alpha_1 = \alpha_2 = \dots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la

table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0'': \beta_1 = \beta_2 = \dots = \beta_J = 0$$
 contre
$$\mathcal{H}_1'': \text{Il existe } j_0 \in \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0'' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\begin{bmatrix} \mathcal{H}_0^{\prime\prime\prime} : \sigma_C^2 = 0 \end{bmatrix}$$
 contre
$$\begin{bmatrix} \mathcal{H}_1^{\prime\prime\prime} : \sigma_C^2 \neq 0. \end{bmatrix}$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit une loi de Fisher à K-1 et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_{0}^{(4)}: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$

$$\text{contre}$$

$$\mathcal{H}_{1}^{(4)}: \text{Il existe } (i_{0}, j_{0}) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_{0}, j_{0}} \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\label{eq:H0} \boxed{ \begin{aligned} \mathcal{H}_0^{(5)}: \sigma_{AC}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1^{(5)}: \sigma_{AC}^2 &\neq 0. \end{aligned} }$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(6)} : \sigma_{BC}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1^{(6)} : \sigma_{BC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_J}$, $\widehat{\sigma_C^2}$, $\widehat{(\alpha\beta)_{1,1}}$, ..., $\widehat{(\alpha\beta)_{I,J}}$, $\widehat{\sigma_{AC}^2}$, $\widehat{\sigma_{BC}^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , σ_C^2 , $(\alpha\beta)_{1,1}$, ..., $(\alpha\beta)_{I,J}$, σ_{AC}^2 , σ_{BC}^2 , σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha}_i &= Y_{i, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_j = Y_{\bullet, j, \bullet} - \widehat{\mu}, \ 1 \leqslant j \leqslant J, \\ \widehat{\sigma_C^2} &= \frac{1}{IJ} \left(S_C^2 - S_R^2 \right), \\ \widehat{(\alpha \beta)_{i,j}} &= Y_{i,j, \bullet} - Y_{i, \bullet, \bullet} - Y_{\bullet,j, \bullet} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{\sigma_{AC}^2} &= \frac{1}{J} \left(S_{AC}^2 - S_R^2 \right), \\ \widehat{\sigma_{BC}^2} &= \frac{1}{I} \left(S_{BC}^2 - S_R^2 \right), \\ \widehat{\sigma_C^2} &= \frac{SC_R}{(I-1)(J-1)(K-1)} = S_R^2. \end{split}$$

où
$$S_C^2 = \frac{SC_C}{n_C}$$
, $S_{AC}^2 = \frac{SC_{AC}}{n_{AC}}$, $S_{BC}^2 = \frac{SC_{BC}}{n_{BC}}$ et $S_R^2 = \frac{SC_R}{n_R}$. Ce sont des estimateurs sans biais⁸.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, \ldots , $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, $\widehat{\alpha_2}(\boldsymbol{y})$, des paramètres μ , α_1 , \ldots , α_I , β_1 , \ldots , β_J , σ_C^2 , $(\alpha\beta)_{1,1}$, \ldots , $(\alpha\beta)_{I,J}$, σ_{AC}^2 , σ_{BC}^2 , σ_C^2 du modèle se

⁸La notion de biais d'un estimateur est définie dans le chapitre 15

déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_{j}(\boldsymbol{y}) = y_{\bullet,j,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma_{C}^{2}}(\boldsymbol{y}) = \frac{1}{IJ} \left(s_{C}^{2} - s_{R}^{2} \right),$$

$$\widehat{(\alpha\beta)_{i,j}}(\boldsymbol{y}) = y_{i,j,\bullet} - y_{i,\bullet,\bullet} - y_{\bullet,j,\bullet} + \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma_{AC}^{2}}(\boldsymbol{y}) = \frac{1}{J} \left(s_{AC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}}(\boldsymbol{y}) = \frac{1}{I} \left(s_{BC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}}(\boldsymbol{y}) = \frac{s_{CR}}{(I-1)(J-1)(K-1)} = s_{R}^{2}.$$

Deuxième cas : Un facteur est à effets fixes et deux facteurs sont à effets aléatoires.

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale centrée de variance σ_B^2 . Les γ_k représentent un échantillon de taille K prélevé dans une population importante. Nous admettrons que les effets des C_k , les γ_k , sont distribués suivant une loi normale centrée de variance σ_C^2 . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons une mesure d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + \epsilon_{i,j,k},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K,$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0,$$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\} \ \text{et} \ \sum_{i=1}^{I} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j, C_k) . Nous supposons que :

$$\mathcal{L}(\beta_{j}) = \mathcal{N}(0, \sigma_{B}^{2}), \ \forall \ j, 1 \leqslant j \leqslant J,$$

$$\mathcal{L}(\gamma_{k}) = \mathcal{N}(0, \sigma_{C}^{2}), \ \forall \ k, 1 \leqslant k \leqslant K,$$

$$\mathcal{L}((\alpha\beta)_{i,j}) = \mathcal{N}(0, \sigma_{AB}^{2}), \ \forall \ (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\mathcal{L}((\alpha\gamma)_{i,k}) = \mathcal{N}(0, \sigma_{AC}^{2}), \ \forall \ (i,k), 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}((\beta\gamma)_{j,k}) = \mathcal{N}(0, \sigma_{BC}^{2}), \ \forall \ (j,k), 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$ et $(\beta\gamma)_{j,k}$.

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j,k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i,j,k) \neq (l,m,n) \text{ avec } 1 \leqslant i,l \leqslant I, \ 1 \leqslant j,m \leqslant J \text{ et } 1 \leqslant k,n \leqslant K,$$

ainsi que l'indépendance des effets aléatoires β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$ et $(\beta\gamma)_{j,k}$ et des erreurs $\epsilon_{i,j,k}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , sc_B , sc_C , sc_{AB} , sc_{AC} , sc_{BC} , sc_R et sc_{TOT} introduites à la section 5.1.1.

Nous rappelons la relation fondamentale de l'ANOVA :

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Résiduelle	$n_R = (I-1)(J-1)(K-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Chapitre 5. Analyse de la variance à trois facteurs

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AB}^2 + s_{AC}^2 - s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{BC}^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_{BC}^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_R^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_R^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\mathcal{H}_0':\alpha_1=\alpha_2=\cdots=\alpha_I=0$$
 contre
$$\mathcal{H}_1':\text{Il existe }i_0\in\{1,2,\ldots,I\}\text{ tel que }\alpha_{i_0}\neq0.$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire

qui suit approximativement⁹ une loi de Fisher à I-1 et n' degrés de liberté avec :

$$n' = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_R^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\begin{bmatrix} \mathcal{H}_0'' : \sigma_B^2 = 0 \\ \text{contre} \\ \end{bmatrix}$$
$$\mathcal{H}_1'' : \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table.

$$\begin{bmatrix} \mathcal{H}_0''' : \sigma_C^2 = 0 \\ \text{contre} \\ \end{bmatrix}$$

$$\mathcal{H}_1''' : \sigma_C^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit une loi de Fisher à K-1 et (J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(4)}: \sigma_{AB}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1^{(4)}: \sigma_{AB}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

⁹Nous utilisons toujours l'approximation de Satterthwaite.

$$\mathcal{H}_0^{(5)} : \sigma_{AC}^2 = 0$$
contre
$$\mathcal{H}_1^{(5)} : \sigma_{AC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(6)} : \sigma_{BC}^2 = 0$$
contre
$$\mathcal{H}_1^{(6)} : \sigma_{BC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma_C^2}$, $\widehat{\sigma_{AB}^2}$, $\widehat{\sigma_{AC}^2}$, $\widehat{\sigma_{BC}^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ_C^2 , σ_{AB}^2 , σ_{AC}^2 , σ_{AC}^2 , σ_{BC}^2 , σ_D^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet} = \overline{y}, \\ \widehat{\alpha}_i &= Y_{i, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\sigma_B^2} &= \frac{1}{IK} \left(S_B^2 - S_{BC}^2 \right), \ \widehat{\sigma_C^2} = \frac{1}{IJ} \left(S_C^2 - S_{BC}^2 \right), \\ \widehat{\sigma_{AB}^2} &= \frac{1}{K} \left(S_{AB}^2 - S_R^2 \right), \\ \widehat{\sigma_{AC}^2} &= \frac{1}{J} \left(S_{AC}^2 - S_R^2 \right), \\ \widehat{\sigma_{BC}^2} &= \frac{1}{I} \left(S_{BC}^2 - S_R^2 \right), \\ \widehat{\sigma_D^2} &= \frac{1}{I} \left(S_{BC}^2 - S_R^2 \right), \\ \widehat{\sigma_D^2} &= \frac{SC_R}{(I-1)(J-1)(K-1)} = S_R^2. \end{split}$$

où
$$S_B^2 = \frac{SC_B}{n_B}, \ S_C^2 = \frac{SC_C}{n_C}, \ S_{AB}^2 = \frac{SC_{AB}}{n_{AB}}, \ S_{AC}^2 = \frac{SC_{AC}}{n_{AC}}, \ S_{BC}^2 = \frac{SC_{BC}}{n_{BC}} \ \text{et} \ S_R^2 = \frac{SC_R}{n_R}.$$
 Ce sont des estimateurs sans biais¹⁰.

¹⁰La notion de biais d'un estimateur est définie dans le chapitre 15

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_C^2}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_{BC}^2}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_C^2}(\boldsymbol{y})$, des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ_C^2 , σ_{AB}^2 , σ_{AC}^2 , σ_{BC}^2 , σ_C^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\sigma_{B}^{2}}(\boldsymbol{y}) = \frac{1}{IK} \left(s_{B}^{2} - s_{BC}^{2} \right), \ \widehat{\sigma_{C}^{2}}(\boldsymbol{y}) = \frac{1}{IJ} \left(s_{C}^{2} - s_{BC}^{2} \right),$$

$$\widehat{\sigma_{AB}^{2}}(\boldsymbol{y}) = \frac{1}{K} \left(s_{AB}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{AC}^{2}}(\boldsymbol{y}) = \frac{1}{J} \left(s_{AC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}}(\boldsymbol{y}) = \frac{1}{I} \left(s_{BC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}}(\boldsymbol{y}) = \frac{sc_{R}}{(I-1)(J-1)(K-1)} = s_{R}^{2}.$$

Remarque 5.3.1. Ainsi lorsque deux facteurs sont aléatoires, et que nous cherchons à tester l'existence d'un effet du troisième facteur, ici à effets fixes, nous devons utiliser une approximation, ici celle de Satterthwaite. Cette situation se démarque nettement de celle où tous les facteurs sauf au plus un sont à effets fixes.

5.3.2. Avec répétitions

Il existe deux possibilités : soit deux facteurs sont fixes et un est aléatoire, soit un facteur est fixe et deux sont aléatoires.

Premier cas : Deux facteurs sont à effets fixes et un facteur est à effets aléatoires.

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles étant notée B_j . Les γ_k représentent un échantillon de taille K prélevé dans une population importante. Nous admettrons que les effets des C_k , les γ_k , sont distribués suivant une loi normale centrée de variance σ_C^2 . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons $L \geqslant 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + (\alpha\beta\gamma)_{i,j,k} + \epsilon_{i,j,k,l},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L,$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_j = 0,$$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\}, \ \sum_{j=1}^{J} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, \dots, I\},$$

$$\sum_{i=1}^{I} (\alpha \gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\} \ \text{et} \ \sum_{j=1}^{J} (\beta \gamma)_{j,k} = 0, \ \forall k \in \{1, \dots, K\},$$

$$\sum_{i=1}^{I} (\alpha \beta \gamma)_{i,j,k} = 0, \ \forall (j,k) \in \{1, \dots, J\} \times \{1, \dots, K\},$$

$$\sum_{j=1}^{J} (\alpha \beta \gamma)_{i,j,k} = 0, \ \forall (i,k) \in \{1, \dots, I\} \times \{1, \dots, K\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i,B_j,C_k) lors du l-ème essai. Nous supposons que :

$$\mathcal{L}\left(\gamma_{k}\right) = \mathcal{N}(0, \sigma_{C}^{2}), \ \forall \ k, 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\alpha\gamma)_{i,k}\right) = \mathcal{N}(0, \sigma_{AC}^{2}), \ \forall \ (i, k), 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\beta\gamma)_{j,k}\right) = \mathcal{N}(0, \sigma_{BC}^{2}), \ \forall \ (j, k), 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\alpha\beta\gamma)_{i,j,k}\right) = \mathcal{N}(0, \sigma_{ABC}^{2}), \ \forall \ (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires γ_k , $(\alpha \gamma)_{i,k}$, $(\beta \gamma)_{j,k}$, $(\alpha \beta \gamma)_{i,j,k}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L,$$

ainsi que l'indépendance des effets aléatoires γ_k , $(\alpha \gamma)_{i,k}$, $(\beta \gamma)_{j,k}$ et $(\alpha \beta \gamma)_{i,j,k}$ et des erreurs $\epsilon_{i,j,k,l}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , sc_B , sc_C , sc_{AB} , sc_{AC} , sc_{BC} , sc_{ABC} , sc_R et sc_{TOT} introduites à la section 5.1.2.

Nous rappelons la relation fondamentale de l'ANOVA:

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_{ABC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Interaction ABC	$n_{ABC} = (I-1)(J-1)(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJKL - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AC}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{BC}^2}$	$\mathcal{H}_0^{''}$ ou $\mathcal{H}_1^{''}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_R^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_{ABC}^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_R^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Interaction ABC	sc_{ABC}	n_{ABC}	$s_{ABC}^2 = \frac{sc_{ABC}}{n_{ABC}}$	$f_{ABC} = \frac{s_{ABC}^2}{s_R^2}$	$\mathcal{H}_0^{(7)}$ ou $\mathcal{H}_1^{(7)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{\mathcal{H}_0': \alpha_1 = \alpha_2 = \dots = \alpha_I = 0}$$

contre
$$\mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0'': \beta_1 = \beta_2 = \dots = \beta_J = 0$$
 contre
$$\mathcal{H}_1'': \text{Il existe } j_0 \in \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0'' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\begin{bmatrix} \mathcal{H}_0^{"'} : \sigma_C^2 = 0 \end{bmatrix}$$
 contre
$$\begin{bmatrix} \mathcal{H}_1^{"'} : \sigma_C^2 \neq 0. \end{bmatrix}$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit une loi de Fisher à K-1 et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_{0}^{(4)}: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$
contre
$$\mathcal{H}_{1}^{(4)}: \text{Il existe } (i_{0}, j_{0}) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_{0}, j_{0}} \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(5)} : \sigma_{AC}^2 = 0$$
 contre

$$\mathcal{H}_1^{(5)}: \sigma_{AC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(6)}: \sigma_{BC}^2 = 0$$

contre

$$\mathcal{H}_1^{(6)}: \sigma_{BC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(7)}: \sigma_{ABC}^2 = 0$$

contre

$$\mathcal{H}_1^{(7)}: \sigma_{ABC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(7)}$ précédente d'absence d'effet de l'interaction d'ordre trois des facteurs A, B et C et lorsque les conditions de validité du modèle sont respectées, f_{ABC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{ABC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs
$$\widehat{\mu}$$
, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_J}$, $\widehat{\sigma_C^2}$, $\widehat{(\alpha\beta)_{1,1}}$, ..., $\widehat{(\alpha\beta)_{I,J}}$, $\widehat{\sigma_{AC}^2}$, $\widehat{\sigma_{BC}^2}$, $\widehat{\sigma_{ABC}^2}$, $\widehat{\sigma_C^2}$ des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , σ_C^2 , $(\alpha\beta)_{1,1}$, ..., $(\alpha\beta)_{I,J}$, σ_{AC}^2 , σ_{BC}^2 , σ_{ABC}^2 , σ_C^2

du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet,\bullet,\bullet,\bullet} = \overline{Y}, \\ \widehat{\alpha}_i &= Y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_j = Y_{\bullet,j,\bullet,\bullet} - \widehat{\mu}, \ 1 \leqslant j \leqslant J, \\ \widehat{\sigma_C^2} &= \frac{1}{IJL} \left(S_C^2 - S_R^2 \right), \\ \widehat{(\alpha\beta)_{i,j}} &= Y_{i,j,\bullet,\bullet} - Y_{i,\bullet,\bullet,\bullet} - Y_{\bullet,j,\bullet,\bullet} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{\sigma_{AC}^2} &= \frac{1}{JL} \left(S_{AC}^2 - S_R^2 \right), \\ \widehat{\sigma_{BC}^2} &= \frac{1}{IL} \left(S_{BC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{$$

où
$$S_C^2 = \frac{SC_C}{n_C}$$
, $S_{AC}^2 = \frac{SC_{AC}}{n_{AC}}$, $S_{BC}^2 = \frac{SC_{BC}}{n_{BC}}$, $S_{ABC}^2 = \frac{SC_{ABC}}{n_{ABC}}$ et $S_R^2 = \frac{SC_R}{n_R}$. Ce sont des estimateurs sans biais¹¹.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_1}(\boldsymbol{y})$, ..., $\widehat{\beta_J}(\boldsymbol{y})$, $\widehat{\sigma_C^2}(\boldsymbol{y})$, $\widehat{(\alpha\beta)_{1,1}}(\boldsymbol{y})$, ..., $\widehat{(\alpha\beta)_{I,J}}(\boldsymbol{y})$, $\widehat{\sigma_{AC}^2}(\boldsymbol{y})$, $\widehat{\sigma_{BC}^2}(\boldsymbol{y})$, $\widehat{\sigma_{ABC}^2}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$ des paramètres μ , α_1 , ..., α_I , β_1 , ..., β_J , σ_C^2 , $(\alpha\beta)_{1,1}$, ..., $(\alpha\beta)_{I,J}$, σ_{AC}^2 , σ_{BC}^2 , σ_{ABC}^2 , σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \ \widehat{\beta}_{j}(\boldsymbol{y}) = y_{\bullet,j,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma_{C}^{2}}(\boldsymbol{y}) = \frac{1}{IJL} \left(s_{C}^{2} - s_{R}^{2} \right),$$

$$\widehat{(\alpha\beta)_{i,j}}(\boldsymbol{y}) = y_{i,j,\bullet,\bullet} - y_{i,\bullet,\bullet,\bullet} - y_{\bullet,j,\bullet,\bullet} + \widehat{\mu}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\sigma_{AC}^{2}}(\boldsymbol{y}) = \frac{1}{JL} \left(s_{AC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{BC}^{2}}(\boldsymbol{y}) = \frac{1}{IL} \left(s_{BC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{ABC}^{2}}(\boldsymbol{y}) = \frac{1}{L} \left(s_{ABC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{ABC}^{2}}(\boldsymbol{y}) = \frac{1}{L} \left(s_{ABC}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{ABC}^{2}}(\boldsymbol{y}) = \frac{1}{L} \left(s_{ABC}^{2} - s_{R}^{2} \right),$$

Deuxième cas : Un facteur est à effets fixes et deux facteurs sont à effets aléatoires.

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les β_j représentent un échantillon de taille J prélevé dans une population importante. Nous admettrons que les effets des B_j , les β_j , sont distribués suivant une loi normale

¹¹La notion de biais d'un estimateur est définie dans le chapitre 15

centrée de variance σ_B^2 . Les γ_k représentent un échantillon de taille K prélevé dans une population importante. Nous admettrons que les effets des C_k , les γ_k , sont distribués suivant une loi normale centrée de variance σ_C^2 . Pour chacun des couples de modalités (A_i, B_j, C_k) nous effectuons $L \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + (\alpha\beta\gamma)_{i,j,k} + \epsilon_{i,j,k,l},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L,$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0,$$

$$\sum_{i=1}^{I} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, \dots, J\} \ \text{et} \ \sum_{i=1}^{I} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1, \dots, K\},$$

$$\sum_{i=1}^{I} (\alpha\beta\gamma)_{i,j,k} = 0, \ \forall (j,k) \in \{1, \dots, J\} \times \{1, \dots, K\},$$

où $Y_{i,j,k}$ est la valeur prise par la réponse Y dans les conditions (A_i, B_j, C_k) lors du l-ème essai. Nous supposons que :

$$\mathcal{L}\left(\beta_{j}\right) = \mathcal{N}(0, \sigma_{B}^{2}), \ \forall \ j, 1 \leqslant j \leqslant J,$$

$$\mathcal{L}\left(\gamma_{k}\right) = \mathcal{N}(0, \sigma_{C}^{2}), \ \forall \ k, 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\alpha\beta)_{i,j}\right) = \mathcal{N}(0, \sigma_{AB}^{2}), \ \forall \ (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\mathcal{L}\left((\alpha\gamma)_{i,k}\right) = \mathcal{N}(0, \sigma_{AC}^{2}), \ \forall \ (i, k), 1 \leqslant i \leqslant I, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\beta\gamma)_{j,k}\right) = \mathcal{N}(0, \sigma_{BC}^{2}), \ \forall \ (j, k), 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

$$\mathcal{L}\left((\alpha\beta\gamma)_{i,j,k}\right) = \mathcal{N}(0, \sigma_{ABC}^{2}), \ \forall \ (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$, $(\beta\gamma)_{j,k}$ et $(\alpha\beta\gamma)_{i,j,k}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L,$$

ainsi que l'indépendance des effets aléatoires β_j , γ_k , $(\alpha\beta)_{i,j}$, $(\alpha\gamma)_{i,k}$, $(\beta\gamma)_{j,k}$ et $(\alpha\beta\gamma)_{i,j,k}$ et des erreurs $\epsilon_{i,j,k,l}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , sc_B , sc_C , sc_{AB} , sc_{AC} , sc_{BC} , sc_{ABC} , sc_R et sc_{TOT} introduites à la section 5.1.2.

Nous rappelons la relation fondamentale de l'ANOVA :

$$sc_{TOT} = sc_A + sc_B + sc_C + sc_{AB} + sc_{AC} + sc_{BC} + sc_{ABC} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B	$n_B = J - 1$
Facteur C	$n_C = K - 1$
Interaction AB	$n_{AB} = (I-1)(J-1)$
Interaction AC	$n_{AC} = (I-1)(K-1)$
Interaction BC	$n_{BC} = (J-1)(K-1)$
Interaction ABC	$n_{ABC} = (I-1)(J-1)(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJK - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{AB}^2 + s_{AC}^2 - s_{ABC}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B	sc_B	n_B	$s_B^2 = \frac{sc_B}{n_B}$	$f_B = \frac{s_B^2}{s_{BC}^2}$	$\mathcal{H}_0^{\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime}$
Facteur C	sc_C	n_C	$s_C^2 = \frac{sc_C}{n_C}$	$f_C = \frac{s_C^2}{s_{BC}^2}$	$\mathcal{H}_0^{\prime\prime\prime}$ ou $\mathcal{H}_1^{\prime\prime\prime}$
Interaction AB	sc_{AB}	n_{AB}	$s_{AB}^2 = \frac{sc_{AB}}{n_{AB}}$	$f_{AB} = \frac{s_{AB}^2}{s_{ABC}^2}$	$\mathcal{H}_0^{(4)}$ ou $\mathcal{H}_1^{(4)}$
Interaction AC	sc_{AC}	n_{AC}	$s_{AC}^2 = \frac{sc_{AC}}{n_{AC}}$	$f_{AC} = \frac{s_{AC}^2}{s_{ABC}^2}$	$\mathcal{H}_0^{(5)}$ ou $\mathcal{H}_1^{(5)}$
Interaction BC	sc_{BC}	n_{BC}	$s_{BC}^2 = \frac{sc_{BC}}{n_{BC}}$	$f_{BC} = \frac{s_{BC}^2}{s_R^2}$	$\mathcal{H}_0^{(6)}$ ou $\mathcal{H}_1^{(6)}$
Interaction ABC	sc_{ABC}	n_{ABC}	$s_{ABC}^2 = \frac{sc_{ABC}}{n_{ABC}}$	$f_{ABC} = \frac{s_{ABC}^2}{s_R^2}$	$\mathcal{H}_0^{(7)}$ ou $\mathcal{H}_1^{(7)}$
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\left[\mathcal{H}'_0 : \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 \right]$$
 contre

$$\mathcal{H}_1'$$
: Il existe $i_0 \in \{1, 2, \dots, I\}$ tel que $\alpha_{i_0} \neq 0$.

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit **approximativement**¹² une loi de Fisher à I-1 et n' degrés de liberté avec :

$$n' = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_R^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_R^2\right)^2}{(I-1)(J-1)(K-1)}}.$$

Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\left[\begin{aligned} \mathcal{H}_0'' : \sigma_B^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1'' : \sigma_B^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B et lorsque les conditions de validité du modèle sont respectées, f_B est la réalisation d'une variable aléatoire qui suit une loi de Fisher à J-1 et (J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_B est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{aligned} \mathcal{H}_0^{\prime\prime\prime} &: \sigma_C^2 = 0 \\ \end{aligned} \right] \\ \text{contre} \\ \boxed{ \mathcal{H}_1^{\prime\prime\prime} &: \sigma_C^2 \neq 0. }$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C et lorsque les conditions de validité du modèle sont respectées, f_C est la réalisation d'une variable aléatoire qui suit une loi de Fisher à K-1 et (J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_C est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(4)} : \sigma_{AB}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1^{(4)} : \sigma_{AB}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(4)}$ précédente d'absence d'effet de l'interaction des facteurs A et B et lorsque les conditions de validité du modèle sont respectées, f_{AB} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1)

¹²Nous utilisons toujours l'approximation de Satterthwaite.

degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AB} est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{array}{c} \mathcal{H}_0^{(5)} : \sigma_{AC}^2 = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1^{(5)} : \sigma_{AC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(5)}$ précédente d'absence d'effet de l'interaction des facteurs A et C et lorsque les conditions de validité du modèle sont respectées, f_{AC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{AC} est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{(6)} : \sigma_{BC}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1^{(6)} : \sigma_{BC}^2 \neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(6)}$ précédente d'absence d'effet de l'interaction des facteurs B et C et lorsque les conditions de validité du modèle sont respectées, f_{BC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{BC} est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{array}{c} \mathcal{H}_{0}^{(7)}:\sigma_{ABC}^{2}=0 \\ \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_{1}^{(7)}:\sigma_{ABC}^{2}\neq 0.$$

Sous l'hypothèse nulle $\mathcal{H}_0^{(7)}$ précédente d'absence d'effet de l'interaction d'ordre trois des facteurs A, B et C et lorsque les conditions de validité du modèle sont respectées, f_{ABC} est la réalisation d'une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_{ABC} est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma_B^2}$, $\widehat{\sigma_C^2}$, $\widehat{\sigma_{AB}^2}$, $\widehat{\sigma_{AC}^2}$, $\widehat{\sigma_{BC}^2}$, $\widehat{\sigma_{ABC}^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ_C^2 , σ_{AB}^2 , σ_{AC}^2 , σ_{ABC}^2 ,

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha_i} &= Y_{i, \bullet, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\sigma_B^2} &= \frac{1}{IKL} \left(S_B^2 - S_{BC}^2 \right), \ \widehat{\sigma_C^2} = \frac{1}{IJL} \left(S_C^2 - S_{BC}^2 \right), \\ \widehat{\sigma_{AB}^2} &= \frac{1}{KL} \left(S_{AB}^2 - S_{ABC}^2 \right), \\ \widehat{\sigma_{AC}^2} &= \frac{1}{JL} \left(S_{AC}^2 - S_{ABC}^2 \right), \\ \widehat{\sigma_{BC}^2} &= \frac{1}{IL} \left(S_{BC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_{ABC}^2} &= \frac{1}{L} \left(S_{ABC}^2 - S_R^2 \right), \\ \widehat{\sigma_A^2} &= \frac{SC_R}{IJK(L-1)} = S_R^2. \end{split}$$

où
$$S_B^2 = \frac{SC_B}{n_B}$$
, $S_C^2 = \frac{SC_C}{n_C}$, $S_{AB}^2 = \frac{SC_{AB}}{n_{AB}}$, $S_{AC}^2 = \frac{SC_{AC}}{n_{AC}}$, $S_{BC}^2 = \frac{SC_{BC}}{n_{BC}}$, $S_{ABC}^2 = \frac{SC_{ABC}}{n_{ABC}}$ et $S_R^2 = \frac{SC_R}{n_R}$.

Ce sont des estimateurs sans biais¹³.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\sigma_B^2}(\boldsymbol{y})$, $\widehat{\sigma_C^2}(\boldsymbol{y})$, $\widehat{\sigma_{AB}^2}(\boldsymbol{y})$, $\widehat{\sigma_{ABC}^2}(\boldsymbol{y})$, $\widehat{\sigma_{ABC}^2}(\boldsymbol{y})$, $\widehat{\sigma_{ABC}^2}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$ des paramètres μ , α_1 , ..., α_I , σ_B^2 , σ_C^2 , σ_{AB}^2 , σ_{AC}^2 , σ_{BC}^2 , σ_{ABC}^2 , σ_A^2 du modèle se déduisent des formules ci-dessus :

$$\begin{split} \widehat{\mu}(\boldsymbol{y}) &= y_{\bullet,\bullet,\bullet,\bullet} = \overline{y}, \\ \widehat{\alpha}_i(\boldsymbol{y}) &= y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I, \\ \widehat{\sigma_B^2}(\boldsymbol{y}) &= \frac{1}{IKL} \left(s_B^2 - s_{BC}^2 \right), \ \widehat{\sigma_C^2}(\boldsymbol{y}) = \frac{1}{IJL} \left(s_C^2 - s_{BC}^2 \right), \\ \widehat{\sigma_{AB}^2}(\boldsymbol{y}) &= \frac{1}{KL} \left(s_{AB}^2 - s_{ABC}^2 \right), \\ \widehat{\sigma_{AC}^2}(\boldsymbol{y}) &= \frac{1}{JL} \left(s_{AC}^2 - s_{ABC}^2 \right), \\ \widehat{\sigma_{BC}^2}(\boldsymbol{y}) &= \frac{1}{IL} \left(s_{BC}^2 - s_R^2 \right), \\ \widehat{\sigma_{ABC}^2}(\boldsymbol{y}) &= \frac{1}{L} \left(s_{ABC}^2 - s_R^2 \right), \\ \widehat{\sigma_{ABC}^2}(\boldsymbol{y}) &= \frac{1}{L} \left(s_{ABC}^2 - s_R^2 \right), \\ \widehat{\sigma_{ABC}^2}(\boldsymbol{y}) &= \frac{s_{CR}}{IJK(L-1)} = s_R^2. \end{split}$$

¹³La notion de biais d'un estimateur est définie dans le chapitre 15

Chapitre 6

Analyse de la variance à trois facteurs totalement emboîtés

Dans tout ce chapitre, nous utilisons les notations définies à la section 0.1.

Nous sommes dans la situation particulière, semblable à celle du chapitre 4, où les effets des niveaux du facteur B n'ont pas de signification concrète, par exemple ces niveaux dépendent du niveau du facteur A considéré et une étude des effets principaux du facteur B n'a pas de pertinence. Nous compliquons la situation en rajoutant un niveau d'imbrication par rapport aux modèles exposés au chapitre 4. Ainsi le facteur C est emboîté dans le facteur B qui lui même est emboîté dans le facteur A.

Un tel plan d'expérience est dit complètement hiérarchisé ou totalement emboîté¹. Il n'est utilisable que si nous disposons de répétitions. Dans le cas contraire où les essais ne seraient pas répétés, l'effet dû au facteur C ne pourra être étudié et le modèle que nous devrons utiliser pour étudier les données sera l'un de ceux exposés au chapitre 4.

Pour signaler cette situation particulière, nous notons les effets du facteur B par $\beta_{j(i)}$ et ceux du facteur C par $\gamma_{k(j(i))}$.

6.1. Modèles à effets fixes

6.1.1. Avec répétitions

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles dépendant du niveau A_i du facteur A et étant alors notée $B_{j(i)}$. Un facteur contrôlé C se présente sous K modalités, chacune d'entre elles dépendant du niveau $B_{j(i)}$ du facteur B et donc du niveau A_i du facteur A et étant alors notée $C_{k(j(i))}$. Pour chacun des couples de modalités $(A_i, B_{j(i)}, C_{k(j(i))})$ nous effectuons $L \ge 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

¹en anglais completely nested model ou completely hierarchical model.

Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_{j(i)} + \gamma_{k(j(i))} + \epsilon_{i,j,k,l},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L,$$
 avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_{j(i)} = 0, \ \forall i \in \{1, \dots, I\},$$
 et
$$\sum_{l=1}^{K} \gamma_{k(j(i))} = 0, \ \forall (i,j) \in \{1, \dots, I\} \times \{1, \dots, J\},$$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)}, C_{k(j(i))})$ lors du l-ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L.$$

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous regroupons les valeurs que peut prendre la réponse Y dans les conditions $(A_i, B_{j(i)}, C_{k(j(i))})$ lors des L essais dans le tableau 6.1.

Nous rappelons que la variation théorique du au facteur A est définie par :

$$SC_A = JKL \sum_{i=1}^{I} (Y_{i,\bullet,\bullet,\bullet} - Y_{\bullet,\bullet,\bullet,\bullet})^2.$$

Nous rappelons que la variation théorique due au facteur B dans A est définie par :

$$SC_{B|A} = KL \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j,\bullet,\bullet} - Y_{i,\bullet,\bullet,\bullet})^2.$$

La variation théorique due au facteur C dans B qui lui-même est emboîté dans A est définie par :

$$SC_{C|B|A} = L \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k,\bullet} - Y_{i,j,\bullet,\bullet})^2.$$

La variation résiduelle théorique est quant à elle définie par :

$$SC_R = L \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{i,j,k,l} - Y_{i,j,k,\bullet})^2.$$

		$C_{K(J(I))}$	$Y_{I,J,K,1}$	•••	$Y_{I,J,K,L}$
	$B_{J(I)}$:	•••	:
		$C_{1(J(I))} \mid \cdots \mid C_{K(J(I))}$	$Y_{I,J,1,1}$		$Y_{I,J,1,L} \mid \dots \mid$
A_I	:	•	:	•••	:
		$C_{1(1(I))} \mid \cdots \mid C_{K(1(I))} \mid$	$Y_{I,1,K,1}$		$Y_{I,1,K,L} \parallel \dots \parallel$
	$B_{1(I)}$	•		•••	:
		$C_{1(1(I))}$	$Y_{I,1,1,1}$		$Y_{I,1,1,L}$
		:	÷	:	:
:	:	:	:	:	:
	÷	:	:	:	:
		$C_{K(J(1))}$	$Y_{1,J,K,1}$		$Y_{1,J,K,L} $
	$B_{J(1)}$:	:	•••	:
		$C_{1(J(1))}$	$Y_{1,J,1,1}$	•••	$Y_{1,J,1,L}$
A_1	:	:	:		:
		$C_{K(1(1))}$	$Y_{1,1,K,1}$		$Y_{1,1,K,L}$
	$\overline{B_{1(1)}}$		·	•••	·
		$C_{1(1(1))}$	$Y_{1,1,1,1}$		$Y_{1,1,1,L}$
$\overline{}$	$\overline{}$		-		-

TAB. 6.1 – Représentation des variables aléatoires de réponse en fonction des niveaux des trois facteurs d'un plan complètement

\Box	$\overline{}$				
		$C_{K(J(I))}$	$y_{I,J,K,1}$		$ \dots y_{I,J,K,L}$
	$B_{J(I)}$:	•••	• • •
		$C_{1(J(I))} \cup C_{K(J(I))}$	$y_{I,J,1,1}$	•••	$y_{I,J,1,L}$
A_I	:		:		•
		$C_{1(1(I))} \mid \cdots \mid C_{K(1(I))} \mid$	$y_{I,1,K,1}$		$y_{I,1,1,L} \mid \cdots \mid y_{I,1,K,L} \mid$
	$B_{1(I)}$:		:
		$C_{1(1(I))}$	$y_{I,1,1,1}$		$y_{I,1,1,L}$
	·		:	•	
	·	:	:	:	:
			:	:	•••
		$C_{K(J(1))}$	$y_{1,J,K,1}$		$y_{1,J,K,L} \parallel \cdots \mid \cdots \mid \cdots$
	$B_{J(1)}$:		:
		$C_{1(J(1))}$	$y_{1,J,1,1}$		$y_{1,J,1,L}$
A_1			:		:
		$C_{K(1(1))}$	$y_{1,1,K,1}$		$y_{1,1,K,L}$
	$B_{1(1)}$		•	•••	:
		$C_{1(1(1))}$	$y_{1,1,1,1}$		$y_{1,1,1,L}$

TAB. 6.2 – Représentation de la liste de données expérimentales \boldsymbol{y} en fonction des niveaux des trois facteurs d'un plan complètement emboîté

Enfin la variation totale théorique est égale à :

$$SC_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} (Y_{i,j,k,l} - Y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

Nous rappelons la relation fondamentale de l'ANOVA:

$$SC_{TOT} = SC_A + SC_{B|A} + SC_{C|B|A} + SC_R.$$

La liste \boldsymbol{y} des données expérimentales $y_{1,1,1,1},\ldots,y_{1,1,1,L},\ldots,y_{I,1,1,1},\ldots,y_{I,1,1,L},y_{1,2,1,1},\ldots,y_{I,J,L},y_{1,1,2,1},\ldots,y_{I,J,K,L}$ permet de construire le tableau 6.2 qui est une réalisation du tableau 6.1.

La variation due au facteur A observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_A = JKL \sum_{i=1}^{I} (y_{i,\bullet,\bullet,\bullet} - y_{\bullet,\bullet,\bullet,\bullet})^2.$$

La variation due au facteur B dans A observée sur la liste de données y est définie par :

$$sc_{B|A} = KL \sum_{i=1}^{I} \sum_{j=1}^{J} (y_{i,j,\bullet,\bullet} - y_{i,\bullet,\bullet,\bullet})^2.$$

La variation due au facteur C dans B qui lui même est dans A observée sur la liste de données \boldsymbol{y} est définie par :

$$sc_{C|B|A} = L \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k,\bullet} - y_{i,j,\bullet,\bullet})^2.$$

La variation résiduelle observée sur la liste de données y est quant à elle définie par :

$$sc_R = L \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (y_{i,j,k,l} - y_{i,j,k,\bullet})^2.$$

Enfin la variation totale observée sur la liste de données y est égale à :

$$sc_{TOT} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{L} (y_{i,j,k,l} - y_{\bullet,\bullet,\bullet,\bullet})^{2}.$$

La relation fondamentale de l'ANOVA reste valable lorsqu'elle est évaluée sur la liste de données y:

$$sc_{TOT} = sc_A + sc_{B|A} + sc_{C|B|A} + sc_R$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Facteur C dans B	$n_{C B A} = IJ(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJKL - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_R^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_R^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Facteur C dans B	$sc_{C B A}$	$n_{C B A}$	$s_{C B A}^2 = \frac{sc_{C B A}}{n_{C B A}}$	$f_{C B A} = \frac{s_{C B A}^2}{s_R^2}$	\mathcal{H}_0''' ou \mathcal{H}_1'''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \begin{aligned} \mathcal{H}_0': \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \\ \text{contre} \end{aligned}}$$

$$\boxed{ \begin{aligned} \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \ldots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{aligned}}$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et IJK(L-1) degrés de liberté. Nous concluons alors

à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\label{eq:contre} \boxed{ \mathcal{H}_0'': \beta_{1(1)} = \beta_{2(1)} = \dots = \beta_{J(1)} = \beta_{1(2)} = \dots = \beta_{J(I)} = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1'': \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0(i_0)} \neq 0. }$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B dans A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{B|A}$ est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0''': \gamma_{1(1(1))} = \gamma_{2(1(1))} = \dots = \gamma_{K(1(1))} = \gamma_{1(1(2))} = \dots = \gamma_{K(J(I))} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1''': \exists (i_0, j_0, k_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \times \{1, 2, \dots, K\} \mid \gamma_{k_0(j_0(i_0))} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C dans B et lorsque les conditions de validité du modèle sont respectées, $f_{C|B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à IJ(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{C|B|A}$ est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_{1(1)}}$, ..., $\widehat{\beta_{J(I)}}$, $\widehat{\gamma_{1(1(1))}}$, ..., $\widehat{\gamma_{K(J(I))}}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , $\beta_{1(1)}$, ..., $\beta_{J(I)}$, $\gamma_{1(1(1))}$, ..., $\gamma_{K(J(I))}$, σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha_i} &= Y_{i, \bullet, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\beta_{j(i)}} &= Y_{i, j, \bullet, \bullet} - Y_{i, \bullet, \bullet, \bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{\gamma_{k(j(i))}} &= Y_{i, j, k, \bullet} - Y_{i, j, \bullet, \bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \\ \widehat{\sigma^2} &= \frac{SC_R}{IJK(L-1)} = S_R^2. \end{split}$$

Ce sont des estimateurs sans biais².

²La notion de biais d'un estimateur est définie dans le chapitre 15

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, ..., $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_{1(1)}}(\boldsymbol{y})$, ..., $\widehat{\beta_{J(I)}}(\boldsymbol{y})$, $\widehat{\gamma_{1(1(1))}}(\boldsymbol{y})$, ..., $\widehat{\gamma_{K(J(I))}}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$ des paramètres μ , α_1 , ..., α_I , $\beta_{1(1)}$, ..., $\beta_{J(I)}$, $\gamma_{1(1(1))}$, ..., $\gamma_{K(J(I))}$, σ^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leqslant i \leqslant I,$$

$$\widehat{\beta_{j(i)}}(\boldsymbol{y}) = y_{i,j,\bullet,\bullet} - y_{i,\bullet,\bullet,\bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\widehat{\gamma_{k(j(i))}}(\boldsymbol{y}) = y_{i,j,k,\bullet} - y_{i,j,\bullet,\bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

$$\widehat{\sigma^{2}}(\boldsymbol{y}) = \frac{sc_{R}}{IJK(L-1)} = s_{R}^{2}.$$

6.2. Modèles à effets aléatoires

6.2.1. Avec répétitions

Les α_i représentent un échantillon de taille I prélevé dans une population importante. Nous admettrons que les effets des A_i , les α_i , sont distribués suivant une loi normale centrée de variance σ_A^2 . Les $\beta_{j(i)}$ représentent un échantillon de taille J prélevé dans une population importante dépendant du niveau A_i du facteur A. Nous admettrons que les effets des $B_{j(i)}$, les $\beta_{j(i)}$, sont distribués suivant une loi normale centrée de variance $\sigma_{B|A}^2$. Les $\gamma_{k(j(i))}$ représentent un échantillon de taille K prélevé dans une population importante dépendant du niveau $B_{j(i)}$ du facteur B et donc du niveau A_i du facteur A. Nous admettrons que les effets des $C_{k(j(i))}$, les $\gamma_{k(j(i))}$, sont distribués suivant une loi normale centrée de variance $\sigma_{C|B|A}^2$. Pour chacun des couples de modalités $(A_i, B_{j(i)}, C_{k(j(i))})$ nous effectuons $L \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_{j(i)} + \gamma_{k(j(i))} + \epsilon_{i,j,k,l},$$

 $i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L,$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)}, C_{k(j(i))})$ lors du l-ème essai. Nous supposons que :

$$\mathcal{L}\left(\alpha_{i}\right) = \mathcal{N}(0, \sigma_{A}^{2}), \ \forall \ i, 1 \leqslant i \leqslant I,$$

$$\mathcal{L}\left(\beta_{j(i)}\right) = \mathcal{N}(0, \sigma_{B|A}^{2}), \ \forall \ (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\mathcal{L}\left(\gamma_{k(j(i))}\right) = \mathcal{N}(0, \sigma_{C|B|A}^{2}), \ \forall \ (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires α_i , $\beta_{j(i)}$, et $\gamma_{k(j(i))}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L,$$

ainsi que l'indépendance des effets aléatoires α_i , $\beta_{j(i)}$, et $\gamma_{k(j(i))}$ et des erreurs $\epsilon_{i,j,k,l}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , $sc_{B|A}$, $sc_{C|B|A}$, sc_R et sc_{TOT} introduites à la section 6.1.1.

Nous rappelons la relation fondamentale de l'ANOVA :

$$sc_{TOT} = sc_A + sc_{B|A} + sc_{C|B|A} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Facteur C dans B	$n_{C B A} = IJ(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJKL - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{B A}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_{C B A}^2}$	$\mathcal{H}_0^{''}$ ou $\mathcal{H}_1^{''}$
Facteur C dans B	$sc_{C B A}$	$n_{C B A}$	$s_{C B A}^2 = \frac{sc_{C B A}}{n_{C B A}}$	$f_{C B A} = \frac{s_{C B A}^2}{s_R^2}$	\mathcal{H}_0''' ou \mathcal{H}_1'''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

110

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{\mathcal{H}_0':\sigma_A^2=0}$$

$$\mathcal{H}_1': \sigma_A^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}'_0 précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table.

$$\boxed{\mathcal{H}_0'':\sigma_{B|A}^2=0}$$

contre
$$\mathcal{H}_1'': \sigma_{B|A}^2 \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B dans A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{B|A}$ est supérieure ou égale à la valeur critique issue de la table.

$$\mathcal{H}_0^{\prime\prime\prime}:\sigma^2_{C|B|A}=0$$

$$\mathcal{H}_1^{"'}:\sigma^2_{C|B|A}\neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C dans B et lorsque les conditions de validité du modèle sont respectées, $f_{C|B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à IJ(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{C|B|A}$ est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\sigma_A^2}$, $\widehat{\sigma_{B|A}^2}$, $\widehat{\sigma_{C|B|A}^2}$, $\widehat{\sigma_C^2}$ du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet,\bullet,\bullet,\bullet} = \overline{Y}, \\ \widehat{\sigma_A^2} &= \frac{1}{JKL} \left(S_A^2 - S_{B|A}^2 \right), \\ \widehat{\sigma_{B|A}^2} &= \frac{1}{KL} \left(S_{B|A}^2 - S_{C|B|A}^2 \right), \\ \widehat{\sigma_{C|B|A}^2} &= \frac{1}{L} \left(S_{C|B|A}^2 - S_R^2 \right), \\ \widehat{\sigma_C^2} &= \frac{SC_R}{IJK(L-1)} = S_R^2, \end{split}$$

où
$$S_A^2 = \frac{SC_A}{n_A}, \, S_{B|A}^2 = \frac{SC_{B|A}}{n_{B|A}}, \, S_{C|B|A}^2 = \frac{SC_{C|B|A}}{n_{C|B|A}} \text{ et } S_R^2 = \frac{SC_R}{n_R}.$$

Ce sont des estimateurs sans biais³.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\sigma_A^2}(\boldsymbol{y})$, $\widehat{\sigma_{B|A}^2}(\boldsymbol{y})$, $\widehat{\sigma_{C|B|A}^2}(\boldsymbol{y})$, $\widehat{\sigma_{C|B|A}^2}(\boldsymbol{y})$, $\widehat{\sigma_{B|A}^2}(\boldsymbol{y})$, des paramètres μ , σ_A^2 , $\sigma_{B|A}^2$, $\sigma_{C|B|A}^2$, σ_C^2 du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\sigma_A^2}(\boldsymbol{y}) = \frac{1}{JKL} \left(s_A^2 - s_{B|A}^2 \right),$$

$$\widehat{\sigma_{B|A}^2}(\boldsymbol{y}) = \frac{1}{KL} \left(s_{B|A}^2 - s_{C|B|A}^2 \right),$$

$$\widehat{\sigma_{C|B|A}^2}(\boldsymbol{y}) = \frac{1}{L} \left(s_{C|B|A}^2 - s_R^2 \right),$$

$$\widehat{\sigma^2}(\boldsymbol{y}) = \frac{sc_R}{IJK(L-1)} = s_R^2.$$

6.3. Modèles à effets mixtes

6.3.1. Avec répétitions

Premier cas : Deux facteurs sont à effets fixes et un facteur est à effets aléatoires.

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Un facteur contrôlé B se présente sous J modalités, chacune d'entre elles dépendant du niveau A_i du facteur A et étant alors notée $B_{j(i)}$. Nous admettrons que les effets des $C_{k(j(i))}$, les $\gamma_{k(j(i))}$, sont distribués suivant une loi normale centrée de variance $\sigma^2_{C|B|A}$. Pour chacun des couples de modalités $(A_i, B_{j(i)}, C_{k(j(i))})$ nous effectuons $L \geq 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

³La notion de biais d'un estimateur est définie dans le chapitre 15

Nous introduisons le modèle :

$$\begin{split} Y_{i,j,k,l} &= \mu + \alpha_i + \beta_{j(i)} + \gamma_{k(j(i))} + \epsilon_{i,j,k,l}, \\ i &= 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L, \\ \text{avec les contraintes supplémentaires } \sum_{i=1}^{I} \alpha_i = 0, \ \sum_{j=1}^{J} \beta_{j(i)} = 0, \ \forall i \in \{1, \dots, I\} \,, \end{split}$$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)}, C_{k(j(i))})$ lors du l-ème essai. Nous supposons que :

$$\mathcal{L}\left(\gamma_{k(j(i))}\right) = \mathcal{N}(0, \sigma_{C|B|A}^2), \ \forall \ (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires $\gamma_{k(i)}$.

Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L,$$

ainsi que l'indépendance des effets aléatoires $\gamma_{k(j(i))}$ et des erreurs $\epsilon_{i,j,k,l}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , $sc_{B|A}$, $sc_{C|B|A}$, sc_R et sc_{TOT} introduites à la section 6.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$sc_{TOT} = sc_A + sc_{B|A} + sc_{C|B|A} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Facteur C dans B	$n_{C B A} = IJ(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJKL - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{C B A}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_{C B A}^2}$	$\mathcal{H}_0^{''}$ ou $\mathcal{H}_1^{''}$
Facteur C dans B	$SC_{C B A}$	$n_{C B A}$	$s_{C B A}^2 = \frac{sc_{C B A}}{n_{C B A}}$	$f_{C B A} = \frac{s_{C B A}^2}{s_R^2}$	\mathcal{H}_0''' ou \mathcal{H}_1'''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\mathcal{H}_0': \alpha_1 = \alpha_2 = \dots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}_0' est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\mathcal{H}_0'': \beta_{1(1)} = \beta_{2(1)} = \dots = \beta_{J(1)} = \beta_{1(2)} = \dots = \beta_{J(I)} = 0$$
contre

$$\mathcal{H}_{1}''$$
: Il existe $(i_{0}, j_{0}) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\}$ tel que $\beta_{j_{0}(i_{0})} \neq 0$.

Sous l'hypothèse nulle \mathcal{H}_0'' précédente d'absence d'effet du facteur B dans A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{B|A}$ est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{aligned} \mathcal{H}_0''' : \sigma_{C|B|A}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1''' : \sigma_{C|B|A}^2 &\neq 0. \end{aligned} \right]$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C dans B et lorsque les conditions de validité du modèle sont respectées, $f_{C|B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à IJ(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{C|B|A}$ est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\beta_{1(1)}}$, ..., $\widehat{\beta_{J(I)}}$, $\widehat{\sigma^2_{C|B|A}}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , $\beta_{1(1)}$, ..., $\beta_{J(I)}$, $\sigma^2_{C|B|A}$, σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha_i} &= Y_{i, \bullet, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\beta_{j(i)}} &= Y_{i, j, \bullet, \bullet} - Y_{i, \bullet, \bullet, \bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{\sigma^2_{C|B|A}} &= \frac{1}{L} \left(S^2_{C|B|A} - S^2_R \right), \\ \widehat{\sigma^2} &= \frac{SC_R}{IJK(L-1)} = S^2_R, \end{split}$$

où
$$S_{C|B|A}^2 = \frac{SC_{C|B|A}}{n_{C|B|A}}$$
 et $S_R^2 = \frac{SC_R}{n_R}$.

Ce sont des estimateurs sans biais⁴.

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y})$, $\widehat{\alpha_1}(\boldsymbol{y})$, \ldots , $\widehat{\alpha_I}(\boldsymbol{y})$, $\widehat{\beta_{I(1)}}(\boldsymbol{y})$, $\widehat{\sigma_{C|B|A}}(\boldsymbol{y})$, $\widehat{\sigma^2}(\boldsymbol{y})$ des paramètres μ , α_1 , \ldots , α_I , $\beta_{I(1)}$, \ldots , $\beta_{J(I)}$, $\sigma^2_{C|B|A}$, σ^2 du modèle se déduisent des formules ci-dessus :

$$\begin{split} \widehat{\mu}(\boldsymbol{y}) &= y_{\bullet,\bullet,\bullet,\bullet} = \overline{y}, \\ \widehat{\alpha}_i(\boldsymbol{y}) &= y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\beta_{j(i)}}(\boldsymbol{y}) &= y_{i,j,\bullet,\bullet} - y_{i,\bullet,\bullet,\bullet}, \ 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \\ \widehat{\sigma_{C|B|A}^2}(\boldsymbol{y}) &= \frac{1}{L} \left(s_{C|B|A}^2 - s_R^2 \right), \\ \widehat{\sigma^2}(\boldsymbol{y}) &= \frac{sc_R}{IJK(L-1)} = s_R^2. \end{split}$$

⁴La notion de biais d'un estimateur est définie dans le chapitre 15

Deuxième cas : Un facteur est à effets fixes et deux facteurs sont à effets aléatoires.

Un facteur contrôlé A se présente sous I modalités, chacune d'entre elles étant notée A_i . Les $\beta_{j(i)}$ représentent un échantillon de taille J prélevé dans une population importante dépendant du niveau A_i du facteur A. Nous admettrons que les effets des $B_{j(i)}$, les $\beta_{j(i)}$, sont distribués suivant une loi normale centrée de variance $\sigma^2_{B|A}$. Les $\gamma_{k(j(i))}$ représentent un échantillon de taille K prélevé dans une population importante dépendant du niveau $B_{j(i)}$ du facteur B et donc du niveau A_i du facteur A. Nous admettrons que les effets des $C_{k(j(i))}$, les $\gamma_{k(j(i))}$, sont distribués suivant une loi normale centrée de variance $\sigma^2_{C|B|A}$. Pour chacun des couples de modalités $(A_i, B_{j(i)}, C_{k(j(i))})$ nous effectuons $L \geqslant 2$ mesures d'une réponse Y qui est une variable continue. Nous notons $n = I \times J \times K \times L$ le nombre total de mesures ayant été effectuées.

Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_{j(i)} + \gamma_{k(j(i))} + \epsilon_{i,j,k,l},$$

$$i = 1 \dots I, \ j = 1 \dots J, \ k = 1 \dots K, \ l = 1 \dots L,$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{I} \alpha_i = 0,$$

où $Y_{i,j,k,l}$ est la valeur prise par la réponse Y dans les conditions $(A_i, B_{j(i)}, C_{k(j(i))})$ lors du l-ème essai. Nous supposons que :

$$\mathcal{L}\left(\beta_{j(i)}\right) = \mathcal{N}(0, \sigma_{B|A}^2), \ \forall \ (i, j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J,$$

$$\mathcal{L}\left(\gamma_{k(j(i))}\right) = \mathcal{N}(0, \sigma_{C|B|A}^2), \ \forall \ (i, j, k), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K,$$

ainsi que l'indépendance des effets aléatoires $\beta_{j(i)}$, et $\gamma_{k(j(i))}$. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ 1 \leqslant k \leqslant K, \ 1 \leqslant l \leqslant L, \ \mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$

$$\operatorname{avec} \ 1 \leqslant i, m \leqslant I, \ 1 \leqslant j, n \leqslant J, \ 1 \leqslant k, o \leqslant K \text{ et } 1 \leqslant l, p \leqslant L,$$

ainsi que l'indépendance des effets aléatoires $\beta_{j(i)}$, et $\gamma_{k(j(i))}$ et des erreurs $\epsilon_{i,j,k,l}$.

Nous supposons que les conditions d'utilisation de ce modèle sont bien remplies, l'étude de leur vérification fait l'objet d'un paragraphe du chapitre 14.

Nous utilisons les quantités sc_A , $sc_{B|A}$, $sc_{C|B|A}$, sc_R et sc_{TOT} introduites à la section 6.1.1.

Nous rappelons la relation fondamentale de l'ANOVA:

$$sc_{TOT} = sc_A + sc_{B|A} + sc_{C|B|A} + sc_R.$$

Nous introduisons les degrés de liberté (Ddl) associés à chaque ligne du tableau de l'ANOVA :

Source	Degrés de liberté
Facteur A	$n_A = I - 1$
Facteur B dans A	$n_{B A} = I(J-1)$
Facteur C dans B	$n_{C B A} = IJ(K-1)$
Résiduelle	$n_R = IJK(L-1)$
Totale	$n_{TOT} = IJKL - 1$

Nous résumons ces informations dans le tableau de l'ANOVA ci-dessous :

Source	Variation	Ddl	Carré Moyen	F	Décision
Facteur A	sc_A	n_A	$s_A^2 = \frac{sc_A}{n_A}$	$f_A = \frac{s_A^2}{s_{B A}^2}$	$\mathcal{H}_0^{'}$ ou $\mathcal{H}_1^{'}$
Facteur B dans A	$sc_{B A}$	$n_{B A}$	$s_{B A}^2 = \frac{sc_{B A}}{n_{B A}}$	$f_{B A} = \frac{s_{B A}^2}{s_{C B A}^2}$	\mathcal{H}_0'' ou \mathcal{H}_1''
Facteur C dans B	$sc_{C B A}$	$n_{C B A}$	$s_{C B A}^2 = \frac{sc_{C B A}}{n_{C B A}}$	$f_{C B A} = \frac{s_{C B A}^2}{s_R^2}$	\mathcal{H}_0''' ou \mathcal{H}_1'''
Résiduelle	sc_R	n_R	$s_R^2 = \frac{sc_R}{n_R}$		
Totale	sc_{TOT}	n_{TOT}			

Nous souhaitons faire les tests d'hypothèse suivants :

$$\boxed{ \mathcal{H}_0': \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

Sous l'hypothèse nulle \mathcal{H}_0' précédente d'absence d'effet du facteur A et lorsque les conditions de validité du modèle sont respectées, f_A est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté. Nous concluons alors à

l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur f_A est supérieure ou égale à la valeur critique issue de la table. Lorsque l'hypothèse nulle \mathcal{H}'_0 est rejetée, nous pouvons procéder à des comparaisons multiples des différents effets des niveaux du facteur voir le chapitre 9.

$$\left[\begin{aligned} \mathcal{H}_0'' : \sigma_{B|A}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1'' : \sigma_{B|A}^2 &\neq 0. \end{aligned} \right]$$

Sous l'hypothèse nulle \mathcal{H}''_0 précédente d'absence d'effet du facteur B dans A et lorsque les conditions de validité du modèle sont respectées, $f_{B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{B|A}$ est supérieure ou égale à la valeur critique issue de la table.

$$\left[\begin{aligned} \mathcal{H}_0^{\prime\prime\prime} \, : \, \sigma_{C|B|A}^2 &= 0 \\ &\quad \text{contre} \\ \\ \mathcal{H}_1^{\prime\prime\prime} \, : \, \sigma_{C|B|A}^2 &\neq 0. \end{aligned} \right]$$

Sous l'hypothèse nulle \mathcal{H}_0''' précédente d'absence d'effet du facteur C dans B et lorsque les conditions de validité du modèle sont respectées, $f_{C|B|A}$ est la réalisation d'une variable aléatoire qui suit une loi de Fisher à IJ(K-1) et IJK(L-1) degrés de liberté. Nous concluons alors à l'aide de la p-valeur, rejet si elle est inférieure ou égale au seuil α du test, ou à l'aide d'une table, rejet si la valeur $f_{C|B|A}$ est supérieure ou égale à la valeur critique issue de la table.

Les estimateurs $\widehat{\mu}$, $\widehat{\alpha_1}$, ..., $\widehat{\alpha_I}$, $\widehat{\sigma_{B|A}^2}$, $\widehat{\sigma_{C|B|A}^2}$, $\widehat{\sigma^2}$ des paramètres μ , α_1 , ..., α_I , $\sigma_{B|A}^2$, $\sigma_{C|B|A}^2$, σ^2 du modèle sont donnés par les formules suivantes :

$$\begin{split} \widehat{\mu} &= Y_{\bullet, \bullet, \bullet, \bullet} = \overline{Y}, \\ \widehat{\alpha_i} &= Y_{i, \bullet, \bullet, \bullet} - \widehat{\mu}, \ 1 \leqslant i \leqslant I, \\ \widehat{\sigma_{B|A}^2} &= \frac{1}{KL} \left(S_{B|A}^2 - S_{C|B|A}^2 \right), \\ \widehat{\sigma_{C|B|A}^2} &= \frac{1}{L} \left(S_{C|B|A}^2 - S_R^2 \right), \\ \widehat{\sigma^2} &= \frac{SC_R}{IJK(L-1)} = S_R^2, \end{split}$$

où
$$S_{B|A}^2 = \frac{SC_{B|A}}{n_{B|A}}$$
, $S_{C|B|A}^2 = \frac{SC_{C|B|A}}{n_{C|B|A}}$ et $S_R^2 = \frac{SC_R}{n_R}$. Ce sont des estimateurs sans biais⁵.

⁵La notion de biais d'un estimateur est définie dans le chapitre 15

Les estimations, obtenues pour la liste de données \boldsymbol{y} et notées $\widehat{\mu}(\boldsymbol{y}), \widehat{\alpha_1}(\boldsymbol{y}), \ldots, \widehat{\alpha_I}(\boldsymbol{y}), \widehat{\sigma_{B|A}^2}(\boldsymbol{y}), \widehat{\sigma_{C|B|A}^2}(\boldsymbol{y}), \widehat{\sigma_{C|B|A}^2}(\boldsymbol{y}), \widehat{\sigma_{C|B|A}^2}(\boldsymbol{y})$ des paramètres $\mu, \alpha_1, \ldots, \alpha_I, \sigma_{B|A}^2, \sigma_{C|B|A}^2, \sigma_{C|B|A}^2$ du modèle se déduisent des formules ci-dessus :

$$\widehat{\mu}(\boldsymbol{y}) = y_{\bullet,\bullet,\bullet,\bullet} = \overline{y},$$

$$\widehat{\alpha}_{i}(\boldsymbol{y}) = y_{i,\bullet,\bullet,\bullet} - \widehat{\mu}(\boldsymbol{y}), \ 1 \leq i \leq I,$$

$$\widehat{\sigma_{B|A}^{2}}(\boldsymbol{y}) = \frac{1}{KL} \left(s_{B|A}^{2} - s_{C|B|A}^{2} \right),$$

$$\widehat{\sigma_{C|B|A}^{2}}(\boldsymbol{y}) = \frac{1}{L} \left(s_{C|B|A}^{2} - s_{R}^{2} \right),$$

$$\widehat{\sigma_{C|B|A}^{2}}(\boldsymbol{y}) = \frac{s_{CR}}{IJK(L-1)} = s_{R}^{2}.$$

Chapitre 6.	Analyse de la	variance à trois	facteurs t	otalement en	ıboîtés

Chapitre 7

Analyse de la variance à trois facteurs partiellement emboîtés

7.1. Introduction

Un modèle d'analyse de la variance est dit partiellement emboîté ou partiellement hiérarchisé si, contrairement aux modèles complètement emboîtés présentés aux chapitres 4 et 6, ce modèle fait intervenir certaines interactions. Nous remarquons que pour qu'un modèle soit partiellement emboîté, il doit contenir au moins trois facteurs. Ce type de modèle nécessite généralement des répétitions, ceci sera précisé au cas par cas pour chacun des modèles exposés.

À nouveau chacun des facteurs peut être à effets fixes ou à effets aléatoires à condition de respecter les deux règles suivantes :

- 1. Toute interaction mettant en jeu un facteur à effets aléatoires est à effets aléatoires.
- 2. Tout terme emboîté dans un facteur à effets aléatoires est à effets aléatoires.

À cause de la grande multiplicité des modèles que nous pouvons obtenir ainsi, nous nous bornerons à exposer ci-dessous les équations des différents modèles comportant trois facteurs et partiellement emboîtés qu'il est possible de construire.

Il est commode d'utiliser une représentation graphique pour améliorer la compréhension des modèles partiellement emboîtés. Pour plus de détails sur ce type de schéma, nous renvoyons le lecteur à [Dag98b].

7.2. Les différents modèles partiellement emboîtés

7.2.1. Nécessitant des répétitions

Il s'agit du cas où le troisième facteur C est emboîté dans les différents termes d'un modèle de l'analyse de la variance à deux facteurs comportant les facteurs A et B.

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \gamma_{k|(i,j)} + \epsilon_{i,j,k,l}$$

avec les hypothèses de rigueur associées au fait que nous considérons que les facteurs sont à effets aléatoires ou à effets fixes, les conditions habituelles sur les lois, les variances et l'indépendance des erreurs $\epsilon_{i,j,k,l}$ et $1 \leq i \leq I$, $1 \leq j \leq J$, $1 \leq k \leq K$, $1 \leq l \leq L$.

Pour illustrer les deux règles exposées à la fin de la section 7.1 concernant les effets fixes ou aléatoires, nous détaillons les différentes déclinaisons de modèles que nous pouvons considérer dans la situation de ce paragraphe :

- Tous les facteurs, A, B et C, sont à effets fixes.
- Les facteurs A et B sont à effets fixes, le facteur emboîté C est à effets aléatoires.
- L'un des facteurs, A ou B, est à effets aléatoires. Puisque ces deux facteurs jouent un rôle symétrique dans la définition du modèle, nous supposons que le facteur A est à effets fixes et que c'est le facteur B qui est à effets aléatoires. Alors **nécessairement** nous devons considérer que le facteur C, qui est emboîté dans le facteur B, est à effets aléatoires. De plus le terme d'interaction de A et de B doit aussi être **nécessairement** considéré comme à effets aléatoires. Ainsi seuls les termes $\alpha_1, \ldots, \alpha_I$ associés aux effets du facteur A sont fixes.
- Les effets des deux facteurs A et B sont aléatoires et de ce fait C doit être nécessairement considéré comme un facteur à effets aléatoires : tous les facteurs du modèles sont à effets aléatoires.

7.2.2. Ne nécessitant pas de répétitions

Deux facteurs croisés B et C sont emboîtés dans un facteur A

Il s'agit du cas où les différents termes d'un modèle de l'analyse de la variance à deux facteurs comportant les facteurs B et C sont emboîtés dans un facteur A.

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_{j|i} + \gamma_{k|i} + (\beta \gamma)_{(j,k)|i} + \epsilon_{i,j,k,l}$$

avec les hypothèses de rigueur associées au fait que nous considérons que les facteurs sont à effets aléatoires ou à effets fixes, les conditions habituelles sur les lois, les variances et l'indépendance des erreurs et $1 \le i \le I$, $1 \le j \le J$, $1 \le k \le K$, $1 \le l \le L$. Dans le cas, nous pouvons avoir le nombre de répétitions, L, égal à un, c'est-à-dire que nous pouvons utiliser un plan d'expérience ne comportant pas de répétitions.

Pour illustrer les deux règles exposées à la fin de la section 7.1 concernant les effets fixes ou aléatoires, nous détaillons les différentes déclinaisons de modèles que nous pouvons considérer dans la situation de ce paragraphe :

- Tous les facteurs, A, B et C, sont à effets fixes.
- Le facteur A est à effets aléatoires et de ce fait les facteurs B et C, qui sont emboîtés dans A, sont nécessairement à effets aléatoires.
- L'un des facteurs B ou C est à effets aléatoires et de ce fait l'interaction entre B et C est **nécessairement** à effets aléatoires.

- Tous les facteurs sont à effets aléatoires.

Une situation plus complexe

Il s'agit du cas où le troisième facteur C est emboîté dans le facteur B, qui lui-même est croisé avec le facteur A.

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_{k|j} + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k|j} + \epsilon_{i,j,k,l}$$

avec les hypothèses de rigueurs associées au fait que nous considérons que les facteurs sont aléatoires ou fixes, les conditions habituelles sur les lois, les variances et l'indépendance des erreurs et $1 \le i \le I$, $1 \le j \le J$, $1 \le k \le K$, $1 \le l \le L$. Dans ce cas, nous pouvons avoir un nombre de répétitions, L, égal à un, c'est-à-dire que nous pouvons utiliser un plan d'expérience ne comportant pas de répétitions puis l'analyser à l'aide de ce modèle.

Pour illustrer les deux règles exposées à la fin de la section 7.1 concernant les facteurs à effets fixes ou aléatoires, nous détaillons les différentes déclinaisons de modèles que nous pouvons considérer dans la situation de ce paragraphe :

- Tous les facteurs, A, B et C, sont à effets fixes.
- Si le facteur B est à effets aléatoires, le facteur C l'est aussi **nécessairement** puisque ce facteur est emboîté dans le facteur B. Il en va de même de l'interaction entre le facteur A et le facteur B.
- Le facteur A est à effets aléatoires. **Nécessairement** ses interactions avec les facteurs B et C sont à effets aléatoires.
- Si le facteur C est à effets aléatoires, son interaction avec le facteur A est nécessairement à effets aléatoires.

Chapitre 7.	Analyse de la var	iance à trois fact	eurs partiellemer	nt emboîtés

Chapitre 8

Analyse de la variance à l facteurs croisés, partiellement ou totalement emboîtés, $l \geqslant 3$

Nous donnons dans ce chapitre quelques règles générales qui étendent les indications qui ont été exposées, aux chapitres 2, 3, 4, 5, 6, 7, dans les cas où nous avions deux ou trois facteurs et dont le domaine de validité est en fait celui de l'analyse de la variance à l facteurs.

- 1. Si le plan d'expérience ne comporte pas de répétitions, il sera impossible d'estimer l'interaction d'ordre $l-1^1$ entre les facteurs mais toutes les interactions d'ordre inférieur ou égal à l-2 pourront être estimées et donc la significativité de leur influence pourra être testée si nous faisons justement l'hypothèse que l'interaction d'ordre l-1 est négligeable.
- 2. Si le plan comporte des répétitions, nous pouvons utiliser un modèle incluant jusqu'à l'interaction d'ordre l entre les facteurs.
- 3. Si le plan d'expérience ne comporte pas de répétitions, il sera impossible d'utiliser un modèle totalement emboîté. Nous pourrons néanmoins nous servir de certains types de modèles partiellement emboîtés.
- 4. Si le plan comporte des répétitions, nous pouvons utiliser un modèle totalement emboîté.
- 5. Nous pouvons comme dans les chapitres 2, 3, 5 utiliser des modèles dont certains des facteurs sont à effets aléatoires et d'autres à effets fixes.
- 6. Lorsque les facteurs dont nous cherchons à tester l'influence sont en présence d'un facteur à effets aléatoires, il faudra peut-être utiliser l'approximation de Satterthwaite. Il en va de même pour certaines interactions. Les tests associés ne seront pas basés sur une statistique qui suit exactement une loi de Fisher.
- 7. Toute interaction mettant en jeu un facteur à effets aléatoires est **nécessairement** considérée comme un terme du modèle à effets aléatoires.

 $^{^1}$ Il existe un test, le test de Tukey, permettant de s'intéresser à la question de la significativité de l'interaction d'ordre l-1 lorsque le plan comporte l facteurs sans répétition. Lorsque qu'une telle interaction n'est pas négligeable, nous devons recourir à une transformation afin d'essayer de limiter son effet. En effet, les statistiques des tests dont nous nous servons sont exactes sous l'hypothèse que l'interaction d'ordre l-1 est nulle. Pour un exposé de ce test, nous renvoyons au livre [Dag98b].

- 8. Dans le cas où nous souhaitons utiliser un modèle totalement emboîté ou partiellement emboîté, tout terme du modèle emboîté dans un facteur à effets aléatoires est **nécessairement** considéré comme un terme à effets aléatoires.
- 9. Il existe une très grande variété de modèles partiellement emboîtés, d'autant plus importante que le nombre de facteurs du modèle, l, est élevé. Nous rappelons qu'il est commode d'utiliser une représentation graphique pour améliorer la compréhension des modèles partiellement emboîtés. Pour plus de détails sur ce type de schéma, nous conseillons au lecteur de consulter [Dag98b]. Par exemple il existe 48 modèles differents partiellement emboîtés lorsque nous considérons un modèle d'analyse de la variance à quatre facteurs et en présence de répétitions. Nous renvoyons à nouveau le lecteur vers le livre [Dag98b] s'il souhaite obtenir des informations complémentaires.

Chapitre 9

Comparaisons multiples

9.1. Contrastes

9.1.1. Définition

Pour introduire la notion de contraste, nous considérons le cas d'un modèle d'analyse de la variance pour un facteur A à effets fixes. Nous notons A_i , pour $1 \le i \le I$ les modalités contrôlées du facteur A et α_i les effets de ces différentes modalités, toujours pour $1 \le i \le I$.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$
avec la contrainte supplémentaire $\sum_{i=1}^{I} \alpha_i = 0,$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans la condition A_i lors de la j—ème répétition. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leq i \leq I, \ 1 \leq j \leq J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$

 $\operatorname{Cov}(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leq i,k \leq I, \text{ et } 1 \leq j,l \leq J.$

Nous appelons **contraste** L des I moyennes μ_1, \ldots, μ_I la somme :

$$L = l_1 \mu_1 + l_2 \mu_2 + \ldots + l_I \mu_I$$

où l_1, \ldots, l_I sont I nombres réels tels que $\sum_i^I l_i = 0$ et $\mu_1 = \mu + \alpha_1, \ldots, \mu_I = \mu + \alpha_I$ sont tels que $\alpha_1, \ldots, \alpha_I$ sont les I différents effets des I niveaux du facteur A.

Les expressions suivantes sont des exemples de contrastes :

 $\mu_1 - \mu_3$, un tel contraste permettra par exemple de comparer μ_1 et μ_3 . $\mu_1 - 2\mu_2 + \mu_3$, un tel contraste permettra par exemple de comparer $\mu_1 + \mu_3$ et $2\mu_2$.

9.1.2. Orthogonalité

Nous considérons deux contrastes L_1 et L_2 :

$$L_1 = l_1 \mu_1 + l_2 \mu_2 + \ldots + l_I \mu_I$$

et

$$L_2 = l_1' \mu_1 + l_2' \mu_2 + \ldots + l_I' \mu_I.$$

Nous avons donc les relations l_1, \ldots, l_I sont I nombres réels tels que $\sum_i^I l_i = 0$ et l_1', \ldots, l_I' sont I nombres réels tels que $\sum_i^I l_i' = 0$, $\mu_1 = \mu + \alpha_1, \ldots, \mu_I = \mu + \alpha_I$ sont tels que $\alpha_1, \ldots, \alpha_I$ sont les I différents effets des I niveaux du facteur A.

 L_1 et L_2 sont des contrastes dits **orthogonaux** si la relation suivante est vérifiée :

$$l_1l_1' + l_2l_2' + \ldots + l_Il_I' = 0.$$

Par exemple, les deux contrastes suivant sont des contrastes orthogonaux :

$$L_1 = \mu_1 - \mu_2$$

$$L_2 = \mu_1 + \mu_2 - \mu_3 - \mu_4.$$

9.1.3. Estimation

Soit L un contraste. Un estimateur sans biais \hat{L} de L est obtenu de la manière suivante :

$$\widehat{L} = l_1 \widehat{\mu}_1 + l_2 \widehat{\mu}_2 + \ldots + l_I \widehat{\mu}_I,$$

où
$$\widehat{\mu}_i = \widehat{\mu + \alpha_i} = \widehat{\mu} + \widehat{\alpha}_i$$
, avec $1 \leq i \leq I$.

La somme des carrés associée à l'estimateur \widehat{L} du contraste L est définie par :

$$SC_{\widehat{L}} = J \frac{\left(\sum_{i=1}^{I} l_i \widehat{\mu}_i\right)^2}{\sum_{i=1}^{I} l_i^2}.$$

Si le nombre de répétitions diffère d'un niveau A_i du facteur A à l'autre, en notant n_i le nombre de répétitions pour la modalité A_i , nous obtenons la formule suivante :

$$SC_{\widehat{L}} = \frac{\left(\sum_{i=1}^{I} l_i \widehat{\mu}_i\right)^2}{\sum_{i=1}^{I} \frac{l_i^2}{n_i}}.$$

¹La notion de biais d'un estimateur est définie dans le chapitre 15

9.1.4. Test d'une hypothèse impliquant un constraste

Pour le modèle considéré de l'analyse de la variance à un facteur, les estimateurs $Y_{i,\bullet}$ des μ_i sont indépendants, même si le plan n'est pas équilibré. Ainsi la variance de l'estimateur \hat{L} du contraste L est égale à :

$$\operatorname{Var}\left[\widehat{L}\right] = \sum_{i=1}^{I} \left(l_i^2 \operatorname{Var}\left[Y_{i,\bullet}\right]\right)$$
$$= \sigma^2 \sum_{i=1}^{I} \frac{l_i^2}{n_i}.$$

Un estimateur sans biais de cette variance est alors :

$$\widehat{\operatorname{Var}\left[\widehat{L}\right]} = s_R^2 \sum_{i=1}^I \frac{l_i^2}{n_i}.$$

Les hypothèses du modèle utilisé impliquent alors que, puisque \widehat{L} est une combinaison linéaire de variables aléatoires qui suivent une loi normale et qui sont indépendantes, l'estimateur \widehat{L} suit aussi une loi normale. De ce fait :

$$\frac{\widehat{L} - L}{\sqrt{\widehat{\operatorname{Var}\left[\widehat{L}\right]}}} \sim t_{n-I},$$

où t_{n-I} est la loi de Student à n-I degrés de liberté.

Remarque:

 $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}$ n'est pas un estimateur sans biais de $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}$. Il est possible de corriger le biais de cet estimateur en posant $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}_{\mathrm{corrig\acute{e}}}$ défini par :

$$\sqrt{\operatorname{Var}\left[\widehat{L}\right]}_{\operatorname{corrig\'e}} = \sqrt{\frac{n-1}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sqrt{\operatorname{Var}\left[\widehat{L}\right]},$$

où Γ est une fonction classique en mathématiques définie à l'aide d'une intégrale.

Néanmoins l'obtention d'un intervalle de confiance reste délicate puisque la loi de cet estimateur n'est pas classique. P. Chapouille, dans son livre [Cha73], propose la formule approximative :

$$\widehat{\sqrt{\operatorname{Var}\left[\widehat{L}\right]}}_{\operatorname{corrig\acute{e}}} \approx \sqrt{\widehat{\operatorname{Var}\left[\widehat{L}\right]}} \sqrt{\frac{2n-2}{2n-3}} \approx \sqrt{\widehat{\operatorname{Var}\left[\widehat{L}\right]}} \left(1 + \frac{1}{4n-6}\right).$$

Nous perdons alors la propriété ci-dessous qui permet de connaître la loi de la statistique

$$\frac{\widehat{L} - L}{\sqrt{\widehat{\operatorname{Var}\left[\widehat{L}\right]}}},$$

c'est pour quoi nous préférons utiliser l'estimateur biaisé $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}$ à la place de l'estimateur sans biais $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}_{\mathrm{corrig\acute{e}}}$ lorsque nous cherchons à obtenir une estimation par intervalle de $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}_{\mathrm{corrig\acute{e}}}$ et à la rigueur nous nous servirions de $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}_{\mathrm{corrig\acute{e}}}$ pour obtenir une estimation ponctuelle de $\sqrt{\mathrm{Var}\left[\widehat{L}\right]}_{\mathrm{corrig\acute{e}}}$ avec la réserve qu'une estimation par intervalle est beaucoup plus intéressante qu'une simple estimation ponctuelle d'un paramètre et lui doit être systématiquement préférée lorsque c'est possible.

Le résultat ci-dessus sur la loi de $\frac{\widehat{L} - L}{\sqrt{\mathrm{Var}\left[\widehat{L}\right]}}$ permet de déterminer un intervalle de confiance de niveau $100(1-\alpha)$ % pour la valeur du contraste L.

Nous nous donnons désormais un nombre réel L_0 et nous souhaitons tester l'hypothèse

$$\mathcal{H}_0: L = L_0$$
contre
$$\mathcal{H}_1: L \neq L_0.$$

Sous l'hypothèse nulle \mathcal{H}_0 et les hypothèses du modèle,

$$l = \frac{\widehat{L}(\boldsymbol{y}) - L_0}{\sqrt{s_R^2 \sum_{i=1}^{I} \frac{l_i^2}{n_i}}}$$

est une réalisation d'une variable aléatoire suivant une loi de Student à n-I degrés de liberté. En comparant la valeur l calculée à l'aide de l'échantillon à la valeur critique au seuil α pour une loi de Student à n-I degrés de liberté nous pouvons décider de la significativité du test. Certains logiciels peuvent vous fournir directement la p-valeur associée au test d'un contraste ce qui permet également de conclure quant à la significativité du test.

9.2. Comparaisons multiples sous l'hypothèse d'homoscédasticité

Dans le paragraphe 9.1 ci-dessus, nous nous sommes intéressés au test d'une seule hypothèse concernant les effets des niveaux du facteur A. Le contexte des tests de com-

paraisons multiples² est radicalement différent puisque nous cherchons à comparer tous les effets des niveaux A_i du facteur A entre eux ou avec un niveau de référence dit de contrôle. Nous devons ainsi réaliser I(I-1)/2 comparaisons dans la première situation ou I-1 comparaisons dans la seconde situation où nous comparons les effets à un niveau de contrôle.

Tester l'égalité des effets de deux niveaux A_i et A_j , $i \neq j$, d'un facteur A revient à tester la nullité du contraste $L = \mu_i - \mu_j$. Nous exposons dans la suite les procédures de test simultané de plusieurs contrastes en gardant à l'esprit que nous appliquerons principalement les résultats au cas où ces contrastes sont des différences de moyennes.

Nous rappelons que nous n'utiliserons l'un des tests de comparaisons multiples que si le facteur étudié est à effets fixes et que nous avons rejeté l'hypothèse nulle d'absence d'effet de ce facteur sur la réponse.

Nous exposons ici la théorie des comparaisons multiples pour le cas d'un modèle à un facteur à effets fixes. De manière plus générale, il est **possible** de comparer les effets des différents niveaux d'un facteur si ceux-ci **sont à effets fixes**. Il n'est généralement **intéressant** de comparer les effets des différents niveaux d'un facteur que si aucun des termes d'interaction mettant en jeu ce facteur n'a un effet significatif au seuil α .

9.2.1. La méthode de Tukey

Cette méthode n'est valable que si le nombre de répétitions J_i d'une modalité à l'autre du facteur A est constant. Ce nombre commun de répétitions est alors noté J. Pour une version de la méthode de Tukey adaptée au cas où le plan n'est pas équilibré voir le paragraphe 9.2.2 sur la méthode de Tukey-Kramer.

Si L est un contraste dont un estimateur est \widehat{L} , alors un intervalle de confiance de niveau simultané $100(1-\alpha)$ % pour tous les contrastes considérés est donné par la formule suivante :

$$\widehat{L}(\boldsymbol{y}) - T\sqrt{\frac{s_R^2}{J}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i| \right) < L < \widehat{L}(\boldsymbol{y}) + T\sqrt{\frac{s_R^2}{J}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i| \right),$$

où $T=q(I,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et I(J-1) degrés de liberté. Si l'intervalle de confiance obtenu contient la valeur 0, nous décidons que le contraste n'est pas significativement différent de 0 au seuil α . Au contraire si l'intervalle de confiance ne contient pas 0, alors nous décidons que le contraste est significativement différent de 0 au seuil α .

L'intérêt de cette procédure est que, si nous fixons α , les intervalles définis ci-dessus sont valables **simultanément** pour tous les contrastes qu'il est possible de construire!

Nous souhaitons tester l'hypothèse

$$\mathcal{H}_0: L=0$$

²Ces tests sont souvent appelés post-hoc tests ou multiple comparisons tests en anglais.

contre

$$\mathcal{H}_1: L \neq 0.$$

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « L=0 » en faveur de l'hypothèse alternative \mathcal{H}_1 « $L\neq 0$ » si :

$$\frac{\left|\widehat{L}(\boldsymbol{y})\right|}{T\sqrt{\frac{s_R^2}{J}}\left(\frac{1}{2}\sum_{i=1}^{I}|l_i|\right)} \geqslant q(I,I(J-1);1-\alpha).$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « L=0 » si :

$$\frac{\left|\widehat{L}(\boldsymbol{y})\right|}{T\sqrt{\frac{s_R^2}{J}}\left(\frac{1}{2}\sum_{i=1}^{I}|l_i|\right)} < q(I, I(J-1); 1-\alpha).$$

Appliqué au contexte des comparaisons multiples³, l'intervalle de confiance ci-dessus se transforme de la manière suivante puisque les contrastes étudiés sont du type $L = \mu_i - \mu_j$, $i \neq j$:

$$\frac{1}{2} \sum_{i=1}^{I} |l_i| = \frac{1}{2} (|1| + |-1|) = \frac{1}{2} (1+1) = 1.$$

Ainsi, dans le cas des comparaisons multiples, les intervalles de confiance ci-dessus se simplifient en :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - T\sqrt{\frac{s_R^2}{J}} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + T\sqrt{\frac{s_R^2}{J}}.$$

Les hypothèses et les statistiques des tests se transforment, quant à elles, en :

$$\left[\begin{aligned} \mathcal{H}_0 : \mu_i &= \mu_{i'} \\ \end{aligned} \right] \\ \text{contre} \\ \boxed{\mathcal{H}_1 : \mu_i \neq \mu_{i'}.}$$

Nous rappelons que ce jeu d'hypothèses est équivalent à celui-ci :

$$\left[\mathcal{H}_0 : \alpha_i = \alpha_{i'} \right]$$
contre
$$\mathcal{H}_1 : \alpha_i \neq \alpha_{i'}.$$

³Cette procédure est souvent appelée Tukey's HSD, pour Tukey's Honestly Significance Difference.

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » en faveur de l'hypothèse alternative \mathcal{H}_1 « $\mu_i \neq \mu_{i'}$ » si :

$$\frac{|\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y})|}{\sqrt{\frac{s_R^2}{J}}} \geqslant q(I, I(J-1); 1-\alpha).$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » si :

$$\frac{|\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\mu}_{i'}(\boldsymbol{y})|}{\sqrt{\frac{s_R^2}{J}}} < q(I, I(J-1); 1-\alpha).$$

En utilisant ces intervalles de confiance pour décider **simultanément** de la significativité des I(I-1)/2 différences entre les effets des modalités du facteur A, **nous sommes assurés** que la probabilité qu'aucune des différences n'est significative est exactement de $1-\alpha$.

9.2.2. La méthode de Tukey-Kramer

Il s'agit d'une adaptation de la méthode de Tukey au cas où le plan expérimental n'est pas équilibré. Si nous voulons comparer les deux moyennes μ_i et $\mu_{i'}$, nous remplaçons simplement la valeur J correspondant au nombre total constant d'essais réalisés dans des conditions les modalités A_i du facteur A par la moyenne harmonique⁴ du nombre de répétitions effectuées dans la modalité A_i et dans la modalité $A_{i'}$.

Les intervalles de confiance ci-dessus se modifient en conséquence :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - T\sqrt{\frac{s_R^2}{2}\left(\frac{1}{n_i} + \frac{1}{n_i'}\right)} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + T\sqrt{\frac{s_R^2}{2}\left(\frac{1}{n_i} + \frac{1}{n_i'}\right)},$$

où $T = q(I, n - I; 1 - \alpha)$ est le $100(1 - \alpha)$ quantile de la loi de l'étendue Studentisée à I et n - I degrés de liberté.

Les hypothèses sont toujours :

$$\mathbb{H}_0: \mu_i = \mu_{i'}$$
contre
$$\mathbb{H}_1: \mu_i \neq \mu_{i'}.$$

Nous rappelons que ce jeu d'hypothèses est équivalent à celui-ci :

$$\operatorname{Harm}(a,b) = \frac{1}{\frac{1}{2} \left(\frac{1}{a} + \frac{1}{b}\right)}$$

.

⁴Nous rappelons que la moyenne harmonique $\operatorname{Harm}(a,b)$ de deux nombres réels strictement positifs a et b est définie par :

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \alpha_i &= \alpha_{i'} \\ \text{contre} \\ \\ \mathcal{H}_1 : \alpha_i &\neq \alpha_{i'}. \end{aligned} }$$

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » en faveur de l'hypothèse alternative \mathcal{H}_1 « $\mu_i \neq \mu_{i'}$ » si :

$$\frac{|\widehat{\mu}_{i}(\boldsymbol{y}) - \widehat{\mu}_{i'}(\boldsymbol{y})|}{\sqrt{\frac{s_{R}^{2}}{2} \left(\frac{1}{n_{i}} + \frac{1}{n'_{i}}\right)}} \geqslant q(I, n - I; 1 - \alpha).$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » si :

$$\frac{|\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y})|}{\sqrt{\frac{s_R^2}{2} \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)}} < q(I, n - I; 1 - \alpha).$$

9.2.3. La méthode de Hochberg

Dans le cadre des comparaisons deux à deux de moyennes, Hochberg a proposé la modification suivante de la méthode de Tukey-Kramer, exposée au paragraphe 9.2.2 : Les intervalles de confiance ci-dessus sont modifiés en :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - m\sqrt{s_R^2\left(\frac{1}{n_i} + \frac{1}{n_i'}\right)} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + m\sqrt{s_R^2\left(\frac{1}{n_i} + \frac{1}{n_i'}\right)}.$$

où $m=m(I,n-I;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi du maximum du module Studentisé à I et n-I degrés de liberté.

Les hypothèses sont toujours:

$$\mathcal{H}_0: \mu_i = \mu_{i'}$$
contre
$$\mathcal{H}_1: \mu_i \neq \mu_{i'}.$$

Nous rappelons que ce jeu d'hypothèses est équivalent à celui-ci :

$$\mathcal{H}_0: \alpha_i = \alpha_{i'}$$

$$\text{contre}$$

$$\mathcal{H}_1: \alpha_i \neq \alpha_{i'}.$$

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » en faveur de l'hypothèse alternative \mathcal{H}_1 « $\mu_i \neq \mu_{i'}$ » si :

$$\frac{|\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y})|}{\sqrt{\frac{s_R^2}{2} \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)}} \geqslant m(I, n - I; 1 - \alpha).$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » si :

$$\frac{|\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y})|}{\sqrt{\frac{s_R^2}{2} \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)}} < m(I, n - I; 1 - \alpha).$$

9.2.4. La méthode de Scheffé

Contrairement à la méthode de Tukey exposée au paragraphe 9.2.1, la méthode de Scheffé est valide si le plan est déséquilibré. Soit n_i le nombre de répétitions effectuées pour la modalité A_i du facteur A.

Si L est un contraste quelconque estimé par \widehat{L} alors un intervalle de confiance de niveau $100(1-\alpha)$ % est donné par la formule suivante :

$$\widehat{L}(\boldsymbol{y}) - S \sqrt{(I-1)s_R^2 \left(\sum_{i=1}^I \frac{l_i^2}{n_i}\right)} < L$$
et
$$L < \widehat{L}(\boldsymbol{y}) + S \sqrt{(I-1)s_R^2 \left(\sum_{i=1}^I \frac{l_i^2}{n_i}\right)},$$

où $S^2 = F(I-1, n-I; 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et n-I degrés de liberté. Si l'intervalle de confiance obtenu contient la valeur 0, nous décidons que le contraste n'est pas significativement différent de 0 au seuil α . Au contraire si l'intervalle de confiance ne contient pas 0, alors nous décidons que le contraste est significativement différent de 0 au seuil α .

L'intérêt de cette procédure est que, si nous fixons α , les intervalles définis ci-dessus sont valables **simultanément** pour tous les contrastes qu'il est possible de construire!

Nous souhaitons tester l'hypothèse

$$\begin{array}{|c|c|} \hline \mathcal{H}_0 : L = 0 \\ \hline \text{contre} \\ \hline \hline \mathcal{H}_1 : L \neq 0. \\ \hline \end{array}$$

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « L=0 » en faveur de l'hypothèse alternative \mathcal{H}_1 « $L\neq 0$ » si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{(I-1)s_R^2\left(\sum_{i=1}^I\frac{l_i^2}{n_i}\right)}}\geqslant \sqrt{F(I-1,n-I;1-\alpha)}.$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « L=0 » si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{(I-1)s_R^2\left(\sum_{i=1}^I\frac{l_i^2}{n_i}\right)}} < \sqrt{F(I-1,n-I;1-\alpha)}.$$

Appliqué au contexte des comparaisons multiples, l'intervalle de confiance ci-dessus se transforme de la manière suivante, puisque les contrastes étudiés sont du type $L = \mu_i - \mu_j$, $i \neq j$:

$$\sum_{i=1}^{I} \frac{l_i^2}{n_i} = \frac{1}{n_i} + \frac{(-1)^2}{n_{i'}} = \frac{1}{n_i} + \frac{1}{n_{i'}}.$$

Ainsi, dans le cas des comparaisons mulitples, les intervalles de confiance ci-dessus se simplifient en :

$$\widehat{\mu_{i}}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - S\sqrt{(I-1)s_{R}^{2}\left(\frac{1}{n_{i}} + \frac{1}{n_{i'}}\right)} \quad < \quad \mu_{i} - \mu_{i'}$$
 et
$$\mu_{i} - \mu_{i'} \quad < \quad \widehat{\mu_{i}}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + S\sqrt{(I-1)s_{R}^{2}\left(\frac{1}{n_{i}} + \frac{1}{n_{i'}}\right)}.$$

Les hypothèses et les statistiques des tests se transforment, quant à elles, en :

$$\begin{array}{c}
\mathcal{H}_0: \mu_i = \mu_{i'} \\
\text{contre} \\
\\
\mathcal{H}_1: \mu_i \neq \mu_{i'}.
\end{array}$$

Nous rappelons que ce jeu d'hypothèses est équivalent à celui-ci :

$$\left[\begin{array}{c} \mathcal{H}_0 : \alpha_i = \alpha_{i'} \\ \text{contre} \end{array} \right]$$

$$\left[\begin{array}{c} \mathcal{H}_1 : \alpha_i \neq \alpha_{i'} \end{array} \right]$$

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » en faveur de l'hypothèse alternative \mathcal{H}_1 « $\mu_i \neq \mu_{i'}$ » si :

$$\frac{|\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\mu}_{i'}(\boldsymbol{y})|}{\sqrt{(I-1)s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)}} \geqslant \sqrt{F(I-1, n-I; 1-\alpha)}.$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » si :

$$\frac{|\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y})|}{\sqrt{(I-1)s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)}} < \sqrt{F(I-1, n-I; 1-\alpha)}.$$

En utilisant ces intervalles de confiance pour décider **simultanément** de la significativité des I(I-1)/2 différences entre les effets des modalités A_i du facteur A, **nous sommes assurés** que la probabilité qu'aucune des différences n'est significative est exactment de $1-\alpha$.

Dans le cas où le plan est équilibré nous obtenons l'intervalle de confiance de niveau $100(1-\alpha)$ suivant :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - S\sqrt{\frac{2(I-1)s_R^2}{J}} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + S\sqrt{\frac{2(I-1)s_R^2}{J}}.$$

9.2.5. La méthode de la plus petite différence significative de Fisher

La méthode de la plus petite différence significative de Fisher⁵ est une méthode jugée par beaucoup de statisticiens comme inadéquate, voir par exemple [Phi82], puisqu'elle ne tient pas compte du contexte même des comparaisons multiples c'est-à-dire du fait que nous réalisons I(I-1)/2 comparaisons qui ne sont pas indépendantes. Nous l'exposons néanmoins brièvement ci-dessous. Cette méthode s'applique que le plan soit équilibré ou non.

Un intervalle de confiance au niveau $100(1-\alpha)$ pour la différence de deux moyennes $\mu_i - \mu_{i'}$ est :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - t\sqrt{s_R^2\left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + t\sqrt{s_R^2\left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)},$$

où $t = t_{n-I;1-\alpha/2}$ est le $100(1-\alpha/2)$ quantile de la loi de Student à n-I degrés de liberté. Si l'intervalle de confiance obtenu contient la valeur 0, alors nous ne pouvons pas rejeter l'hypothèse que le contraste n'est pas significativement différent de 0 au seuil α . Au contraire si l'intervalle de confiance ne contient pas 0, alors nous décidons que le contraste est significativement différent de 0 au seuil α .

Nous souhaitons tester l'hypothèse:

$$\mathbb{H}_0: \mu_i = \mu_{i'}$$
contre
$$\mathbb{H}_1: \mu_i \neq \mu_{i'}.$$

Nous rappelons que ce jeu d'hypothèses est équivalent à celui-ci :

$$\begin{aligned} \mathcal{H}_0 : \alpha_i &= \alpha_{i'} \\ \text{contre} \\ \\ \mathcal{H}_1 : \alpha_i &\neq \alpha_{i'}. \end{aligned}$$

 $^{^5}$ En anglais ce test de comparaisons muliples est souvent noté Fisher's LSD pour Fisher's Least Significant Difference.

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » en faveur de l'hypothèse alternative \mathcal{H}_1 « $\mu_i \neq \mu_{i'}$ » si :

$$\frac{|\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y})|}{\sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)}} \geqslant t_{n-I;1-\alpha/2}.$$

Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_{i'}$ » si :

$$\frac{|\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\mu}_{i'}(\boldsymbol{y})|}{\sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)}} < t_{n-I;1-\alpha/2}.$$

9.2.6. La méthode de Bonferroni

Supposons que nous souhaitons réaliser k comparaisons de moyennes ou k tests de contrastes et prendre une décision conjointe au risque de première espèce α . Nous notons E_i l'évènement associé au rejet de l'absence de différence significative au seuil α_{ind} lors de la i-ème comparaison ou le test du i-ème contraste. La méthode de Bonferroni est basée sur l'inégalité suivante :

$$\alpha = \mathbb{P}\left[E_1 \cup E_2 \cup \dots \cup E_k\right]$$

$$\leq \mathbb{P}\left[E_1\right] + \mathbb{P}\left[E_2\right] + \dots + \mathbb{P}\left[E_k\right]$$

$$\leq k * \alpha_{\text{ind}}.$$

Ainsi si nous voulons être sûr que le risque de première espèce α associé globalement à la prise simultanée de toutes les décisions lors des k comparaisons ou des k tests de contrastes est plus petit qu'une valeur α_0 fixée à l'avance, il suffit de choisir :

$$\alpha_{\text{ind}} \leqslant \frac{\alpha_0}{k}$$
.

Nous procédons alors à des comparaisons des moyennes deux à deux avec un test t de Student de seuil α_0/k ou à un test de chacun des contrastes avec la statistique exposée au paragraphe 9.1.4 au seuil α_0/k . Cette procédure s'applique donc si le plan est équilibré ou non.

Les intervalles de confiance pour k comparaisons de deux moyennes μ_i et $\mu_{i'}$ de deux groupes d'effectifs n_i et $n_{i'}$ sont :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - t_B \sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + t_B \sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)},$$

où $t_B = t(n-I; 1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à n-I degrés de liberté.

Remarque:

Il est conseillé, par Fleiss voir [Fle86], d'utiliser la procédure de Bonferroni dans les cas suivants :

- 1. Le nombre de comparaisons k n'est pas très élévé, cette procédure étant trop conservative⁶ si k est élevé.
- 2. Nous préférerons la procédure de Bonferroni à celle de Scheffé si le nombre de comparaisons est strictement inférieur à I^2 .
- 3. Nous préférerons la procédure de Bonferroni à celle de Tukey si le nombre de comparaisons est strictement inférieur à I(I-1)/2 ou si nous souhaitons tester en plus un petit nombre de comparaisons autres que celles des effets principaux des modalités A_i du facteur A.
- 4. Nous préférerons la procédure de Bonferroni à celle de Dunnett si nous souhaitons tester en plus d'autres comparaisons que celles des effets principaux des modalités A_i du facteur A au niveau de contrôle A_{i_0} ou si nous souhaitons tester d'autres comparaisons que celles des effets principaux des modalités A_i du facteur A au niveau de contrôle A_{i_0} .
- 5. Les mêmes recommendations s'appliquent si nous considérons des tests portant sur des contrastes.

9.2.7. La méthode de rejet séquentiel de Bonferroni de Holm

La méthode de rejet séquentiel de Bonferroni de Holm⁷ est dérivée de la méthode de Bonferroni exposée au paragraphe 9.2.6. Elle a été introduite pour augmenter la puissance de la méthode de Bonferroni. Elle consiste simplement à modifier le seuil des tests de comparaison de la manière suivante : si l'un des tests de comparaison est significatif au niveau $\alpha_{\text{ind}} = \alpha/k$, alors nous effectuons le test suivant au niveau $\alpha_{\text{ind}} = \alpha/(k-1)$ et ainsi de suite...

Les conseils d'utilisation sont les mêmes que ceux exposés au paragraphe 9.2.6 et nous pouvons aussi bien nous en servir pour des plans équilibrés que des plans déséquilibrés.

9.2.8. La méthode de Dunn-Šidák

La méthode de Dunn-Šidák est basée sur la même idée que celle de Bonferroni, seule l'inégalité utilisée pour déterminer le seuil individuel de chacune des comparaisons, α_{ind} , est modifiée.

Supposons que nous souhaitons réaliser k comparaisons de moyennes ou k tests de contrastes et prendre une décision conjointe au risque de première espèce α . Nous notons E_i l'évènement associé au rejet de l'absence de différence significative au seuil α_{ind} lors de la i-ème comparaison ou le test du i-ème contraste. La méthode de Dunn-Šidák est basée

⁶Une procédure est dite **conservative** si son niveau de confiance est supérieur à celui fixé, ici $1 - \alpha_0$. La détection de différences significatives étant alors « trop difficile » par rapport au seuil que nous avions fixé en avance pour le test.

⁷En anglais Holm's SRB criterion pour Holm's Sequentially Rejective Bonferroni criterion.

sur l'inégalité suivante :

$$\alpha \leq 1 - (1 - \alpha_{\text{ind}})^k$$
.

L'inégalité de Bonferroni est plus grossière que celle de Dunn-Šidák et de ce fait la procédure de Bonferroni est plus conservative que celle de Dunn-Šidák. Ainsi si nous voulons être sûr que le risque de première espèce α associé globalement à la prise simultanée de toutes les décisions lors des k comparaisons ou des k tests de contrastes est plus petit qu'une valeur α_0 fixée à l'avance, il suffit de choisir :

$$\alpha_{\text{ind}} \leqslant 1 - \sqrt[k]{1 - \alpha_0}.$$

Nous procédons alors à des comparaisons des moyennes deux à deux avec un test t de Student de seuil $1 - \sqrt[k]{1 - \alpha_0}$ ou à un test de chacun des contrastes avec la statistique exposée au paragraphe 9.1.4 au seuil $1 - \sqrt[k]{1 - \alpha_0}$. Cette procédure s'applique donc si le plan est équilibré ou non.

L'intervalle de confiance de niveau $100(1-\alpha_0)$ % pour $\mu_i-\mu_{i'}$ est alors le suivant :

$$\widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) - t_{DS} \sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)} < \mu_i - \mu_{i'} < \widehat{\mu_i}(\boldsymbol{y}) - \widehat{\mu_{i'}}(\boldsymbol{y}) + t_{DS} \sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_i'}\right)},$$

où $t_{DS} = t(n-I; \sqrt[k]{1-\alpha_0})$ est le $100\sqrt[k]{1-\alpha_0}$ quantile de la loi de Student à n-I degrés de liberté.

9.2.9. La méthode de Newman-Keuls

Cette procédure est également connue sous le nom de test de Student-Newman-Keuls et est utilisable si le plan est équilibré ou déséquilibré.

- 1. Nous commençons par ordonner les estimations des moyennes $\widehat{\mu}_1(\boldsymbol{y}), \ldots, \widehat{\mu}_I(\boldsymbol{y})$ par ordre croissant. Nous obtenons donc $\widehat{\mu}_{(1)}(\boldsymbol{y}) \leqslant \ldots \leqslant \widehat{\mu}_{(I)}(\boldsymbol{y})$. Nous ordonnons de la même manière les moyennes μ_1, \ldots, μ_I .
- 2. Nous calculons la quantité $\widehat{\mu_{(I)}}(\boldsymbol{y}) \widehat{\mu_{(1)}}(\boldsymbol{y})$, qui est toujours positive, et nous la comparons à $W_{(I)}$ où :

$$W_{(I)} = q(I, I(J-1); 1-\alpha)\sqrt{\frac{s_R^2}{J}},$$

avec $q(I, I(J-1); 1-\alpha)$ le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et I(J-1) degrés de liberté.

Si $\widehat{\mu_{(I)}}(\boldsymbol{y}) - \widehat{\mu_{(1)}}(\boldsymbol{y}) \geqslant W_{(I)}$ alors nous décidons que le groupe de moyennes $\mu_{(1)}, \ldots, \mu_{(I)}$ n'est pas homogène et nous créons les deux groupes $\mu_{(1)}, \ldots, \mu_{(I-1)}$ et $\mu_{(2)}, \ldots, \mu_{(I)}$ sinon nous considérons que le groupe de moyennes $\mu_{(1)}, \ldots, \mu_{(I)}$ est homogène et la procèdure s'arrête là.

3. Nous calculons les quantités $\widehat{\mu_{(I-1)}}(\boldsymbol{y}) - \widehat{\mu_{(1)}}(\boldsymbol{y})$ et $\widehat{\mu_{(I)}}(\boldsymbol{y}) - \widehat{\mu_{(2)}}(\boldsymbol{y})$, qui sont toujours positives, et nous les comparons à $W_{(I-1)}$ où :

$$W_{(I-1)} = q(I-1, I(J-1); 1-\alpha) \sqrt{\frac{s_R^2}{J}},$$

avec $q(I-1,I(n-1);1-\alpha)$ le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I-1 et I(J-1) degrés de liberté.

Si $\widehat{\mu_{(I-1)}}(\boldsymbol{y}) - \widehat{\mu_{(1)}}(\boldsymbol{y}) \geqslant W_{(I)}$ alors nous décidons que le groupe de moyennes $\mu_{(1)}, \ldots, \mu_{(I-1)}$ n'est pas homogène et nous créons les deux groupes $\mu_{(1)}, \ldots, \mu_{(I-2)}$ et $\mu_{(2)}, \ldots, \mu_{(I-1)}$ sinon nous considérons que le groupe de moyennes $\mu_{(1)}, \ldots, \mu_{(I-1)}$ est homogène et la procèdure s'arrête là pour ce groupe. Nous pratiquons la même analyse pour le groupe $\mu_{(2)}, \ldots, \mu_{(I)}$.

4. Nous réitérons le processus, en utilisant la valeur critique $W_{(k)}$ avec :

$$W_{(k)} = q(k, I(J-1); 1-\alpha) \sqrt{\frac{s_R^2}{J}}$$

avec k le nombre de moyennes que comporte le groupe dont nous testons l'homogénéité, jusqu'à ce que tous les groupes obtenus soient homogènes ou que toutes les moyennes aient été comparées entre elles. Dans la pire des configurations nous obtiendrons I groupes disctincts ce qui prouve que cette procèdure se termine bien.

L'avantage de cette procédure est d'aboutir à la constitution, au risque global de $\alpha=5$ %, de groupes de moyennes homogènes.

Pour tenir compte d'un éventuel déséquilibre du plan expérimental nous remplaçons, dans les expressions ci-dessus, J par la moyenne harmonique du nombre de répétitions dans les modalités pour lesquelles les moyennes sont la plus petite et la plus grande de l'ensemble considéré. Ainsi, par exemple, nous comparerons la quantité $\widehat{\mu_{(I)}}(\boldsymbol{y}) - \widehat{\mu_{(1)}}(\boldsymbol{y})$, qui est toujours positive, à $W_{(I)}$ défini par :

$$W_{(I)} = q(I, n - I; 1 - \alpha) \sqrt{\frac{s_R^2}{2} \left(\frac{1}{n_{(1)}} + \frac{1}{n_{(I)}}\right)},$$

avec $q(I, n-I; 1-\alpha)$ le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et n-I degrés de liberté.

9.2.10. La méthode de Duncan

Le test de l'étendue multiple de Duncan⁸ est basée sur le même algorithme, c'est-à-dire la même suite de décisions, que celle du test de Newman-Keuls exposée au paragraphe 9.2.9. La seule différence entre ces deux procédures réside dans le fait que les estimations des étendues des groupes de moyennes comportant k moyennes sont comparées à la valeur $D_{(k)}$ où $D_{(k)}$ est définie par :

$$D_{(k)} = R(k, I(J-1); 1-\alpha) \sqrt{\frac{s_R^2}{J}},$$

⁸En anglais Duncan's Multiple Range Test.

avec $R(k, I(J-1); 1-\alpha)$ le $100(1-\alpha)$ quantile de la loi de l'étendue multiple de Duncan à k et I(J-1) degrés de liberté, I le nombre de niveaux du facteur A et J le nombre de répétitions commun à toutes les modalités A_i du facteur A.

Pour tenir compte d'un éventuel déséquilibre du plan expérimental nous remplaçons, dans les expressions ci-dessus, J par la moyenne harmonique du nombre de répétitions dans les modalités pour lesquelles les moyennes sont la plus petite et la plus grande de l'ensemble considéré. Ainsi, par exemple si nous cherchons à tester l'homogénéité de k moyennes dont l'estimation la plus petite est pour $\mu_{(i)}$ et l'estimation la plus grande pour $\mu_{(i')}$, nous comparerons la quantité $\widehat{\mu_{(i)}}(\boldsymbol{y}) - \widehat{\mu_{(i')}}(\boldsymbol{y})$ à $D_{(k)}$ définie par :

$$D_{(k)} = q(k, n - I; 1 - \alpha) \sqrt{\frac{s_R^2}{2} \left(\frac{1}{n_{(i)}} + \frac{1}{n_{(i')}}\right)},$$

avec $q(k, n-I; 1-\alpha)$ le $100(1-\alpha)$ quantile de la loi de l'étendue multiple de Duncan à k et n-I degrés de liberté.

9.2.11. La méthode de Dunnett

Le test de Dunnett a été proposé pour le contexte particulier de la comparaison des effets des modalités A_i d'un facteur A avec un niveau de référence de ce facteur, souvent appelé niveau de contrôle et noté A_c . Cette procédure peut être utilisée si le plan est équilibré ou non.

Il s'agit simplement d'une modification de la valeur critique utilisée avec la statistique du test t de Student pour deux moyennes. Ainsi la valeur de la différence des estimations de la moyenne de la réponse μ_i obtenue pour la modalité A_i du facteur A et de la moyenne μ_c de la réponse obtenue pour le niveau de contrôle A_c du facteur A. Nous souhaitons tester l'hypothèse :

$$[\mathcal{H}_0: \mu_i = \mu_c]$$
contre
$$[\mathcal{H}_1: \mu_i \neq \mu_c]$$

Nous rappelons que ce jeu d'hypothèses est équivalent à celui-ci :

$$[\mathcal{H}_0 : \alpha_i = \alpha_c]$$
contre
$$[\mathcal{H}_1 : \alpha_i \neq \alpha_c]$$

Le test est significatif au seuil α et nous décidons de rejeter l'hypothèse nulle \mathcal{H}_0 « $\mu_i = \mu_c$ » en faveur de l'hypothèse alternative \mathcal{H}_1 « $\mu_i \neq \mu_c$ » si :

$$|\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\mu}_c(\boldsymbol{y})| \geqslant D(I-1, n-I; 1-\alpha) \sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_c}\right)},$$

où $D(I-1,n-I;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Dunnett à I-1 et n-I degrés de liberté. Le test n'est pas significatif au seuil α et nous décidons de conserver par défaut l'hypothèse nulle \mathcal{H}_0 « $\mu_i=\mu_c$ » si :

$$|\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\mu}_c(\boldsymbol{y})| < D(I-1, n-I; 1-\alpha) \sqrt{s_R^2 \left(\frac{1}{n_i} + \frac{1}{n_c}\right)},$$

où $D(I-1,n-I;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Dunnett à I-1 et n-I degrés de liberté.

Le test doit être préféré aux autres procédures lorsque nous souhaitons seulement comparer les effets des modalités A_i avec l'effet de la modalité de contrôle A_c d'un facteur A. En effet ce test est dans ce cas généralement plus puissant.

9.3. Comparaisons multiples sous l'hypothèse d'hétéroscédasticité

9.3.1. La méthode de Games et Howell

Il s'agit d'une modification des statistiques du test de Tukey-Kramer pour tenir compte de l'hétérogénéité des variances σ_i^2 des niveaux A_i du facteur A ainsi que d'un éventuel déséquilibre du plan. Nous remplaçons ainsi S_R^2 par :

$$S_R^2 = \sqrt{\frac{S_i^2}{n_i} + \frac{S_{i'}^2}{n_{i'}}},$$

οù

$$S_i^2 = \frac{1}{n_i - 1} \sum_{i=1}^{n_i} (Y_{i,j} - Y_{i,\bullet})^2,$$

$$S_{i'}^2 = \frac{1}{n_i' - 1} \sum_{i=1}^{n_i'} (Y_{i',j} - Y_{i',\bullet})^2,$$

sont les estimateurs sans biais des variances au sein des niveaux A_i et $A_{i'}$ du facteur. Nous désignons par s_i^2 et $s_{i'}^2$ les estimations de σ_i^2 et $\sigma_{i'}^2$ associées aux estimateurs S_i^2 et $S_{i'}^2$. Cette modification permet donc de tenir compte des éventuelles différences entre les variances σ_i^2 et $\sigma_{i'}^2$ ou entre le nombre de répétitions n_i et $n_{i'}$ d'un niveau du facteur A à l'autre.

Nous modifions également un des degrés de liberté de la loi de l'étendue Studentisée dont nous nous servons pour trouver les quantiles nécessaires au test. Plus précisement, nous

utilisons $q(I, \nu_{i,i'}; 1 - \alpha)$ avec :

$$\nu_{i,i'} = \frac{\left(\frac{s_i^2}{n_i} + \frac{s_{i'}^2}{n_{i'}}\right)^2}{\left(\frac{s_i^2}{n_i}\right)^2 + \left(\frac{s_{i'}^2}{n_{i'}}\right)^2}.$$

$$\frac{\left(\frac{s_i^2}{n_i}\right)^2}{n_i - 1} + \frac{\left(\frac{s_{i'}^2}{n_{i'}}\right)^2}{n_{i'} - 1}.$$

9.4. Deux méthodes recommandées

Les procédures de Newman-Keuls et de Duncan sont toutes deux basées sur des méthodes de tests multiples de l'étendue séquentiels. Il a été montré que ces procédures sont statistiquement invalides. Les deux méthodes suivantes sont valides et recommandées par l'encyclopédie de statistique, pour plus de détails voir [KRB96].

9.4.1. Le test multiple des étendues de Ryan-Einot-Gabriel-Welsch

Nous souhaitons utiliser des tests multiples de l'étendue, nous utilisons les valeurs suivantes pour les seuils :

$$\alpha_m = \begin{cases} 1 - (1 - \alpha)^{\frac{m}{I}} & \text{si } m = 2, \dots, I - 2, \\ \alpha & \text{si } m = I - 1, I. \end{cases}$$
 (9.4.1)

La validité du test multiple des étendues de Ryan-Einot-Gabriel-Welsch est basée sur la validité du procédé plus général de comparaisons descendant décrit ci-dessous.

Pour tout sous-ensemble \mathbb{K} inclus dans $\mathbb{I} = \{1, \ldots, I\}$, soit $\mathcal{H}_{\mathbb{K}}$ l'hypothèse :

$$\mathcal{H}_{\mathbb{K}}: \mu_i = \mu_j \text{ pour tout } i, j \text{ de } \mathbb{K},$$

et soit $|\mathbb{K}|$ le nombre d'éléments de \mathbb{K} . Nous ne considérerons dans ce paragraphe que des sous-ensembles de \mathbb{I} formés d'entiers consécutifs.

- 1. Tester au seuil $\alpha = \alpha_{|\mathbb{I}|} = \alpha_I$, donné par l'équation (9.4.1), $\mathcal{H}_{\mathbb{I}} : \mu_1 = \ldots = \mu_I$. Si $\mathcal{H}_{\mathbb{I}}$ n'est pas rejetée au seuil $\alpha = \alpha_I$, alors nous décidons que nous ne pouvons rejeter aucune des hypothèses $\mathcal{H}_{\mathbb{K}}$ pour $\mathbb{K} \subset \mathbb{I}$ et nous arrêtons le procédé à cette étape. Sinon nous décidons qu'il existe i_0 et j_0 dans $\{1,\ldots,I\}$ tels que $\mu_{i_0} \neq \mu_{j_0}$ et nous nous rendons à l'étape 2..
- 2. Tester au seuil $\alpha = \alpha_{|\mathbb{I}|-1} = \alpha_{I-1}$, donné par l'équation (9.4.1), chaque $\mathcal{H}_{\mathbb{L}}$ avec $|\mathbb{L}| = I 1$ et en imposant la condition que les entiers qui appartiennent à \mathbb{L} sont consécutifs qui n'a pas encore été acceptée. Si l'hypothèse $\mathcal{H}_{\mathbb{L}}$ est acceptée, alors nous décidons que nous ne pouvons rejeter aucune des hypothèses $\mathcal{H}_{\mathbb{K}}$ pour $\mathbb{K} \subset \mathbb{L}$. Sinon nous décidons qu'il existe i_0 et j_0 dans \mathbb{L} tels que $\mu_{i_0} \neq \mu_{j_0}$. Si aucune des $\mathcal{H}_{\mathbb{L}}$ n'est rejetée, nous avonsrrête la procédure ; dans le cas contraire, nous nous rendons à l'étape 3.

- 3. Tester au seuil $\alpha = \alpha_{|\mathbb{L}|}$, donné par l'équation (9.4.1), chaque $\mathcal{H}_{\mathbb{L}}$ et en imposant la condition que les entiers qui appartiennent à \mathbb{L} sont consécutifs qui n'a pas encore été acceptée lors d'une étape précédente. Si $\mathcal{H}_{\mathbb{L}}$ est acceptée, alors nous décidons que nous ne pouvons rejeter aucune des hypothèses $\mathcal{H}_{\mathbb{K}}$ pour $\mathbb{K} \subset \mathbb{L}$. Sinon nous décidons qu'il existe i_0 et j_0 dans \mathbb{L} tels que $\mu_{i_0} \neq \mu_{j_0}$.
- **4.** Continuer jusqu'à ce qu'il ne reste plus aucune hypothèse $\mathcal{H}_{\mathbb{L}}$, pour laquelle les entiers qui appartiennent à \mathbb{L} sont consécutifs, à tester au seuil $\alpha_{|\mathbb{J}|}$.
- **5.** Enfin décider que $\mu_{i_0} \neq \mu_{j_0}$ si tout $\mathcal{H}_{\mathbb{L}}$ telle que $i_0, j_0 \in \mathbb{L}$ est rejetée.

Pour réaliser le test multiple des étendues de Ryan-Einot-Gabriel-Welsch nous testons les hypothèses $\mathcal{H}_{\mathbb{L}}$ au seuil $\alpha_{|\mathbb{L}|}$ de la manière suivante :

• Nous ne pouvons pas rejeter l'hypothèse $\mathcal{H}_{\mathbb{L}}$ au seuil $\alpha_{|\mathbb{L}|}$ si

$$\max_{i,j \in \mathbb{L}} \widehat{\mu_i}(oldsymbol{y}) - \widehat{\mu_j}(oldsymbol{y}) < c_{lpha_{|\mathbb{L}|}} \sqrt{rac{2s_R^2}{n}},$$

où $c_{\alpha_{|\mathbb{L}|}}$ est défini par :

$$\alpha_{|\mathbb{L}|} = \mathbb{P}\left[\max_{i,j\in\mathbb{L}} \frac{\widehat{\mu}_i - \widehat{\mu}_j}{\sqrt{\frac{2S_R^2}{n}}} > c_{\alpha_{|\mathbb{L}|}}\right].$$

Ainsi avec le choix de l'équation (9.4.1) pour les valeurs des α_m , $1 \leq m \leq I$ nous obtenons, si $2 \leq |\mathbb{L}| \leq I - 2$:

$$1 - (1 - \alpha)^{\frac{|\mathbb{L}|}{I}} = \mathbb{P}\left[\max_{i,j \in \mathbb{L}} \frac{\widehat{\mu}_i - \widehat{\mu}_j}{\sqrt{\frac{2S_R^2}{n}}} > c_{\alpha_{|\mathbb{L}|}}\right],$$

et si $I - 1 \leq |\mathbb{L}| \leq I$:

$$\alpha = \mathbb{P}\left[\max_{i,j\in\mathbb{L}}\frac{\widehat{\mu}_i - \widehat{\mu}_j}{\sqrt{\frac{2s_R^2}{n}}} > c_{\alpha_{|\mathbb{L}|}}\right].$$

Ainsi $c_{\alpha_{|\mathbb{L}|}}$ est donc le $100(1-\alpha_{|\mathbb{L}|})$ quantile de la loi de l'étendue Studentisée à $|\mathbb{L}|$ et n-I degrés de liberté.

• Nous décidons de rejeter l'hypothèse $\mathcal{H}_{\mathbb{L}}$ au seuil $\alpha_{|\mathbb{L}|}$ si

$$\max_{i,j\in\mathbb{L}}\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\mu}_j(\boldsymbol{y}) \geqslant c_{\alpha_{|\mathbb{L}|}} \sqrt{\frac{2s_R^2}{n}},$$

où $c_{\alpha_{|\mathbb{L}|}}$ est défini comme ci-dessus.

Si les valeurs critiques c_m , $1 \le m \le I$ utilisées sont croissantes avec m alors le test multiple des étendues de Ryan-Einot-Gabriel-Welsch est un cas particulier de la procédure descendante ci-dessous et de ce fait valide. Malheureusement, avec la définition de α_m donnée par l'équation (9.4.1), il n'y a aucune garantie que la valeur critique c_m soit croissante avec m. Pour comprendre pourquoi cette condition est absolument nécessaire, nous pourrons consulter l'exemple page 5067 dans [KRB96]

Ainsi, nous préférerons utiliser, si les valeurs critiques calculées à l'aide de l'équation (9.4.1) ne sont pas monotones, c'est-à-dire si elles ne sont pas croissantes, les valeurs critiques modifiées définies par :

$$c'_m = \max_{2 \leqslant j \leqslant m} c_j, \quad m = 2, \dots, I.$$

Attention à bien vérifier ce point si nous ne voulons pas obtenir de résultats incohérents.

Remarque:

Nous aurions pu utiliser la procédure ci-dessous avec une autre manière de tester les hypothèses $\mathcal{H}_{\mathbb{L}}$, par exemple des tests t à deux échantillons, nous utilisons ra alors l'inégalité de Bonferroni et les valeurs suivantes pour les seuils :

$$\alpha_m = \begin{cases} \frac{m}{I} \alpha & \text{si} \quad m = 2, \dots, I - 2, \\ \alpha & \text{si} \quad m = I - 1, I. \end{cases}$$

Toutefois cette procédure possède le même défaut que celle de Bonferroni par rapport à celle de la méthode de Dunn-Šidák : elle est plus conservative, voir le paragraphe 9.2.8.

9.4.2. Tests F-multiples

La validité de la méthode des tests F—multiples est basée sur la validité du procédé plus général de comparaisons descendant décrit ci-dessous.

Pour tout $\mathbb{L} \subseteq \mathbb{I} = \{1, \dots, I\}$, soit $H_{\mathbb{L}}$ l'hypothèse :

$$\mathcal{H}_{\mathbb{L}}: \mu_i = \mu_j \text{ pour tout } i, j \text{ de } \mathbb{L},$$

et soit $|\mathbb{L}|$ le nombre d'éléments de \mathbb{L} .

- 1. Contrairement aux tests basés sur l'étendue nous ne pouvons nous contenter de tester des hypothèses $\mathcal{H}_{\mathbb{L}}$ pour lesquelles les indices appartenant à \mathbb{L} sont consécutifs. Attention à bien faire tous les tests au seuil $\alpha_{\mathbb{L}}$ pour toutes les hypothèses $\mathcal{H}_{\mathbb{L}}$ possibles, avec $\mathbb{L} \subset \mathbb{I}$ si nous ne voulons pas obtenir de résultats incohérents au seuil α .
- 2. Continuer jusqu'à ce qu'il ne reste plus aucune hypothèse $\mathcal{H}_{\mathbb{L}}$ à tester.
- **3.** Décider alors que $\mu_{i_0} \neq \mu_{j_0}$ au seuil α si toutes les hypothèses $\mathcal{H}_{\mathbb{L}}$ pour lesquelles $i_0, j_0 \in \mathbb{L}$ sont rejetées au seuil $\alpha_{\mathbb{L}}$.

Pour réaliser les tests F—multiples nous testons les hypothèses $\mathcal{H}_{\mathbb{L}}$ au seuil $\alpha_{|\mathbb{L}|}$ de la manière suivante :

• Nous ne pouvons pas rejeter l'hypothèse $\mathcal{H}_{\mathbb{L}}$ au seuil $\alpha_{|\mathbb{L}|}$ si

$$\frac{\sum_{i \in \mathbb{L}} n \left(\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\overline{\mu}_{\mathbb{L}}}(\boldsymbol{y})\right)^2}{\left(\left|\mathbb{L}\right| - 1\right) s_R^2} < c_{\alpha_{|\mathbb{L}|}},$$

où $\widehat{\overline{\mu_{\mathbb{L}}}}$ est défini par

$$\widehat{\overline{\mu_{\mathbb{L}}}} = \frac{\sum_{i \in \mathbb{L}} \sum_{a=1}^{n} Y_{i,a}}{\sum_{i \in \mathbb{L}} n},$$

ainsi que $c_{\alpha_{|\mathbb{L}|}}$ par

$$\alpha_{|\mathbb{L}|} = \mathbb{P}\left[\frac{\sum_{i \in \mathbb{L}} n\left(\widehat{\mu}_i - \widehat{\overline{\mu}_{\mathbb{L}}}\right)^2}{\left(|\mathbb{L}| - 1\right) S_R^2} > c_{\alpha_{|\mathbb{L}|}}\right].$$

Ainsi avec le choix de l'équation (9.4.1) pour les valeurs des α_i , $1 \le i \le I$ nous obtenons, si $2 \le |\mathbb{L}| \le I - 2$:

$$1 - (1 - \alpha)^{\frac{|\mathbb{L}|}{I}} = \mathbb{P}\left[\frac{\sum_{i \in \mathbb{L}} n\left(\widehat{\mu}_i - \widehat{\overline{\mu}_{\mathbb{L}}}\right)^2}{\left(|\mathbb{L}| - 1\right) S_R^2} > c_{\alpha_{|\mathbb{L}|}}\right],$$

et si $I - 1 \leq |\mathbb{L}| \leq I$:

$$\alpha = \mathbb{P}\left[\frac{\sum_{i \in \mathbb{L}} n\left(\widehat{\mu_i} - \widehat{\overline{\mu_{\mathbb{L}}}}\right)^2}{\left(|\mathbb{L}| - 1\right) S_R^2} > c_{\alpha_{|\mathbb{L}|}}\right].$$

Ainsi $c_{\alpha_{|\mathbb{L}|}}$ est donc le $100(1-\alpha_{|\mathbb{L}|})$ quantile de la loi de Fisher à $|\mathbb{L}|-1$ et n-I degrés de liberté.

• Nous décidons de rejeter l'hypothèse $\mathcal{H}_{\mathbb{L}}$ au seuil $\alpha_{|\mathbb{L}|}$ si

$$\frac{\sum_{i \in \mathbb{L}} n \left(\widehat{\mu}_i(\boldsymbol{y}) - \widehat{\overline{\mu}_{\mathbb{L}}}(\boldsymbol{y})\right)^2}{\left(|\mathbb{L}| - 1\right) s_R^2} \geqslant c_{\alpha_{|\mathbb{L}|}},$$

où $c_{\alpha_{|\mathbb{L}|}}$ est défini comme ci-dessus.

9.5. Comparaisons avec le « meilleur »

Dans certains cas il peut être intéressant de comparer les effets de tous les niveaux d'un facteur avec l'effet extrême, maximal ou minimal, que nous avons observé et que nous considérons comme le « meilleur ». Ce type de problématique ne peut être traité à l'aide d'une approche basée sur la méthode de Dunnett puisque nous ne savons pas *a priori*

pour quelle modalité nous allons observer le « meilleur » effet.

Nous utilisons alors des techniques de comparaisons multiples avec le « meilleur 9 », le plus souvent celle de Hsu ou celle de Edwards-Hsu.

Nous nous intéressons ici donc non pas à toutes les comparaisons possibles mais seulement à celles-ci :

• Si le « meilleur » est la valeur la plus élévée nous utilisons :

$$\mu_i - \max_{j \neq i} \mu_j, \quad i = 1, \dots, I,$$

ainsi si $\mu_{i_0} - \max_{j \neq i_0} \mu_j > 0$ alors la modalité i_0 est celle pour laquelle l'effet est maximal et de ce fait la « meilleure ». Par contre si $\mu_{i_1} - \max_{j \neq i_1} \mu_j < 0$ alors la modalité i_1 n'est pas celle pour laquelle l'effet est maximal.

Si l'effet de la modalité i_2 n'est pas le plus important mais que nous avons néanmoins $\mu_{i_2} - \max_{j \neq i_2} \mu_j > -\delta$ avec δ un petit nombre réel strictement positif alors la modalité i_2 est proche de la « meilleure ».

• Si le « meilleur » est la valeur la moins élévée nous utilisons :

$$\mu_i - \min_{j \neq i} \mu_j, \quad i = 1, \dots, I,$$

ainsi si $\mu_{i_0} - \min_{j \neq i_0} \mu_j < 0$ alors la modalité i_0 est celle pour laquelle l'effet est minimal et de ce fait la « meilleure ». Par contre si $\mu_{i_1} - \min_{j \neq i_1} \mu_j > 0$ alors la modalité i_1 n'est pas celle pour laquelle l'effet est minimal.

Si l'effet de la modalité i_2 n'est pas le plus important mais que nous avons néanmoins $\mu_{i_2} - \min_{j \neq i_2} \mu_j > \delta$ avec δ un petit nombre réel strictement positif alors la modalité i_2 est proche de la « meilleure ».

9.5.1. La méthode de Hsu

Hsu a développé des intervalles de confiance simultanés de niveau de confiance $100(1-\alpha)$ pour $\mu_i - \max_{j \neq i} \mu_j$, $i = 1, \ldots, I$. Ces intervalles contiennent tous la valeur 0 et sont construits ainsi : pour chaque i, soit d_i la valeur critique telle que

$$\mathbb{P}\left[\widehat{\mu}_i - \mu_i > \widehat{\mu}_j - \mu_j - d_i \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}, \ \forall \ j | j \neq i \right] = 1 - \alpha.$$

Nous remarquons que d_i est la valeur critique pour les comparaisons multiples unilatérales en considérant le i-ème niveau comme le niveau de contrôle.

 $^{^{9}}$ Ceci est souvent abrégé en anglais en MCB pour « Multiple comparisons with the Best ».

Les intervalles fermés $[D_i^-, D_i^+], i = 1, \dots, I$ où

$$D_{i}^{+} = \max \left\{ 0, \min_{j \neq i} \left(\widehat{\mu}_{i} - \widehat{\mu}_{j} - d_{i} \sqrt{S_{R}^{2} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}} \right)} \right) \right\}$$

$$G = \left\{ i \mid D_{i}^{+} > 0 \right\}$$

$$D_{i}^{-} = \left\{ 0 \quad \text{si } i \notin G \right\}$$

$$\min_{j \in G, j \neq i} \left(\widehat{\mu}_{i} - \widehat{\mu}_{j} - d_{j} \sqrt{S_{R}^{2} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}} \right)} \right) \quad \text{si } i \in G$$

forment un ensemble d'intervalles de confiance simultanés de niveau de confiance $100(1-\alpha)$ pour $\mu_i - \max_{j \neq i} \mu_j$, $i = 1, \dots, I$.

Lorsque le plan est équilibré les intervalles se transforment en :

$$\left[-\min\left\{ 0, \left(\widehat{\mu}_i - \max_{j \neq i} \widehat{\mu}_j - d\sqrt{\frac{2S_R^2}{n}} \right) \right\}, \max\left\{ 0, \left(\widehat{\mu}_i - \max_{j \neq i} \widehat{\mu}_j - d\sqrt{\frac{2S_R^2}{n}} \right) \right\} \right],$$
où $1 \leqslant i \leqslant I$ et $d = d_1 = \ldots = d_I$.

9.5.2. La méthode de Edwards-Hsu

Si nous cherchons à avoir également des bornes sur l'écart minimum entre la valeur du « meilleur » traitement et celle des autres traitements que celui dont l'estimatinous avons été la meilleure, alors nous pouvons utiliser la méthode de Edwards-Hsu. Celle-ci permet d'obtenir des intervalles de confiance simultanés pour $\mu_i - \max_{i \leqslant j \leqslant I} \mu_j$, $i = 1, \ldots, I$ que nous ne forçons plus à contenir la valeur 0.

Pour chaque i, soit $|d|_i$ la valeur critique telle que

$$\mathbb{P}\left[\widehat{\mu_i} - \mu_i - (\widehat{\mu_j} - \mu_j) < |d|_i \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}, \ \forall \ j | j \neq i \right] = 1 - \alpha.$$

Nous remarquons que d_i est la valeur critique pour les comparaisons multiples avec un contrôle en considérant le i-ème niveau comme le niveau de contrôle et de ce fait le nombre $|d|_i$ est supérieur à d_i qui est utilisé dans la méthode de Hsu.

Les intervalles $[L_i, U_i]$ définis par

$$S = \left\{ i \text{ tels que } \min_{j \neq i} \left\{ \widehat{\mu}_i - \widehat{\mu}_j + |d|_i \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)} \right\} > 0 \right\},$$

$$L_{ij} = \left\{ \begin{array}{l} 0 & \text{si } i = j \\ \widehat{\mu}_i - \widehat{\mu}_j - |d|_j \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)} & \text{si } i \neq j \end{array} \right.,$$

$$U_{ij} = \left\{ \begin{array}{l} 0 & \text{si } i = j \\ -\min \left\{ 0, \left(\widehat{\mu}_i - \widehat{\mu}_j + |d|_j \sqrt{S_R^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)} \right) \right\} & \text{si } i \neq j \end{array} \right.,$$

$$L_i = \min_{j \in S} L_{ij} \qquad U_i = \max_{j \in S} U_{ij}$$

pour i = 1, ..., I, forment un ensemble d'intervalles de confiances simultanés de niveau $100(1 - \alpha)$ pour $\mu_i - \max_{i \leq j \leq I} \mu_j$, i = 1, ..., I.

Lorsque le plan est équilibré les quantités utilisées pour construire les intervalles se transforment de la manière suivante.

Il n'y a qu'une seule valeur critique $|d| = |d|_1 = |d|_I$ définie par :

$$\mathbb{P}\left[\widehat{\mu}_i - \mu_i - (\widehat{\mu}_j - \mu_j) < |d| \sqrt{\frac{2S_R^2}{n}}, \ \forall \ j|j \neq i\right] = 1 - \alpha.$$

Nous remarquons que d est la valeur critique pour les comparaisons multiples avec un contrôle en considérant l'un quelconque des niveaux comme le niveau de contrôle et de ce fait le nombre |d| est supérieur à d qui est utilisé dans la méthode de Hsu.

Les intervalles $[L_i, U_i]$ définis par

$$S = \left\{ i \text{ tels que } \min_{j \neq i} \left\{ \widehat{\mu}_i - \widehat{\mu}_j + |d| \sqrt{\frac{2S_R^2}{n}} \right\} > 0 \right\},\,$$

$$L_{ij} = \begin{cases} 0 & \text{si } i = j \\ \widehat{\mu}_i - \widehat{\mu}_j - |d| \sqrt{\frac{2S_R^2}{n}} & \text{si } i \neq j \end{cases},$$

$$U_{ij} = \begin{cases} 0 & \text{si } i = j \\ -\min \left\{ 0, \left(\widehat{\mu}_i - \widehat{\mu}_j + |d| \sqrt{\frac{2S_R^2}{n}} \right) \right\} & \text{si } i \neq j \end{cases},$$

$$L_i = \min_{j \in S} L_{ij} \qquad U_i = \max_{j \in S} U_{ij}$$

pour $i=1,\ldots,I$, forment un ensemble d'intervalles de confiances simultanés de niveau $100(1-\alpha)$ pour $\mu_i - \max_{i \leq j \leq I} \mu_j, i=1,\ldots,I$.

9.6. Deux facteurs sans répétition

Nous pouvons adapter les méthodes de comparaison des effets des différentes modalités, exposées aux paragraphes 9.1, 9.2 et 9.3 dans le cas de l'analyse de la variance à un facteur à effets fixes, au cas où nous considérons un modèle à deux facteurs sans interaction à effets fixes ou à effets mixtes. Nous commençons par détailler les modifications à faire pour utiliser les méthodes de Tukey et de Scheffé.

Nous reprenons ici les notations du paragraphe 3.1.1 ou du paragraphe 3.3.1 en fonction de la situation étudiée.

9.6.1. Contrastes

Les contrastes mettent en jeu des moyennes associées soit au premier facteur A, s'il est à effets fixes, soit au second facteur B, s'il est à effets fixes. Il y a ainsi deux types de contrastes :

$$L = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_I \alpha_I, L' = l'_1 \beta_1 + l'_2 \beta_2 + \dots + l'_J \beta_J.$$

avec $\sum_{i=1}^{I} l_i = 0$ et $\sum_{j=1}^{J} l'_j = 0$.

Des estimateurs sans biais de L et L' sont alors :

$$\widehat{L} = l_1 \widehat{\alpha}_1 + l_2 \widehat{\alpha}_2 + \dots + l_I \widehat{\alpha}_I,$$

$$\widehat{L}' = l_1' \widehat{\beta}_1 + l_2' \widehat{\beta}_2 + \dots + l_J' \widehat{\beta}_J.$$

Ainsi des estimations sans biais de L et $L^{'}$ s'écrivent :

$$\widehat{L}(\boldsymbol{y}) = l_1 y_{1,\bullet} + l_2 y_{2,\bullet} + \dots + l_I y_{I,\bullet},$$

$$\widehat{L}'(\boldsymbol{y}) = l'_1 y_{\bullet,1} + l'_2 y_{\bullet,2} + \dots + l'_J y_{\bullet,J}.$$

9.6.2. Méthode de Tukey

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en I et (I-1)(J-1). Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{J}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)} \geqslant q(I, (I-1)(J-1); 1-\alpha).$$

où $q(I,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et (I-1)(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

De même si le contraste L' met en jeu des moyennes associées au facteur B à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en J et (I-1)(J-1).

Nous décidons que le contraste L' est significativement différent de 0 au seuil α si :

$$\frac{L'(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{I}} \left(\frac{1}{2} \sum_{j=1}^{J} \left| l_j' \right| \right)} \geqslant q(J, (I-1)(J-1); 1-\alpha).$$

où $q(J,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à J et (I-1)(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L' et 0 au seuil α .

9.6.3. Méthode de Scheffé

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de Fisher en I-1 et (I-1)(J-1).

Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{(I-1)s_R^2}{J}\sum_{i=1}^{I}l_i^2}} \geqslant \sqrt{F(I-1,(I-1)(J-1);1-\alpha)},$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

De même si le contraste L' met en jeu des moyennes associées au facteur B à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de Fisher en J-1 et (I-1)(J-1). Nous décidons que le contraste L' est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}'(\boldsymbol{y})}{\sqrt{\frac{(J-1)s_R^2 \sum_{j=1}^J l_j'^2}{I}}} \geqslant \sqrt{F(J-1, (I-1)(J-1); 1-\alpha)},$$

où $F(J-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L' et 0 au seuil α .

9.6.4. Méthode de Bonferroni et méthodes associées

Nous adaptons ici, de manière similaire, la procédure de Bonferroni et toutes celles qui en découle.

Ainsi si nous ne souhaitons **comparer que deux niveaux** d'un même des deux facteurs, ici par exemple deux niveaux du facteur A, nous pourrons utiliser la valeur critique

$$\sqrt{2} \ t((I-1)(J-1); 1-\frac{\alpha}{2})$$

à la place de

$$q(I, (I-1)(J-1); 1-\alpha)$$

où $t((I-1)(J-1);1-\alpha/2)$ est le $100(1-\alpha/2)$ quantile de la loi de Student à (I-1)(J-1) degrés de liberté.

Si nous souhaitons réaliser un nombre fini k de comparaisons nous pourrons utiliser la valeur critique

$$\sqrt{2} \ t((I-1)(J-1); 1-\frac{\alpha}{2k})$$

à la place de

$$q(I, (I-1)(J-1); 1-\alpha)$$

où $t((I-1)(J-1);1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à (I-1)(J-1) degrés de liberté.

9.7. Deux facteurs avec répétitions

Nous pouvons adapter les méthodes de comparaison des effets des différentes modalités, exposées aux paragraphes 9.1, 9.2 et 9.3 dans le cas de l'analyse de la variance à un facteur à effets fixes, au cas où nous considérons un modèle à deux facteurs avec interaction à effets fixes ou à effets mixtes. Nous commençons par détailler les modifications à faire pour utiliser les méthodes de Tukey et de Scheffé.

Nous reprenons ici les notations du paragraphe 3.1.2 ou du paragraphe 3.3.2 en fonction de la situation considérée. La différence fondamentale entre ces deux situations résidant dans le fait que pour la première, deux facteurs à effets fixes, nous utiliserons le carré moyen résiduel s_R^2 dans les statistiques de test tandis que dans la seconde, un facteur à effets fixes et un facteur à effets aléatoires, nous utiliserons le carré moyen associé au terme de l'interaction s_{AB}^2 dans les statistiques de test.

9.7.1. Contrastes

Modèle à effets fixes

Dans le cas d'un modèle où les deux facteurs sont à effets fixes, c'est-à-dire le cas envisagé au paragraphe 3.1.2, il peut être intéressant, en fonction de la significativité des différents tests auxquels nous avons procédé, d'étudier les constrastes exposés ci-dessous.

$$\boxed{ \begin{aligned} \mathcal{H}_0''' : (\alpha\beta)_{1,1} &= (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0 \\ \\ &\qquad \qquad \text{contre} \\ \\ \mathcal{H}_1''' : \text{Il existe } (i_0,j_0) \in \{1,2,\dots,I\} \times \{1,2,\dots,J\} \text{ tel que } (\alpha\beta)_{i_0,j_0} \neq 0. \end{aligned} }$$

Si nous rejetons l'hypothèse nulle \mathcal{H}_0''' il peut être intéressant de comparer entre elles les réponses moyennes dans chacun des couples de modalités A_i et B_j . Les contrastes L_{AB} qui permettent de comparer les moyennes de la réponse $\mu_{i,j} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j}$ dans deux différentes configurations expérimentales modalité i du facteur A et modalité j du facteur B sont :

$$L_{AB} = \mu_{i,j} - \mu_{i',j'}.$$

Une estimation sans biais de L_{AB} est donnée par :

$$\widehat{L_{AB}}(\boldsymbol{y}) = y_{i,j,\bullet} - y_{i',j',\bullet}.$$

Si nous ne pouvons rejeter l'hypothèse nulle \mathcal{H}_0''' il peut être intéressant de comparer entre elles les réponses moyennes dans chacune des modalités A_i ou dans chacune des modalités B_i .

Les contrastes mettent en jeu des moyennes associées soit au premier facteur A soit au second facteur B. Il y a ainsi deux types de contrastes :

$$L = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_I \alpha_I, L' = l'_1 \beta_1 + l'_2 \beta_2 + \dots + l'_J \beta_J,$$

avec $\sum_{i=1}^{I} l_i = 0$ et $\sum_{j=1}^{J} l'_j = 0$.

Des estimateurs sans biais de L et L^{\prime} sont alors :

$$\widehat{L} = l_1 \widehat{\alpha_1} + l_2 \widehat{\alpha_2} + \dots + l_I \widehat{\alpha_I},$$

$$\widehat{L}' = l_1' \widehat{\beta_1} + l_2' \widehat{\beta_2} + \dots + l_J' \widehat{\beta_J}.$$

Ainsi des estimations sans biais de L et L' s'écrivent :

$$\widehat{L}(\boldsymbol{y}) = l_1 y_{1,\bullet,\bullet} + l_2 y_{2,\bullet,\bullet} + \dots + l_I y_{I,\bullet,\bullet},$$

$$\widehat{L}'(\boldsymbol{y}) = l'_1 y_{\bullet,1,\bullet} + l'_2 y_{\bullet,2,\bullet} + \dots + l'_I y_{\bullet,I,\bullet}.$$

Modèle à effets mixtes

Dans le cas d'un modèle mixte, c'est-à-dire le cas envisagé au paragraphe 3.3.2, il peut être intéressant, en fonction de la significativité du test de l'effet du facteur à effets fixes, d'étudier les constrastes du type :

$$L = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_I \alpha_I,$$

avec $\sum_{i=1}^{I} l_i = 0$.

Un estimateur sans biais de L est alors :

$$\widehat{L} = l_1 \widehat{\alpha_1} + l_2 \widehat{\alpha_2} + \dots + l_I \widehat{\alpha_I}.$$

Ainsi une estimation sans biais de L s'écrit :

$$\widehat{L}(\boldsymbol{y}) = l_1 y_{1,\bullet,\bullet} + l_2 y_{2,\bullet,\bullet} + \dots + l_I y_{I,\bullet,\bullet}$$

9.7.2. Méthode de Tukey

Modèle à effets fixes

 L_{AB} est significativement différent de 0 au seuil α si, en supposant que $y_{i,j,\bullet} \geqslant y_{i',j',\bullet}$, nous avons :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{K}}} \geqslant q(IJ, IJ(K-1); 1-\alpha),$$

où $q(IJ, IJ(K-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à IJ et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L_{AB} et 0 au seuil α .

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en I et IJ(K-1). Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)} \geqslant q(I, IJ(K-1); 1-\alpha).$$

où $q(I, IJ(K-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

De même si le contraste L' met en jeu des moyennes associées au facteur B à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en J et IJ(K-1).

Nous décidons que le contraste L' est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}'(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{IK}} \left(\frac{1}{2} \sum_{j=1}^{J} \left| l_j' \right| \right)} \geqslant q(J, IJ(K-1); 1-\alpha).$$

où $q(J,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à J et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L' et 0 au seuil α .

Modèle à effets mixtes

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_{AB}^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en I et (I-1)(J-1). Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{s_{AB}^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)} \geqslant q(I, (I-1)(J-1); 1-\alpha).$$

où $q(I,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et (I-1)(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

9.7.3. Méthode de Scheffé

Modèle à effets fixes

 L_{AB} est significativement différent de 0 au seuil α si, en supposant que $y_{i,j,\bullet} \geqslant y_{i',j',\bullet}$, nous avons :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{(IJ-1)\frac{2s_R^2}{K}}} \geqslant \sqrt{F(IJ-1,IJ(K-1);1-\alpha)},$$

où $F(IJ-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à IJ-1 et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L_{AB} et 0 au seuil α .

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de Fisher en I-1 et IJ(K-1).

Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{(I-1)s_R^2}{JK}\sum_{i=1}^{I}l_i^2}} \geqslant \sqrt{F(I-1,IJ(K-1);1-\alpha)},$$

où $F(I-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

De même si le contraste L' met en jeu des moyennes associées au facteur B à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de Fisher en J-1 et IJ(K-1). Nous décidons que le contraste L' est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}'(\boldsymbol{y})}{\sqrt{\frac{(J-1)s_R^2}{IK}\sum_{j=1}^J l_j'^2}} \geqslant \sqrt{F(J-1,IJ(K-1);1-\alpha)},$$

où $F(J-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L' et 0 au seuil α .

Modèle à effets mixtes

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_{AB}^2 calculée pour le modèle incluant les deux facteurs et nous changeons

le nombre de degrés de liberté de la loi de Fisher en I-1 et (I-1)(J-1). Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{(I-1)s_{AB}^{2}}{JK}\sum_{i=1}^{I}l_{i}^{2}}} \geqslant F(I-1,(I-1)(J-1);1-\alpha).$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I et (I-1)(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

9.7.4. Méthode de Bonferroni et méthodes associées

Nous adaptons ici, de manière similaire, la procédure de Bonferroni et toutes celles qui en découle.

Modèle à effets fixes

Si nous souhaitons réaliser un nombre fini k de comparaisons de contrastes associés au facteur A nous pourrons utiliser la valeur critique

$$t(IJ(K-1); 1 - \frac{\alpha}{2k}) \sqrt{\frac{s_R^2}{JK} \left(\sum_{i=1}^I l_i^2\right)}$$

à la place de

$$q(I, IJ(K-1); 1-\alpha)\sqrt{\frac{s_R^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)$$

où $t(IJ(K-1);1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à IJ(K-1) degrés de liberté.

Si nous souhaitons réaliser un nombre fini k' de comparaisons de contrastes associés au facteur B nous pourrons utiliser la valeur critique

$$t(IJ(K-1); 1 - \frac{\alpha}{2k'}) \sqrt{\frac{s_R^2}{IK} \left(\sum_{j=1}^J l_j'^2\right)}$$

à la place de

$$q(J, IJ(K-1); 1-\alpha)\sqrt{\frac{s_R^2}{IK}} \left(\frac{1}{2} \sum_{j=1}^{J} |l_j|\right)$$

où $t(IJ(K-1);1-\frac{\alpha}{2k'})$ est le $100(1-\frac{\alpha}{2k'})$ quantile de la loi de Student à IJ(K-1) degrés de liberté.

Modèle à effets mixtes

Si nous souhaitons réaliser un nombre fini k de comparaisons de contrastes associés au facteur A nous pourrons utiliser la valeur critique

$$t((I-1)(J-1); 1 - \frac{\alpha}{2k}) \sqrt{\frac{s_{AB}^2}{JK} \left(\sum_{i=1}^{I} l_i^2\right)}$$

à la place de

$$q(I, (I-1)(J-1); 1-\alpha)\sqrt{\frac{s_{AB}^2}{JK}} \left(\frac{1}{2}\sum_{i=1}^{I}|l_i|\right)$$

où $t((I-1)(J-1); 1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à (I-1)(J-1) degrés de liberté.

Ainsi dans le cas de comparaisons deux à deux des effets des modalités du facteur A à effets fixes la valeur critique que nous utiliserons avec la procédure de Bonferroni est :

$$\sqrt{2} \ t((I-1)(J-1); 1 - \frac{\alpha}{2k}) \sqrt{\frac{s_{AB}^2}{JK}}$$

où $t((I-1)(J-1);1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à (I-1)(J-1) degrés de liberté.

9.7.5. Cas d'un plan non équilibré et des comparaisons deux à deux

Dans les deux situations, effets fixes ou mixtes, nous pouvons utiliser la procédure de Tukey en remplaçant le nombre de répétitions K par la moyenne harmonique K_h du nombre de répétitions K_i et $K_{i'}$ effectuées dans chacune des deux conditions dont nous souhaitons comparer les effets. Nous rappelons l'expression de K_h :

$$K_{h} = \frac{1}{\frac{1}{2} \left(\frac{1}{K_{i}} + \frac{1}{K_{i'}} \right)}$$

9.8. Deux facteurs emboîtés

Nous pouvons adapter les méthodes de comparaison des effets des différentes modalités, exposées aux paragraphes 9.1, 9.2 et 9.3 dans le cas de l'analyse de la variance à un facteur

à effets fixes, au cas où nous considérons un modèle à deux facteurs sans interaction à effets fixes ou à effets mixtes. Nous commençons par détailler les modifications à faire pour utiliser les méthodes de Tukey et de Scheffé.

Nous reprenons ici les notations du paragraphe 4.1.1 ou du paragraphe 4.3.1 en fonction de la situation considérée. La différence fondamentale entre ces deux situations résidant dans le fait que pour la première, deux facteurs à effets fixes, nous utiliserons le carré moyen résiduel s_R^2 dans les statistiques de test tandis que dans la seconde, un facteur à effets fixes et un facteur à effets aléatoires, nous utiliserons le carré moyen associé au terme emboîté $s_{B|A}^2$ dans les statistiques de test.

9.8.1. Contrastes

Modèle à effets fixes

Dans le cas d'un modèle où les deux facteurs sont à effets fixes, c'est-à-dire le cas envisagé au paragraphe 3.1.2, il peut être intéressant, en fonction de la significativité des différents tests auxquels nous avons procédé, d'étudier les constrastes exposés ci-dessous.

Le contraste met en jeu des moyennes associées au premier facteur A.

$$L = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_I \alpha_I,$$

avec $\sum_{i=1}^{I} l_i = 0$.

Un estimateur sans biais de L est alors :

$$\widehat{L} = l_1 \widehat{\alpha_1} + l_2 \widehat{\alpha_2} + \dots + l_I \widehat{\alpha_I}.$$

Ainsi une estimation sans biais de L s'écrit :

$$\widehat{L}(\boldsymbol{y}) = l_1 y_{1,\bullet,\bullet} + l_2 y_{2,\bullet,\bullet} + \dots + l_I y_{I,\bullet,\bullet}.$$

Le contraste met en jeu des moyennes associées au second facteur B emboîté dans le premier facteur A.

$$L' = l'_{1(1)}\beta_{1(1)} + l'_{2(1)}\beta_{1(1)} + \dots + l'_{J(I)}\beta_{J(I)},$$

avec $\sum_{i=1}^{I} \sum_{j=1}^{J} l'_{j(i)} = 0$.

Un estimateur sans biais de L' est alors :

$$\widehat{L}' = l'_{1(1)}\widehat{\beta_{1(1)}} + l'_{2(1)}\widehat{\beta_{2(1)}} + \dots + l'_{J(I)}\widehat{\beta_{J(I)}}.$$

Ainsi une estimation sans biais de L' s'écrit :

$$\widehat{L}'(y) = l'_{1(1)}y_{1,1,\bullet} + l'_{2(1)}y_{2,1,\bullet} + \dots + l'_{J(I)}y_{J,I,\bullet}.$$

Modèle à effets mixtes

Dans le cas d'un modèle mixte, c'est-à-dire le cas envisagé au paragraphe 3.3.2, il peut être intéressant, en fonction de la significativité du test de l'effet du facteur à effets fixes, d'étudier les constrastes du type :

$$L = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_I \alpha_I,$$

avec $\sum_{i=1}^{I} l_i = 0$.

Un estimateur sans biais de L est alors :

$$\widehat{L} = l_1 \widehat{\alpha_1} + l_2 \widehat{\alpha_2} + \dots + l_I \widehat{\alpha_I}.$$

Ainsi une estimation sans biais de L^{\prime} s'écrit :

$$\widehat{L}(\boldsymbol{y}) = l_1 y_{1,\bullet,\bullet} + l_2 y_{2,\bullet,\bullet} + \dots + l_I y_{I,\bullet,\bullet}.$$

9.8.2. Méthode de Tukey

Modèle à effets fixes

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en I et IJ(K-1). Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)} \geqslant q(I, IJ(K-1); 1-\alpha).$$

où $q(I, IJ(K-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

De même si le contraste L' met en jeu des moyennes associées aux niveaux du facteur B pour un niveau i du facteur A fixé, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en J et IJ(K-1).

Nous décidons que le contraste L' est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}'(\boldsymbol{y})}{\sqrt{\frac{s_R^2}{K}} \left(\frac{1}{2} \sum_{j=1}^{J} \left| l_j' \right| \right)} \geqslant q(J, IJ(K-1); 1-\alpha).$$

où $q(J,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à J et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L' et 0 au seuil α .

Modèle à effets mixtes

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation $s_{B|A}^2$ calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de l'étendue Studentisées en I et I(J-1).

Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{s_{B|A}^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)} \geqslant q(I, I(J-1); 1-\alpha).$$

où $q(I, I(J-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de l'étendue Studentisée à I et I(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

9.8.3. Méthode de Scheffé

Modèle à effets fixes

 L_{AB} est significativement différent de 0 au seuil α si, en supposant que $y_{i,j,\bullet} \geqslant y_{i',j',\bullet}$, nous avons :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{(IJ-1)\frac{2s_R^2}{K}}} \geqslant \sqrt{F(IJ-1,IJ(K-1);1-\alpha)},$$

où $F(IJ-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à IJ-1 et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L_{AB} et 0 au seuil α .

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de Fisher en I-1 et IJ(K-1).

Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{(I-1)s_R^2}{JK}\sum_{i=1}^{I}l_i^2}} \geqslant \sqrt{F(I-1,IJ(K-1);1-\alpha)},$$

où $F(I-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

De même si le contraste L' met en jeu des moyennes associées aux niveaux du facteur B pour un niveau i du facteur A fixé, nous utilisons l'estimation s_R^2 calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de

Fisher en J-1 et IJ(K-1).

Nous décidons que le contraste L' est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L'}(\boldsymbol{y})}{\sqrt{\frac{(J-1)s_R^2}{K}\sum_{j=1}^J l_j'^2}} \geqslant \sqrt{F(J-1,IJ(K-1);1-\alpha)},$$

où $F(J-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et IJ(K-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L' et 0 au seuil α .

Modèle à effets mixtes

Si un contraste L met en jeu des moyennes associées au facteur A à effets fixes, nous utilisons l'estimation $s_{B|A}^2$ calculée pour le modèle incluant les deux facteurs et nous changeons le nombre de degrés de liberté de la loi de Fisher en I-1 et I(J-1). Nous décidons que le contraste L est significativement différent de 0 au seuil α si :

$$\frac{\widehat{L}(\boldsymbol{y})}{\sqrt{\frac{(I-1)s_{B|A}^{2}}{JK}\sum_{i=1}^{I}l_{i}^{2}}} \geqslant F(I-1,I(J-1);1-\alpha).$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I et I(J-1) degrés de liberté. Sinon nous ne pouvons rejeter l'hypothèse d'absence de différence entre L et 0 au seuil α .

9.8.4. Méthode de Bonferroni et méthodes associées

Nous adaptons ici, de manière similaire, la procédure de Bonferroni et toutes celles qui en découle.

Modèle à effets fixes

Si nous souhaitons réaliser un nombre fini k de comparaisons de contrastes associés au facteur A nous pourrons utiliser la valeur critique

$$t(IJ(K-1);1-\frac{\alpha}{2k})\sqrt{\frac{s_R^2}{JK}\left(\sum_{i=1}^I l_i^2\right)}$$

à la place de

$$q(I, IJ(K-1); 1-\alpha)\sqrt{\frac{s_R^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)$$

où $t(IJ(K-1);1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à IJ(K-1) degrés de liberté.

Si nous souhaitons réaliser un nombre fini k' de comparaisons de contrastes associés aux niveaux du facteur B pour un niveau i du facteur A fixé nous pourrons utiliser la valeur critique

$$t(IJ(K-1);1-\frac{\alpha}{2k'})\sqrt{\frac{s_R^2}{K}\left(\sum_{j=1}^J l_j'^2\right)}$$

à la place de

$$q(J, IJ(K-1); 1-\alpha)\sqrt{\frac{s_R^2}{K}} \left(\frac{1}{2} \sum_{j=1}^{J} |l_j|\right)$$

où $t(IJ(K-1);1-\frac{\alpha}{2k'})$ est le $100(1-\frac{\alpha}{2k'})$ quantile de la loi de Student à IJ(K-1) degrés de liberté.

Modèle à effets mixtes

Si nous souhaitons réaliser un nombre fini k de comparaisons de contrastes associés au facteur A nous pourrons utiliser la valeur critique

$$t(I(J-1); 1 - \frac{\alpha}{2k}) \sqrt{\frac{s_{B|A}^2}{JK} \left(\sum_{i=1}^I l_i^2\right)}$$

à la place de

$$q(I, I(J-1); 1-\alpha) \sqrt{\frac{s_{B|A}^2}{JK}} \left(\frac{1}{2} \sum_{i=1}^{I} |l_i|\right)$$

où $t(I(J-1);1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à I(J-1) degrés de liberté.

Ainsi dans le cas de comparaisons deux à deux des effets des modalités du facteur A à effets fixes la valeur critique que nous utiliserons avec la procédure de Bonferroni est :

$$\sqrt{2} \ t(I(J-1); 1 - \frac{\alpha}{2k}) \sqrt{\frac{s_{B|A}^2}{JK}}$$

où $t(I(J-1); 1-\frac{\alpha}{2k})$ est le $100(1-\frac{\alpha}{2k})$ quantile de la loi de Student à I(J-1) degrés de liberté.

9.8.5. Cas d'un plan non équilibré et des comparaisons deux à deux

Dans les deux situations, effets fixes ou mixtes, nous pouvons utiliser la procédure de Tukey en remplaçant le nombre de répétitions K par la moyenne harmonique K_h du nombre de répétitions K_i et $K_{i'}$ effectuées dans chacune des deux conditions dont nous souhaitons comparer les effets. Nous rappelons l'expression de K_h :

$$K_h = \frac{1}{\frac{1}{2} \left(\frac{1}{K_i} + \frac{1}{K_{i'}} \right)}.$$

Chapitre 10

Puissance des tests de l'analyse de la variance

Les moyens de calculs désormais à la disposition de l'expérimentateur permettent de calculer directement, c'est-à-dire sans avoir à recourir à une table ou à un abaque, la puissance des tests, dits F, de l'analyse de la variance. Si nécessaire, nous renvoyons le lecteur à l'ouvrage [Dag98b] pour consulter la plupart des tables ou abaques servant au calcul de la puissance d'un test dans un tableau d'analyse de la variance.

La puissance d'un test est une fonction complexe des différents paramètres de ce test. Nous soulignons certaines relations qu'il faut toujours avoir à l'esprit :

- Les erreurs de première espèce et de deuxième espèce sont antagonistes, c'est-à-dire qu'elles évoluent en sens contraire. Si les autres paramètres du test sont fixés, plus nous diminuons le risque de commettre une erreur de première espèce, plus nous augmentons celui de commettre une erreur de deuxième espèce et réciproquement plus nous diminuons le risque de commettre une erreur de deuxième espèce, plus nous augmentons celui de commettre une erreur de première espèce.
- Plus les effets du facteur sont marqués, soit en terme d'amplitude des écarts entre les modalités d'un facteur à effets fixes ou soit en terme de dispersion des effets des modalités d'un facteur à effets aléatoires, plus la puissance est grande.
- Plus la dispersion de l'erreur est faible, plus la puissance est grande.
- Plus le nombre de répétitions effectuées pour une modalité du facteur est important plus la puissance est grande.

Parmi tous les paramètres ci-dessous, le seuil du test α étant fixé, il n'est possible pour l'expérimentateur que d'agir sur le nombre de répétitions effectuées pour une modalité du facteur. C'est pourquoi l'expérimentateur a un intérêt particulier à bien choisir ce paramètre lorsqu'il élabore le protocole expérimental dont il va servir s'il souhaite garantir un niveau de puissance correct pour les tests qu'il va réaliser.

10.1. Analyse de la variance à un facteur

10.1.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 2.1. Nous nous intéressons à la puissance $1-\beta$, où β est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1 - \beta$ est donnée par la formule suivante :

$$1 - \beta = \mathbb{P}\left[F'(I - 1, I(J - 1); \lambda) > F(I - 1, I(J - 1); 1 - \alpha)\right],$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et I(J-1) degrés de liberté et $F'(I-1,I(J-1);\lambda)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et I(J-1) degrés de liberté et de paramètre de non-centralité λ . Ce paramètre de non-centralité λ vaut :

$$\lambda = \frac{J}{2\sigma^2} \sum_{i=1}^{I} \alpha_i^2.$$

Lorsque nous utilisons une loi de Fisher non centrale à ν_1 et ν_2 degrés de liberté et de paramètre de non-centralité λ , nous introduisons souvent le paramètre de non-centralité normalisé ϕ défini par :

$$\phi = \sqrt{\frac{2\lambda}{v_1 + 1}}.$$

Nous obtenons ainsi dans notre situation:

$$\phi = \sqrt{\frac{2\lambda}{v_1 + 1}}$$

$$= \sqrt{\frac{2\frac{J}{2\sigma^2} \sum_{i=1}^{I} \alpha_i^2}{I - 1 + 1}}$$

$$= \frac{1}{\sigma} \sqrt{\frac{J}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Si le nombre de répétitions n_i effectué pour chaque modalité A_i du facteur A n'est pas constant, c'est-à-dire si le plan expérimental n'est pas équilibré, le paramètre de non-centralité λ devient :

$$\lambda = \frac{1}{2\sigma^2} \sum_{i=1}^{I} n_i \alpha_i^2.$$

Le paramètre de non-centralité normalisé ϕ est alors :

$$\phi = \frac{1}{\sigma} \sqrt{\frac{1}{I} \sum_{i=1}^{I} n_i \alpha_i^2}.$$

Nous constatons que la puissance évolue bien comme indiqué au début de cette lorsque α_i , $1 \le i \le I$, I, n_i , $1 \le i \le I$, σ et α varient.

Puissance a posteriori

Nous obtenons la puissance a posteriori du test de l'absence d'effet du facteur A en remplaçant dans la formule appropriée ci-dessus. Le choix se fait en fonction du fait que le plan expérimental est équilibré ou non, les valeurs des paramètres par les estimations que nous avons obtenues en réalisant l'analyse de la variance. Généralement nous considérons qu'une puissance de 0,8 est satisfaisante et qu'alors la décision de ne pas rejeter l'hypothèse nulle \mathcal{H}_0 est « vraiment » associée à l'absence d'effet du facteur considéré.

Détermination du nombre de répétitions

Une autre approche, celle développée lorsque nous faisons de la planification expérimentale, serait de déterminer a priori le nombre de répétitions J nécessaires pour obtenir une valeur de puissance du test supérieure à un niveau fixé à l'avance. L'intérêt de cette démarche réside dans le fait que nous ne connaissons pas a priori si le test que nous allons réaliser une fois que les expériences ont été réalisées sera significatif ou non à un seuil α % fixé à l'avance. Le fait de ne pas rejeter l'hypothèse nulle en ayant un risque élevé de commettre une erreur de deuxième rendrait cette décision très peu fiable et ne permettrait pas de conclure avec une confiance suffisante à l'absence d'un effet du facteur étudié sur la réponse. C'est pourquoi dans de nombreux domaines comme les études cliniques, où les expériences peuvent durer plusieurs années, il est primordial de s'assurer que si une différence existe il y aura un faible risque de ne pas la mettre en évidence. Généralement nous considérons qu'une puissance de 0,8 est satisfaisante; dans certains cas nous visons même une puissance de 0,9.

Nous pouvons utiliser directement la formule ci-dessus pour déterminer le nombre de répétitions nécessaires à l'obtention d'un valeur minimale de puissance. Il faut néanmoins avoir une idée de la valeur minimale que peut prendre la somme $\sum_{i=1}^{I} n_i \alpha_i^2$ et la valeur maximale que peut avoir σ^2 . Ces valeurs doivent être déterminées par un expert du domaine considéré.

Détermination du nombre de répétitions à l'aide de la plus petite différence détectable

Dans ce type d'étude prospective, la situation est compliquée par le fait qu'il est difficile d'évaluer le terme $\sum_{i=1}^{I} \alpha_i^2$. Nous introduisons alors le concept de plus petite différence détectable Δ , ce qui revient à évaluer le sensibilité du test en terme d'amplitude entre les effets des différents niveaux du facteur étudié. Ainsi nous chercherons à ce que la probabilité de détecter une amplitude $|\alpha_i - \alpha_j|$ entre les effets α_i et α_j de deux modalités A_i et

 A_i différentes du facteur étudié strictement supérieure à Δ soit élevée.

Ainsi pour faire le calcul de la puissance nous nous plaçons dans le pire des cas, c'est-àdire celui pour lequel tous les effets sont nuls sauf deux α_{i_0} et α_{j_0} pour lesquels il existe un écart en valeur absolue égal à Δ . Alors $|\alpha_{i_0}| = |\alpha_{j_0}| = \Delta/2$. Nous obtenons alors :

$$\lambda = \frac{J}{2\sigma^2} \sum_{i=1}^{I} \alpha_i^2$$

$$= \frac{J}{2\sigma^2} \left(\alpha_{i_0}^2 + \alpha_{j_0}^2 \right)$$

$$= \frac{J}{2\sigma^2} \left(\left(\frac{\Delta}{2} \right)^2 + \left(\frac{\Delta}{2} \right)^2 \right)$$

$$= \frac{J}{4\sigma^2} \Delta^2.$$

Nous utilisons la formule ci-dessus pour déterminer les valeurs de J pour lesquelles la puissance $1-\beta$ est supérieure à une valeur $1-\beta_0$ fixée à l'avance, généralement 0,8 soit 80 %. Remarquons que là encore il est nécessaire de connaître σ^2 ou au moins d'avoir une idée précise de la valeur de ce paramètre ce qui n'est malheureusement généralement pas le cas. Dans cette situation nous considérons plutôt le paramètre de sensibilité Δ/σ à la place de Δ .

10.1.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 2.2. Nous nous intéressons à la puissance $1-\beta$, où β est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\begin{aligned} \mathcal{H}_0: \sigma_A^2 &= 0 \\ \text{contre} \end{aligned}$$

$$\mathcal{H}_1: \sigma_A^2 \neq 0.$$

Cette puissance $1-\beta$ est donnée par la formule suivante :

$$1 - \beta = \mathbb{P}\left[F(I - 1, I(J - 1)) > \frac{F(I - 1, I(J - 1); 1 - \alpha)}{1 + J\frac{\sigma_A^2}{\sigma^2}}\right],$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et I(J-1) degrés de liberté et F(I-1,I(J-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté.

La différence fondamentale entre ce cas et le cas où le facteur est à effets fixes, exposés au paragraphe 10.1.1, est que le calcul de la puissance repose une loi de Fisher et non sur une loi de Fisher non-centrale.

Puissance a posteriori

Nous obtenons alors la puissance *a posteriori* du test de l'absence d'effet du facteur A en remplaçant dans la formule appropriée ci-dessus, le choix se fait en fonction du fait que le plan expérimental est équilibré ou non, les valeurs paramètres par les estimations que nous avons obtenues en réalisant l'analyse de la variance. Généralement nous considérons qu'une puissance de 0.8 est satisfaisante et qu'alors la décision de ne pas rejeter l'hypothèse nulle \mathcal{H}_0 est « vraiment » associée à l'absence d'effet du facteur considéré.

10.2. Analyse de la variance à deux facteurs sans interaction

Les idées développées dans la section 10.1 précédente sur le calcul de la puissance a posteriori ou la détermination du nombre de répétitions minimal pour obtenir un niveau de puissance supérieur ou égal à une valeur cible $1 - \beta_0$ sont directement transférables aux tests étudiés dans cette section à condition de remplacer les formules par celles qui sont exposées ci-dessous.

La puissance calculée pour chacun des tests ne dépend pas du risque de première espèce fixé pour les autres tests. Ceci permettrait de calculer la puissance des tests du tableau de l'analyse de la variance même si le seuil de chaque test varie en fonction du test considéré. Voir le paragraphe 1.3 pour plus de détails sur la gestion des risques de première espèce des tests du tableau de l'analyse de la variance.

10.2.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 3.1.1.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I-1, (I-1)(J-1); \phi_A) > F(I-1, (I-1)(J-1); 1-\alpha)\right],$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté et $F'(I-1,(I-1)(J-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et (I-1)(J-1) degrés de liberté et de

paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{J}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \beta_1 = \beta_2 = \cdots = \beta_J = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } j_0 \in \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0} \neq 0.$$

Cette puissance $1 - \beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F'(J-1, (I-1)(J-1); \phi_B) > F(J-1, (I-1)(J-1); 1-\alpha)\right],$$

où $F(J-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté et $F'(J-1,(I-1)(J-1);\phi_B)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à J-1 et (I-1)(J-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_B . Ce paramètre de non-centralité normalisé ϕ_B vaut :

$$\phi_B = \frac{1}{\sigma} \sqrt{\frac{I}{J} \sum_{j=1}^{J} \beta_j^2}.$$

10.2.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 3.2.1. Nous nous intéressons à la puissance $1-\beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1 : \sigma_A^2 \neq 0.$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F(I-1, (I-1)(J-1)) > \frac{F(I-1, (I-1)(J-1); 1-\alpha)}{1 + J\frac{\sigma_A^2}{\sigma^2}}\right],$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté et F(I-1,(I-1)(J-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\begin{aligned} \mathcal{H}_0 : \sigma_B^2 &= 0 \\ \text{contre} \\ \mathcal{H}_1 : \sigma_B^2 &\neq 0. \end{aligned}$$

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F(J-1, (I-1)(J-1)) > \frac{F(J-1, (I-1)(J-1); 1-\alpha)}{1 + I\frac{\sigma_B^2}{\sigma^2}}\right],$$

où $F(J-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (J-1) et (I-1)(J-1) degrés de liberté et F(J-1,(I-1)(J-1)) est une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté.

La différence fondamentale entre ce cas et le cas où le facteur est à effets fixes, exposé au paragraphe 3.2.1, est que le calcul de la puissance repose une loi de Fisher et non sur une loi de Fisher non-centrale.

10.2.3. Modèle à effets mixtes

Nous reprenons ici les notations du paragraphe 3.3.1. Nous nous intéressons à la puissance $1-\beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1-\beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I-1, (I-1)(J-1); \phi_A) > F(I-1, (I-1)(J-1); 1-\alpha)\right],$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté et $F'(I-1,I(J-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et (I-1)(J-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{J}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F(J-1, (I-1)(J-1)) > \frac{F(J-1, (I-1)(J-1); 1-\alpha)}{1 + I\frac{\sigma_B^2}{\sigma^2}}\right],$$

où $F(J-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (J-1) et (I-1)(J-1) degrés de liberté et F(J-1,(I-1)(J-1)) est une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté.

Les puissances des tests sont donc identiques à celles où le facteur à effets fixes seraient avec un autre facteur à effets fixes et le facteur à effets aléatoires serait avec un autre facteur à effets aléatoires.

10.3. Analyse de la variance à deux facteurs avec interaction

Les idées développées dans la section 10.1 précédente sur le calcul de la puissance a posteriori ou la détermination du nombre de répétitions minimal pour obtenir un niveau de puissance supérieur ou égal à une valeur cible $1 - \beta_0$ sont directement transférables aux tests étudiés dans cette section à condition de remplacer les formules par celles qui sont exposées ci-dessous.

La puissance calculée pour chacun des tests ne dépend pas du risque de première espèce fixé pour les autres tests. Ceci permettrait de calculer la puissance des tests du tableau de l'analyse de la variance même si le seuil de chaque test varie en fonction du test considéré. Voir le paragraphe 1.3 pour plus de détails sur la gestion des risques de première espèce des tests du tableau de l'analyse de la variance.

10.3.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 3.1.2.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1-\beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I - 1, IJ(K - 1); \phi_A) > F(I - 1, IJ(K - 1); 1 - \alpha)\right],$$

où $F(I-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJ(K-1) degrés de liberté et $F'(I-1,IJ(K-1);\phi_A)$ est une variable aléatoire qui suit

une loi de Fisher non-centrale à I-1 et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{JK}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \mathcal{H}_0: \beta_1 = \beta_2 = \cdots = \beta_J = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1: \text{Il existe } j_0 \in \{1,2,\ldots,J\} \text{ tel que } \beta_{j_0} \neq 0. }$$

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F'(J-1, IJ(K-1); \phi_B) > F(J-1, IJ(K-1); 1-\alpha)\right],$$

où $F(J-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et IJ(K-1) degrés de liberté et $F'(J-1,IJ(K-1);\phi_B)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à J-1 et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_B . Ce paramètre de non-centralité normalisé ϕ_B vaut :

$$\phi_B = \frac{1}{\sigma} \sqrt{\frac{IK}{J} \sum_{j=1}^{J} \beta_j^2}.$$

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

Cette puissance $1 - \beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F'((I-1)(J-1), IJ(K-1); \phi_{AB}) > F((I-1)(J-1), IJ(K-1); 1-\alpha)\right],$$

où $F((I-1)(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté et $F'((I-1)(J-1),IJ(K-1);\phi_{AB})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à (I-1)(J-1) et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_{AB} . Ce paramètre de non-centralité normalisé ϕ_{AB} vaut :

$$\phi_{AB} = \frac{1}{\sigma} \sqrt{\frac{K \sum_{i=1}^{I} \sum_{j=1}^{J} (\alpha \beta)_{i,j}^{2}}{(I-1)(J-1)+1}}.$$

10.3.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 3.2.2.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\boxed{ \begin{aligned} \mathcal{H}_1 : \sigma_A^2 &\neq 0. \end{aligned} }$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F(I-1, (I-1)(J-1)) > \frac{F(I-1, (I-1)(J-1); 1-\alpha)}{1 + JK \frac{\sigma_A^2}{\sigma^2 + K\sigma_{AB}^2}}\right],$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et (I-1)(J-1) degrés de liberté et F(I-1,(I-1)(J-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\begin{aligned} \mathcal{H}_0: \sigma_B^2 &= 0 \\ \text{contre} \\ \mathcal{H}_1: \sigma_B^2 &\neq 0. \end{aligned}$$

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F(J-1, (I-1)(J-1)) > \frac{F(J-1, (I-1)(J-1); 1-\alpha)}{1 + IK\frac{\sigma_B^2}{\sigma^2 + K\sigma_A^2}}\right],$$

où $F(J-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (J-1) et (I-1)(J-1) degrés de liberté et F(J-1,(I-1)(J-1)) est une variable aléatoire qui suit une loi de Fisher à J-1 et (I-1)(J-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_{AB}^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\mathcal{H}_1 : \sigma_{AB}^2 \neq 0.$$

Cette puissance $1-\beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F((I-1)(J-1), IJ(K-1)) > \frac{F((I-1)(J-1), IJ(K-1); 1-\alpha)}{1 + K\frac{\sigma_{AB}^2}{\sigma^2}}\right],$$

où $F((I-1)(J-1), IJ(K-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté et F((I-1)(J-1), IJ(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté.

La différence fondamentale entre ce cas et le cas où le facteur est à effets fixes, exposé au paragraphe 3.2.1, est que le calcul de la puissance repose une loi de Fisher et non sur une loi de Fisher non-centrale.

10.3.3. Modèle à effets mixtes

Nous reprenons ici les notations du paragraphe 3.3.2.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{array}{c} \mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\left[\begin{array}{c} \mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \ldots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{array} \right]$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I-1, (I-1)(J-1); \phi_A) > F(I-1, (I-1)(J-1); 1-\alpha)\right],$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté et $F'(I-1,I(J-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et (I-1)(J-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{JK \sum_{i=1}^{I} \alpha_i^2}{I\left(\sigma^2 + K\sigma_{AB}^2\right)}}.$$

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_B^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\mathcal{H}_1 : \sigma_B^2 \neq 0.$$

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F(J - 1, IJ(K - 1)) > \frac{F(J - 1, IJ(K - 1); 1 - \alpha)}{1 + IK\frac{\sigma_B^2}{\sigma^2 + K\sigma_A^2}}\right],$$

où $F(J-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (J-1) et IJ(K-1) degrés de liberté et F(J-1,IJ(K-1)) est une variable aléatoire qui suit une loi de Fisher à J-1 et IJ(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{AB}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1 : \sigma_{AB}^2 \neq 0.$$

Cette puissance $1 - \beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F((I-1)(J-1), IJ(K-1)) > \frac{F((I-1)(J-1), IJ(K-1); 1-\alpha)}{1 + K\frac{\sigma_{AB}^2}{\sigma^2}}\right],$$

où $F((I-1)(J-1), IJ(K-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté et F((I-1)(J-1), IJ(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et IJ(K-1) degrés de liberté.

Les puissances des tests sont donc identiques à celles où le facteur à effets fixes serait avec un autre facteur à effets fixes, le facteur à effets aléatoires serait avec un autre facteur à effets aléatoires et l'interaction dans un modèle où les deux facteurs seraient aléatoires.

10.4. Analyse de la variance à deux facteurs emboîtés

Les idées développées dans la section 10.1 précédente sur le calcul de la puissance a posteriori ou la détermination du nombre de répétitions minimal pour obtenir un niveau de puissance supérieur ou égal à une valeur cible $1-\beta_0$ sont directement transférables aux tests étudiés dans cette section à condition de remplacer les formules par celles qui sont exposées ci-dessous.

La puissance calculée pour chacun des tests ne dépend pas du risque de première espèce fixé pour les autres tests. Ceci permettrait de calculer la puissance des tests du tableau de l'analyse de la variance même si le seuil de chaque test varie en fonction du test considéré. Voir le paragraphe 1.3 pour plus de détails sur la gestion des risques de première espèce des tests du tableau de l'analyse de la variance.

10.4.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 4.1.1. Nous nous intéressons à la puissance $1-\beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \ldots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I - 1, IJ(K - 1); \phi_A) > F(I - 1, IJ(K - 1); 1 - \alpha)\right],$$

où $F(I-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJ(K-1) degrés de liberté et $F'(I-1,IJ(K-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{JK}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \beta_{1(1)} = \beta_{2(1)} = \dots = \beta_{J(1)} = \beta_{1(2)} = \dots = \beta_{J(I)} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0(i_0)} \neq 0.$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F'(I(J-1), IJ(K-1); \phi_{B(A)}) > F(I(J-1), IJ(K-1); 1-\alpha)\right],$$

où $F(I(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté et $F'(I(J-1),IJ(K-1);\phi_{B(A)})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I(J-1) et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé $\phi_{B(A)}$ vaut :

$$\phi_{B(A)} = \frac{1}{\sigma} \sqrt{\frac{K \sum_{i=1}^{I} \sum_{j=1}^{J} \beta_{j(i)}^{2}}{I(J-1)+1}}.$$

10.4.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 4.2.1.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\mathcal{H}_1 : \sigma_A^2 \neq 0.$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F(I-1, I(J-1)) > \frac{F(I-1, I(J-1); 1-\alpha)}{1 + JK \frac{\sigma_A^2}{\sigma^2 + K\sigma_{B|A}^2}}\right],$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et I(J-1) degrés de liberté et F(I-1,I(J-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_{B|A}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1 : \sigma_{B|A}^2 &\neq 0. \end{aligned} }$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F(I(J-1), IJ(K-1)) > \frac{F(I(J-1), IJ(K-1); 1-\alpha)}{1 + K\frac{\sigma_{B|A}^2}{\sigma^2}}\right],$$

où $F(I(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté et F(I(J-1),IJ(K-1)) est une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté.

10.4.3. Modèle à effets mixtes

Nous reprenons ici les notations du paragraphe 4.3.1.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0: \alpha_1 &= \alpha_2 = \dots = \alpha_I = 0 \\ \end{aligned}} \\ \text{contre} \\ \boxed{ \begin{aligned} \mathcal{H}_1: \text{Il existe } i_0 &\in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{aligned}}$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I - 1, I(J - 1); \phi_A) > F(I - 1, I(J - 1); 1 - \alpha)\right],$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et I(J-1) degrés de liberté et $F'(I-1,I(J-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et I(J-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{JK\sum_{i=1}^{I} \alpha_i^2}{I\left(\sigma^2 + K\sigma_{B|A}^2\right)}}.$$

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{B|A}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\left[\mathcal{H}_1 : \sigma_{B|A}^2 \neq 0. \right]$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F(I(J-1), IJ(K-1)) > \frac{F(I(J-1), IJ(K-1); 1 - \alpha)}{1 + K\frac{\sigma_{B|A}^2}{\sigma^2}}\right],$$

où $F(I(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté et F(I(J-1),IJ(K-1)) est une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté.

10.5. Analyse de la variance à trois facteurs sans interaction

Les idées développées dans la section 10.1 précédente sur le calcul de la puissance a posteriori ou la détermination du nombre de répétitions minimal pour obtenir un niveau de puissance supérieur ou égal à une valeur cible $1 - \beta_0$ sont directement transférables aux tests étudiés dans cette section à condition de remplacer les formules par celles qui sont exposées ci-dessous.

La puissance calculée pour chacun des tests ne dépend pas du risque de première espèce fixé pour les autres tests. Ceci permettrait de calculer la puissance des tests du tableau de l'analyse de la variance même si le seuil de chaque test varie en fonction du test considéré. Voir le paragraphe 1.3 pour plus de détails sur la gestion des risques de première espèce des tests du tableau de l'analyse de la variance.

10.5.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 5.1.1.

Pour des problèmes de concision nous ne présenterons que la puissance d'un type de test, effet principal, interaction d'ordre 1, interaction d'ordre 2, les valeurs de puissance associées aux tests restants s'en déduisant en remplaçant les quantités associées aux facteurs mis en jeu par celles associées aux facteurs pour lesquels nous voulons calculer la puissance du test.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du pseudo test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \mathcal{H}_0 : \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1 : \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_A) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1 = I - 1$ et $\nu_2 = (I - 1)(J - 1)(K - 1)$, $F(I - 1, (I - 1)(J - 1)(K - 1); 1 - \alpha)$ est le $100(1 - \alpha)$ quantile de la loi de Fisher à I - 1 et (I - 1)(J - 1)(K - 1) degrés de liberté et $F'(I - 1, (I - 1)(J - 1)(K - 1); \phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I - 1 et (I - 1)(J - 1)(K - 1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{JK}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$
contre

$$\mathcal{H}_1$$
: Il existe $(i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\}$ tel que $(\alpha \beta)_{i_0, j_0} \neq 0$.

Cette puissance $1-\beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_{AB}) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1=(I-1)(J-1)$ et $\nu_2=(I-1)(J-1)(K-1)$, $F((I-1)(J-1),(I-1)(J-1)(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et $F'((I-1)(J-1),(I-1)(J-1)(K-1);\phi_{AB})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_{AB} . Ce paramètre de non-centralité normalisé ϕ_{AB} vaut :

$$\phi_{AB} = \frac{1}{\sigma} \sqrt{\frac{K \sum_{i=1}^{I} \sum_{j=1}^{J} (\alpha \beta)_{ij}^{2}}{(I-1)(J-1)+1}}.$$

10.5.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 5.2.1.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du pseudo test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1 : \sigma_A^2 \neq 0.$$

La loi de la statistique de ce test n'est connue que de manière approximative. Nous pouvons néanmoins calculer la puissance de ce pseudo test F.

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + JK \frac{\sigma_A^2}{\sigma^2 + K\sigma_{AB}^2}}\right],$$

où $\nu_1 = I - 1$ et

$$\nu_2 = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_R^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_R^2\right)^2}{(I-1)(J-1)(K-1)}},$$

 $F(I-1,\nu_2;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et ν_2 degrés de liberté et $F(I-1,\nu_2)$ est une variable aléatoire qui suit une loi de Fisher à I-1 et ν_2 degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_{AB}^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\boxed{ \begin{aligned} \mathcal{H}_1 : \sigma_{AB}^2 &\neq 0. \end{aligned} }$$

Cette puissance $1-\beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + K \frac{\sigma_{AB}^2}{\sigma^2}}\right],$$

où $\nu_1 = (I-1)(J-1)$ et $\nu_2 = (I-1)(J-1)(K-1)$, F((I-1)(J-1), (I-1)(J-1)(K-1); $I-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et F((I-1)(J-1), (I-1)(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté.

La différence fondamentale entre ce cas et le cas où le facteur est à effets fixes, exposés au paragraphe 10.5.1, est que le calcul de la puissance repose une loi de Fisher et non sur une loi de Fisher non-centrale.

10.5.3. Modèle à effets mixtes

Nous reprenons ici les notations du paragraphe 5.3.1.

Premier cas : Deux facteurs sont à effets fixes, A et B, et un facteur C est à effets aléatoires.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \mathcal{H}_0 : \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1 : \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I-1, (I-1)(K-1); \phi_A) > F(I-1, (I-1)(K-1); 1-\alpha)\right],$$

où $F(I-1,(I-1)(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(K-1) degrés de liberté et $F'(I-1,(I-1)(K-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et (I-1)(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{JK \sum_{i=1}^{I} \alpha_i^2}{I(\sigma^2 + J\sigma_{AC}^2)}}.$$

Nous nous intéressons à la puissance $1 - \beta_C$, où β_C est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_C^2 &= 0 \\ \text{contre} \end{aligned} }$$

$$\boxed{ \begin{aligned} \mathcal{H}_1 : \sigma_C^2 &\neq 0. \end{aligned} }$$

Cette puissance $1 - \beta_C$ est donnée par la formule suivante :

$$1 - \beta_C = \mathbb{P}\left[F(K-1, (I-1)(J-1)(K-1)) > \frac{F(K-1, (I-1)(J-1)(K-1); 1-\alpha)}{1 + \frac{IJ\sigma_C^2}{\sigma^2}}\right],$$

où $F(K-1,(I-1)(J-1)(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à K-1 et (I-1)(J-1)(K-1) degrés de liberté et F(K-1,(I-1)(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à K-1 et (I-1)(J-1)(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_0, j_0} \neq 0.$$

Cette puissance $1 - \beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_{AB}) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1=(I-1)(J-1)$ et $\nu_2=(I-1)(J-1)(K-1)$, F((I-1)(J-1),(I-1)(J-1)(K-1)); $I-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et $F'((I-1)(J-1),(I-1)(J-1)(K-1);\phi_{AB})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_{AB} . Ce paramètre de non-centralité normalisé ϕ_{AB} vaut :

$$\phi_{AB} = \frac{1}{\sigma} \sqrt{\frac{K \sum_{i=1}^{I} \sum_{j=1}^{J} (\alpha \beta)_{ij}^{2}}{(I-1)(J-1)+1}}.$$

Nous nous intéressons à la puissance $1 - \beta_{AC}$, où β_{AC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{AC}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1 : \sigma_{AC}^2 \neq 0.$$

Cette puissance $1-\beta_{AC}$ est donnée par la formule suivante :

$$1 - \beta_{AC} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + J\frac{\sigma_{AC}^2}{\sigma^2}}\right],$$

où $\nu_1 = (I-1)(K-1)$ et $\nu_2 = (I-1)(J-1)(K-1)$, F((I-1)(K-1), (I-1)(J-1)(K-1))1); $1-\alpha$) est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1)degrés de liberté et F((I-1)(K-1), (I-1)(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et (I-1)(J-1)(K-1) degrés de liberté.

Deuxième cas : Un facteur est à effets fixes et deux facteurs sont à effets aléatoires.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du pseudo test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0: \alpha_1 &= \alpha_2 = \dots = \alpha_I = 0 \\ & \text{contre} \end{aligned}}$$

$$\boxed{ \mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

La loi de la statistique de ce test n'est connue que de manière approximative. Nous pouvons néanmoins calculer la puissance de ce pseudo test F.

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(\nu_1, \nu_2, \phi_A) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1 = I - 1$ et

$$\nu_2 = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_R^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_R^2\right)^2}{(I-1)(J-1)(K-1)}},$$

 $F(I-1,\nu_2;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et ν_2 degrés de liberté et $F'(I-1,\nu_2)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et ν_2 degrés de liberté et de paramètre de non-centralité normalisé ϕ_{AB} . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{1}{I} \frac{JK \sum_{i=1}^{I} \alpha_i^2}{\sigma^2 + K\sigma_{AB}^2 + J\sigma_{AC}^2}}.$$

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F(J-1, (J-1)(K-1)) > \frac{F(J-1, (J-1)(K-1); 1-\alpha)}{1 + \frac{IK\sigma_B^2}{\sigma^2 + I\sigma_{BC}^2}}\right],$$

où $F(J-1,(J-1)(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et (J-1)(K-1) degrés de liberté et F(J-1,(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et (J-1)(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \sigma_{AB}^2 = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \sigma_{AB}^2 \neq 0.$$

Cette puissance $1-\beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + K \frac{\sigma_{AB}^2}{\sigma^2}}\right],$$

où $\nu_1=(I-1)(J-1)$ et $\nu_2=(I-1)(J-1)(K-1)$, $F((I-1)(J-1),(I-1)(J-1)(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et F((I-1)(J-1),(I-1)(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté.

10.6. Analyse de la variance à trois facteurs avec interaction

Les idées développées dans la section 10.1 précédente sur le calcul de la puissance a posteriori ou la détermination du nombre de répétitions minimal pour obtenir un niveau de puissance supérieur ou égal à une valeur cible $1-\beta_0$ sont directement transférables aux tests étudiés dans cette section à condition de remplacer les formules par celles qui sont exposées ci-dessous.

La puissance calculée pour chacun des tests ne dépend pas du risque de première espèce fixé pour les autres tests. Ceci permettrait de calculer la puissance des tests du tableau de l'analyse de la variance même si le seuil de chaque test varie en fonction du test considéré. Voir le paragraphe 1.3 pour plus de détails sur la gestion des risques de première espèce des tests du tableau de l'analyse de la variance.

10.6.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 5.1.2.

Pour des problèmes de concision nous ne présenterons que la puissance d'un type de test, effet principal, interaction d'ordre 1, interaction d'ordre 2, les valeurs de puissance associées aux tests restants s'en déduisant en remplaçant les quantités associées aux facteurs mis en jeu par celles associées aux facteurs pour lesquels nous voulons calculer la puissance du test.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du pseudo test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_A) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1 = I - 1$ et $\nu_2 = IJK(L-1), \ F(I-1,IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJK(L-1) degrés de liberté et $F'(I-1,IJK(L-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et IJK(L-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{JKL}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_0, j_0} \neq 0.$$

Cette puissance $1 - \beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_{AB}) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1 = (I-1)(J-1)$ et $\nu_2 = IJK(L-1), F((I-1)(J-1), IJK(L-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et IJK(L-1) degrés de liberté et $F'((I-1)(J-1), IJK(L-1); \phi_{AB})$ est une variable aléatoire qui suit une loi

de Fisher non-centrale à (I-1)(J-1) et IJK(L-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_{AB} . Ce paramètre de non-centralité normalisé ϕ_{AB} vaut :

$$\phi_{AB} = \frac{1}{\sigma} \sqrt{\frac{KL \sum_{i=1}^{I} \sum_{j=1}^{J} (\alpha \beta)_{ij}^{2}}{(I-1)(J-1)+1}}.$$

Nous nous intéressons à la puissance $1 - \beta_{ABC}$, où β_{ABC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_{0}: (\alpha\beta\gamma)_{1,1,1} = (\alpha\beta\gamma)_{1,1,2} = \dots = (\alpha\beta\gamma)_{1,1,K} = (\alpha\beta\gamma)_{2,1,1} = \dots = (\alpha\beta\gamma)_{I,J,K} = 0$$

$$\text{contre}$$

$$\mathcal{H}_{1}: \exists (i_{0}, j_{0}, k_{0}) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \times \{1, 2, \dots, K\} \mid (\alpha\beta\gamma)_{i_{0}, j_{0}, k_{0}} \neq 0.$$

Cette puissance $1 - \beta_{ABC}$ est donnée par la formule suivante :

$$1 - \beta_{ABC} = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_{ABC}) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1=(I-1)(J-1)(K-1)$ et $\nu_2=IJK(L-1), F((I-1)(J-1)(K-1), IJK(L-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté et $F'((I-1)(J-1)(K-1), IJK(L-1); \phi_{ABC})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_{ABC} . Ce paramètre de non-centralité normalisé ϕ_{ABC} vaut :

$$\phi_{ABC} = \frac{1}{\sigma} \sqrt{\frac{L \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (\alpha \beta \gamma)_{ijk}^{2}}{(I-1)(J-1)(K-1)+1}}.$$

10.6.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 5.2.2.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du pseudo test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\left[\mathcal{H}_1 : \sigma_A^2 \neq 0. \right]$$

La loi de la statistique de ce test n'est connue que de manière approximative. Nous pouvons néanmoins calculer la puissance de ce pseudo test F.

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + \frac{JKL\sigma_A^2}{\sigma^2 + L\sigma_{ABC}^2 + KL\sigma_{AB}^2 + JL\sigma_{AC}^2}}\right],$$

où $\nu_1 = I - 1$ et

$$\nu_2 = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_{ABC}^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{ABC}^2\right)^2}{(I-1)(J-1)(K-1)}},$$

 $F(I-1,\nu_2;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et ν_2 degrés de liberté et $F(I-1,\nu_2)$ est une variable aléatoire qui suit une loi de Fisher à I-1 et ν_2 degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

Cette puissance $1-\beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + \frac{KL\sigma_{AB}^2}{\sigma^2 + L\sigma_{ABC}^2}}\right],$$

où $\nu_1 = (I-1)(J-1)$ et $\nu_2 = (I-1)(J-1)(K-1)$, F((I-1)(J-1), (I-1)(J-1)(K-1); $1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et F((I-1)(J-1), (I-1)(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{ABC}$, où β_{ABC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\begin{aligned} \mathcal{H}_0: \sigma_{ABC}^2 &= 0 \\ \text{contre} \\ \mathcal{H}_1: \sigma_{ABC}^2 &\neq 0. \end{aligned}$$

Cette puissance $1 - \beta_{ABC}$ est donnée par la formule suivante :

$$1 - \beta_{ABC} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + L\frac{\sigma_{ABC}^2}{\sigma^2}}\right],$$

où $\nu_1=(I-1)(J-1)(K-1)$ et $\nu_2=IJK(L-1), F((I-1)(J-1)(K-1), IJK(L-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté et F((I-1)(J-1)(K-1), IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté.

La différence fondamentale entre ce cas et le cas où le facteur est à effets fixes, exposé au paragraphe 10.6.1, est que le calcul de la puissance repose une loi de Fisher et non sur une loi de Fisher non-centrale.

10.6.3. Modèle à effets mixtes

Nous reprenons ici les notations du paragraphe 5.3.2.

Premier cas : Deux facteurs sont à effets fixes, A et B, et un facteur C est à effets aléatoires.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \mathcal{H}_0: \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I-1, (I-1)(J-1); \phi_A) > F(I-1, (I-1)(J-1); 1-\alpha)\right],$$

où $F(I-1,(I-1)(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et (I-1)(J-1) degrés de liberté et $F'(I-1,(I-1)(J-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et (I-1)(J-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{JKL\sum_{i=1}^{I}\alpha_i^2}{I\left(\sigma^2 + JL\sigma_{AC}^2\right)}}.$$

Nous nous intéressons à la puissance $1 - \beta_C$, où β_C est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \sigma_C^2 = 0$$
contre
$$\mathcal{H}_1: \sigma_C^2 \neq 0.$$

Cette puissance $1-\beta_C$ est donnée par la formule suivante :

$$1 - \beta_C = \mathbb{P}\left[F(K - 1, IJK(L - 1)) > \frac{F(K - 1, IJK(L - 1); 1 - \alpha)}{1 + \frac{IJ\sigma_C^2}{\sigma^2}}\right],$$

où $F(K-1,IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à K-1 et IJK(L-1) degrés de liberté et F(K-1,IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à K-1 et IJK(L-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } (\alpha\beta)_{i_0, j_0} \neq 0.$$

Cette puissance $1 - \beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_{AB}) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1=(I-1)(J-1)$ et $\nu_2=(I-1)(J-1)(K-1)$, F((I-1)(J-1),(I-1)(J-1)(K-1)); $1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et $F'((I-1)(J-1),(I-1)(J-1)(K-1);\phi_{AB})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_{AB} . Ce paramètre de non-centralité normalisé ϕ_{AB} vaut :

$$\phi_{AB} = \sqrt{\frac{KL\sum_{i=1}^{I}\sum_{j=1}^{J}(\alpha\beta)_{ij}^{2}}{((I-1)(J-1)+1)(\sigma^{2}+L\sigma_{ABC}^{2})}}.$$

Nous nous intéressons à la puissance $1 - \beta_{AC}$, où β_{AC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{AC}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\mathcal{H}_1 : \sigma_{AC}^2 \neq 0.$$

Cette puissance $1 - \beta_{AC}$ est donnée par la formule suivante :

$$1 - \beta_{AC} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + JL \frac{\sigma_{AC}^2}{\sigma^2}}\right],$$

où $\nu_1 = (I-1)(K-1)$ et $\nu_2 = IJK(L-1)$, $F((I-1)(K-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(K-1) et IJK(L-1) degrés de liberté et F((I-1)(K-1),IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(K-1) et IJK(L-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{ABC}$, où β_{ABC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{array}{c} \mathcal{H}_0 : \sigma_{ABC}^2 = 0 \\ \\ \text{contre} \end{array} \right]$$

$$\mathcal{H}_1 : \sigma_{ABC}^2 \neq 0.$$

Cette puissance $1-\beta_{ABC}$ est donnée par la formule suivante :

$$1 - \beta_{ABC} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + L\frac{\sigma_{ABC}^2}{\sigma^2}}\right],$$

où $\nu_1=(I-1)(J-1)(K-1)$ et $\nu_2=IJK(L-1), F((I-1)(J-1)(K-1), IJK(L-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté et F((I-1)(J-1)(K-1), IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté.

Deuxième cas : Un facteur est à effets fixes et deux facteurs sont à effets aléatoires.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du pseudo test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \mathcal{H}_0: \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 }$$
 contre
$$\boxed{ \mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. }$$

La loi de la statistique de ce test n'est connue que de manière approximative. Nous pouvons néanmoins calculer la puissance de ce pseudo test F.

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(\nu_1, \nu_2, \phi_A) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1 = I - 1$ et

$$\nu_2 = \frac{\left(s_{AB}^2 + s_{AC}^2 - s_{ABC}^2\right)^2}{\frac{\left(s_{AB}^2\right)^2}{(I-1)(J-1)} + \frac{\left(s_{AC}^2\right)^2}{(I-1)(K-1)} + \frac{\left(s_{ABC}^2\right)^2}{(I-1)(J-1)(K-1)}},$$

 $F(I-1,\nu_2;1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et ν_2 degrés de liberté et $F'(I-1,\nu_2,\phi_A)$ est une variable aléatoire qui suit une loi de Fisher noncentrale à I-1 et ν_2 degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{1}{I} \frac{JKL \sum_{i=1}^{I} \alpha_i^2}{\sigma^2 + L\sigma_{ABC}^2 + KL\sigma_{AB}^2 + JL\sigma_{AC}^2}}.$$

Nous nous intéressons à la puissance $1 - \beta_B$, où β_B est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\begin{aligned} \mathcal{H}_0: \sigma_B^2 &= 0 \\ \text{contre} \\ \mathcal{H}_1: \sigma_B^2 &\neq 0. \end{aligned}$$

Cette puissance $1-\beta_B$ est donnée par la formule suivante :

$$1 - \beta_B = \mathbb{P}\left[F(J-1, (J-1)(K-1)) > \frac{F(J-1, (J-1)(K-1); 1-\alpha)}{1 + \frac{IKL\sigma_B^2}{\sigma^2 + IL\sigma_{BC}^2}}\right],$$

où $F(J-1,(J-1)(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à J-1 et (J-1)(K-1) degrés de liberté et F(J-1,(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et (J-1)(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{AB}$, où β_{AB} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{AB}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\left[\mathcal{H}_1 : \sigma_{AB}^2 \neq 0. \right]$$

Cette puissance $1-\beta_{AB}$ est donnée par la formule suivante :

$$1 - \beta_{AB} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + \frac{KL\sigma_{AB}^2}{\sigma^2 + L\sigma_{ABC}^2}}\right],$$

où $\nu_1 = (I-1)(J-1)$ et $\nu_2 = (I-1)(J-1)(K-1)$, F((I-1)(J-1), (I-1)(J-1)(K-1); $1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté et F((I-1)(J-1), (I-1)(J-1)(K-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1) et (I-1)(J-1)(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{BC}$, où β_{BC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\begin{aligned} \mathcal{H}_0: \sigma_{BC}^2 &= 0 \\ \text{contre} \\ \mathcal{H}_1: \sigma_{BC}^2 &\neq 0. \end{aligned}$$

Cette puissance $1 - \beta_{BC}$ est donnée par la formule suivante :

$$1 - \beta_{BC} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + KL \frac{\sigma_{BC}^2}{\sigma^2}}\right],$$

où $\nu_1 = (J-1)(K-1)$ et $\nu_2 = IJK(L-1)$, $F((J-1)(K-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (J-1)(K-1) et IJK(L-1) degrés de liberté et F((J-1)(K-1),IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à (J-1)(K-1) et IJK(L-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{ABC}$, où β_{ABC} est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{ABC}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\left[\mathcal{H}_1 : \sigma_{ABC}^2 \neq 0. \right]$$

Cette puissance $1 - \beta_{ABC}$ est donnée par la formule suivante :

$$1 - \beta_{ABC} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + L\frac{\sigma_{ABC}^2}{\sigma^2}}\right],$$

où $\nu_1 = (I-1)(J-1)(K-1)$ et $\nu_2 = IJK(L-1)$, $F((I-1)(J-1)(K-1), IJK(L-1); 1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté et F((I-1)(J-1)(K-1), IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à (I-1)(J-1)(K-1) et IJK(L-1) degrés de liberté.

10.7. Analyse de la variance à trois facteurs totalement emboîtés

Les idées développées dans la section 10.1 précédente sur le calcul de la puissance a posteriori ou la détermination du nombre de répétitions minimal pour obtenir un niveau de puissance supérieur ou égal à une valeur cible $1 - \beta_0$ sont directement transférables aux tests étudiés dans cette section à condition de remplacer les formules par celles qui sont exposées ci-dessous.

La puissance calculée pour chacun des tests ne dépend pas du risque de première espèce fixé pour les autres tests. Ceci permettrait de calculer la puissance des tests du tableau de l'analyse de la variance même si le seuil de chaque test varie en fonction du test considéré. Voir le paragraphe 1.3 pour plus de détails sur la gestion des risques de première espèce des tests du tableau de l'analyse de la variance.

10.7.1. Modèle à effets fixes

Nous reprenons ici les notations du paragraphe 6.1.1.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1-\beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I - 1, IJK(L - 1); \phi_A) > F(I - 1, IJK(L - 1); 1 - \alpha)\right],$$

où $F(I-1,IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJK(L-1) degrés de liberté et $F'(I-1,IJK(L-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et IJK(L-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \frac{1}{\sigma} \sqrt{\frac{JKL}{I} \sum_{i=1}^{I} \alpha_i^2}.$$

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \beta_{1(1)} = \beta_{2(1)} = \dots = \beta_{J(1)} = \beta_{1(2)} = \dots = \beta_{J(I)} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0(i_0)} \neq 0.$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F'(I(J-1), IJK(L-1); \phi_{B(A)}) > F(I(J-1), IJK(L-1); 1-\alpha)\right],$$

où $F(I(J-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJK(L-1) degrés de liberté et $F'(I(J-1),IJK(L-1);\phi_B)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I(J-1) et IJK(L-1) degrés de liberté et de paramètre de non-centralité normalisé $\phi_{B(A)}$ vaut :

$$\phi_{B(A)} = \frac{1}{\sigma} \sqrt{\frac{KL \sum_{i=1}^{I} \sum_{j=1}^{J} \beta_{j(i)}^{2}}{I(J-1) + 1}}.$$

Nous nous intéressons à la puissance $1-\beta_{C(B(A))}$, où $\beta_{C(B(A))}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \gamma_{1(1(1))} = \gamma_{2(1(1))} = \dots = \gamma_{K(1(1))} = \gamma_{1(1(2))} = \dots = \gamma_{K(J(I))} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \exists (i_0, j_0, k_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \times \{1, 2, \dots, K\} \mid \gamma_{k_0(j_0(i_0))} \neq 0.$$

Cette puissance $1 - \beta_{C(B(A))}$ est donnée par la formule suivante :

$$1 - \beta_{C(B(A))} = \mathbb{P}\left[F'(\nu_1, \nu_2; \phi_{C(B(A))}) > F(\nu_1, \nu_2; 1 - \alpha)\right],$$

où $\nu_1 = IJ(L-1)$ et $\nu_2 = IJK(L-1)$, $F(IJ(L-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté et $F'(IJ(L-1);1-\alpha)$

1), IJK(L-1); $\phi_{C(B(A))}$) est une variable aléatoire qui suit une loi de Fisher non-centrale à IJ(L-1) et IJK(L-1) degrés de liberté et de paramètre de non-centralité normalisé $\phi_{C(B(A))}$. Ce paramètre de non-centralité normalisé $\phi_{C(B(A))}$ vaut :

$$\phi_{C(B(A))} = \frac{1}{\sigma} \sqrt{\frac{L \sum_{i=1}^{I} \sum_{j=1}^{J} \gamma_{k(j(i))}^{2}}{IJ(L-1)+1}}.$$

10.7.2. Modèle à effets aléatoires

Nous reprenons ici les notations du paragraphe 6.2.1.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_A^2 &= 0 \\ \text{contre} \end{aligned} \right]$$

$$\left[\mathcal{H}_1 : \sigma_A^2 \neq 0. \right]$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F(I - 1, I(J - 1)) > \frac{F(I - 1, I(J - 1); 1 - \alpha)}{1 + JKL \frac{\sigma_A^2}{\sigma^2 + L\sigma_{C|B|A}^2 + KL\sigma_{B|A}^2}}\right],$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à (I-1) et I(J-1) degrés de liberté et F(I-1,I(J-1)) est une variable aléatoire qui suit une loi de Fisher à I-1 et I(J-1) degrés de liberté.

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{B|A}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1 : \sigma_{B|A}^2 &\neq 0. \end{aligned} \right]$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F(I(J-1), IJ(K-1)) > \frac{F(I(J-1), IJ(K-1); 1 - \alpha)}{1 + KL \frac{\sigma_{B|A}^2}{\sigma^2 + L\sigma C|B|A^2}}\right],$$

où $F(I(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté et F(I(J-1),IJ(K-1)) est une variable aléatoire qui

suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1-\beta_{C(B(A))}$, où $\beta_{C(B(A))}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0 : \sigma_{C|B|A}^2 &= 0 \\ \text{contre} \\ \\ \mathcal{H}_1 : \sigma_{C|B|A}^2 &\neq 0. \end{aligned}}$$

Cette puissance $1 - \beta_{C(B(A))}$ est donnée par la formule suivante :

$$1 - \beta_{C(B(A))} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + L\frac{\sigma_{C|B|A}^2}{\sigma^2}}\right],$$

où $\nu_1 = IJ(L-1)$ et $\nu_2 = IJK(L-1)$, $F(IJ(L-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté et F'(IJ(L-1),IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté.

10.7.3. Modèle à effets mixtes

Nous reprenons ici les notations du paragraphe 6.3.

Premier cas : Deux facteurs sont à effets fixes et un facteur est à effets aléatoires.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\boxed{ \begin{aligned} \mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0 \\ \text{contre} \end{aligned}}$$

$$\boxed{ \begin{aligned} \mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0. \end{aligned}}$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I - 1, IJ(K - 1); \phi_A) > F(I - 1, IJ(K - 1); 1 - \alpha)\right],$$

où $F(I-1,IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et IJ(K-1) degrés de liberté et $F'(I-1,IJ(K-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{JKL\sum_{i=1}^{I}\alpha_i^2}{I\left(\sigma^2 + K\sigma_{C|B|A}^2\right)}}.$$

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \beta_{1(1)} = \beta_{2(1)} = \dots = \beta_{J(1)} = \beta_{1(2)} = \dots = \beta_{J(I)} = 0$$

$$\text{contre}$$

$$\mathcal{H}_1: \text{Il existe } (i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\} \text{ tel que } \beta_{j_0(i_0)} \neq 0.$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F'(I(J-1), IJ(K-1); \phi_{B(A)}) > F(I(J-1), IJ(K-1); 1-\alpha)\right],$$

où $F(I(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté et $F'(I(J-1),IJ(K-1);\phi_{B(A)})$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I(J-1) et IJ(K-1) degrés de liberté et de paramètre de non-centralité normalisé $\phi_{B(A)}$ vaut :

$$\phi_{B(A)} = \sqrt{\frac{KL}{I(J-1)+1} \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} \beta_{j(i)}^{2}}{\sigma^{2} + L\sigma_{C|B|A}^{2}}}.$$

Nous nous intéressons à la puissance $1-\beta_{C(B(A))}$, où $\beta_{C(B(A))}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{C|B|A}^2 &= 0 \\ \text{contre} \end{aligned} \right]$$
$$\left[\mathcal{H}_1 : \sigma_{C|B|A}^2 \neq 0. \right]$$

Cette puissance $1 - \beta_{C(B(A))}$ est donnée par la formule suivante :

$$1 - \beta_{C(B(A))} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + L\frac{\sigma_{C|B|A}^2}{\sigma^2}}\right],$$

où $\nu_1 = IJ(L-1)$ et $\nu_2 = IJK(L-1)$, $F(IJ(L-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté et F'(IJ(L-1),IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté.

Deuxième cas : Un facteur est à effets fixes et deux facteurs sont à effets aléatoires.

Nous nous intéressons à la puissance $1 - \beta_A$, où β_A est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$
 contre
$$\mathcal{H}_1: \text{Il existe } i_0 \in \{1, 2, \dots, I\} \text{ tel que } \alpha_{i_0} \neq 0.$$

Cette puissance $1 - \beta_A$ est donnée par la formule suivante :

$$1 - \beta_A = \mathbb{P}\left[F'(I - 1, I(J - 1); \phi_A) > F(I - 1, I(J - 1); 1 - \alpha)\right],$$

où $F(I-1,I(J-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I-1 et I(J-1) degrés de liberté et $F'(I-1,I(J-1);\phi_A)$ est une variable aléatoire qui suit une loi de Fisher non-centrale à I-1 et I(J-1) degrés de liberté et de paramètre de non-centralité normalisé ϕ_A . Ce paramètre de non-centralité normalisé ϕ_A vaut :

$$\phi_A = \sqrt{\frac{JKL\sum_{i=1}^{I} \alpha_i^2}{I\left(\sigma^2 + KL\sigma_{B|A}^2 + L\sigma_{C|B|A}^2\right)}}.$$

Nous nous intéressons à la puissance $1 - \beta_{B(A)}$, où $\beta_{B(A)}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\begin{aligned} \mathcal{H}_0 : \sigma_{B|A}^2 &= 0 \\ \end{aligned} \right]$$
 contre
$$\left[\mathcal{H}_1 : \sigma_{B|A}^2 \neq 0. \right]$$

Cette puissance $1 - \beta_{B(A)}$ est donnée par la formule suivante :

$$1 - \beta_{B(A)} = \mathbb{P}\left[F(I(J-1), IJ(K-1)) > \frac{F(I(J-1), IJ(K-1); 1-\alpha)}{1 + KL \frac{\sigma_{B|A}^2}{\sigma^2 + L\sigma C|B|A^2}}\right],$$

où $F(I(J-1),IJ(K-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté et F(I(J-1),IJ(K-1)) est une variable aléatoire qui suit une loi de Fisher à I(J-1) et IJ(K-1) degrés de liberté.

Nous nous intéressons à la puissance $1-\beta_{C(B(A))}$, où $\beta_{C(B(A))}$ est le risque de commettre une erreur de deuxième espèce, du test F d'analyse de la variance pour le test de l'hypothèse

$$\left[\mathcal{H}_0 : \sigma_{C|B|A}^2 = 0 \right]$$
contre
$$\left[\mathcal{H}_1 : \sigma_{C|B|A}^2 \neq 0. \right]$$

Cette puissance $1-\beta_{C(B(A))}$ est donnée par la formule suivante :

$$1 - \beta_{C(B(A))} = \mathbb{P}\left[F(\nu_1, \nu_2) > \frac{F(\nu_1, \nu_2; 1 - \alpha)}{1 + L\frac{\sigma_{C(B|A)}^2}{\sigma^2}}\right],$$

où $\nu_1 = IJ(L-1)$ et $\nu_2 = IJK(L-1)$, $F(IJ(L-1),IJK(L-1);1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté et F'(IJ(L-1),IJK(L-1)) est une variable aléatoire qui suit une loi de Fisher à IJ(L-1) et IJK(L-1) degrés de liberté.

Chapitre 10.	Puissance des	tests de l'ana	alyse de la	variance

Chapitre 11

Exemples

11.1. Analyse de la variance à un facteur

11.1.1. Carburateurs¹

Nous voulons tester quatre types de carburateurs : A_1 , A_2 , A_3 et A_4 . Pour chaque type de carburateur nous disposons de six pièces que qui sont montées sucessivement en parallèle sur quatre voitures que nous supposons avoir des caractéristiques parfaitement identiques. Le tableau ci-dessous indique pour chacun des essais la valeur d'un paramètre lié à la consommation :

Essai	A_1	A_2	A_3	A_4
1	21	23	18	20
2	24	23	19	21
3	25	32	28	25
\parallel 4	20	23	19	15
5	34	32	24	29
6	17	15	14	9

Partie I:

Dans cette partie **nous ne tenons pas compte** de la possible influence de l'ordre dans lequel les essais ont été effectués.

Une représentation graphique de la *Consommation* en fonction du *Carburateur* est donnée par la figure ci-après.

a) Proposer une méthode statistique permettant d'étudier l'influence des modalités du facteur Carburateur sur la Consommation. Énoncer le modèle et les hypothèses

¹Les données de cet exercice sont tirées du livre de Georges Parreins [Par74].

- nécessaires au modèle que vous projetez d'utiliser. Ce modèle comporte-t-il des répétitions?
- b) Il y a-t-il des différences entre les *Carburateur*? Quelles sont les estimations des coefficients du modèle? Si nécessaire, comparer les différents niveaux du facteur *Carburateur*.

Boîtes à moustaches de Consommation par Carburateur

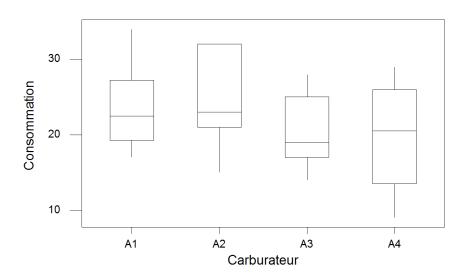


Fig. 11.1 - Graphique : Boite à moustaches des données.

Éléments de corrigé : Carburateurs

Partie I:

Dans cette partie **nous ne tenons pas compte** de la possible influence de l'ordre dans lequel les essais ont été effectués.

a) La variable à expliquer, Consommation, est une variable continue. La variable explicative que nous considérons, le type de carburateur, Carburateur, est qualitative et contrôlée. Le plan qui a été utilisé pour réaliser l'expérience comporte des répétitions, nous pouvons donc essayer de nous servir d'un modèle d'analyse de la variance à un facteur contrôlé.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad i = 1 \dots 4, \ j = 1 \dots 6,$$
 avec la contrainte supplémentaire $\sum_{i=1}^4 \alpha_i = 0,$

où $Y_{i,j}$ la consommation de la voiture équipée du carburateur i lors du j—ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall \ (i,j), 1 \leqslant i \leqslant 4, \ 1 \leqslant j \leqslant 6, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$\operatorname{Cov}(\epsilon_{i,j},\epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant 4, \text{ et } 1 \leqslant j,l \leqslant 6.$$

Ce modèle comporte 6 répétitions pour chaque niveau du facteur. Il s'agit donc d'un plan expérimental équilibré.

- b) Nous commençons par vérifier que les conditions d'utilisation du modèle introduit à la question a) sont bien vérifiées. Pour cela nous calculons les résidus du modèle.
 - 1. Le protocole expérimental indique que nous pouvons faire comme si chacun des 24 carburateurs utilisés au cours de l'expérience a été monté sur une même voiture. Nous supposons négligeable la dégradation des véhicules suite à leur utilisation répétée au cours de l'expérience. Ces considérations nous permettent de supposer que les erreurs $\epsilon_{i,j}$ sont indépendantes.
 - 2. Nous effectuons un test d'homogénéité des variances des erreurs :

$$\mathcal{H}_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$

 \mathcal{H}_1 : Il existe une variance différente des autres.

Puisque nous ne connaissons pas la loi des erreurs, nous faisons un test nonparamétrique, celui de Levene, sur les résidus du modèle :

Test de l'égalité des variances

Facteurs Carburateur

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,194 P : 0,899

Puisque la p-valeur du test est strictement supérieure au seuil $\alpha=5$ %, le test est non significatif et nous ne pouvons rejeter l'hypothèse nulle \mathcal{H}_0 . Ainsi au niveau $\alpha=5$ %, il n'y a pas de différences significatives entre les variances des erreurs.

3. Nous nous intéressons désormais à la normalité des erreurs. Nous cherchons si nous pouvons faire l'hypothèse que les résidus sont des réalisations d'une variable aléatoire ϵ dont la loi est une loi normale.

$$\boxed{\mathcal{H}_0:\mathcal{L}(\epsilon)=\mathcal{N}}$$

contre

$$\mathcal{H}_1:\mathcal{L}(\epsilon)\neq\mathcal{N}.$$

Nous utilisons alors le test de Ryan-Joiner :

W-test pour la normalité

R: 0,9868

Valeur de P (approximatif) : > 0,1000

Comme la p-valeur est strictement supérieure à 0, 1, elle est a fortiori strictement supérieure à 0,05 qui est le seuil du test. Nous en déduisons que le test n'est pas significatif au niveau $\alpha = 5$ % et que nous ne pouvons donc pas rejeter l'hypothèse nulle \mathcal{H}_0 . Il n'y a pas de différences significatives entre la loi de ϵ et une loi normale, au seuil $\alpha = 5$ %.

4. Comme l'hypothèse de normalité des erreurs n'a pas été rejétée à la question 3., nous nous intéressons à nouveau à l'hypothèse d'homoscédasticité portant sur les erreurs.

$$\mathcal{H}_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$
contre

 \mathcal{H}_1 : Il existe une variance différente des autres.

Il est maintenant possible d'utiliser le test paramétrique de Bartlett puisque ses conditions d'application, normalité des erreurs, sont vérifiées.

Test de l'égalité des variances

Facteurs Carburateur

Test de Bartlett (loi normale)

Statistique du test : 0,650 P : 0,885

Le test n'est pas significatif car 0,885 est strictement supérieur à $\alpha = 5 \%$. Nous ne pouvons rejeter l'hypothèse nulle \mathcal{H}_0 au seuil $\alpha = 5 \%$.

Toutes les conditions d'application du modèle de l'analyse de la variance à un facteur sont vérifiées. Déterminons si le facteur Carburateur a un effet sur la Consommation. Nous testons donc les hypothèses :

$$\mathcal{H}_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

$$\mathcal{H}_1$$
: Il existe $i_0 \in \{1, 2, 3, 4\}$ tel que $\alpha_{i_0} \neq 0$.

Nous consultons alors le tableau de l'analyse de la variance

Facteur Type Niveaux Valeurs
Carburat fixe 4 A1 A2 A3 A4

Analyse de la variance pour Consomma, en utilisant la SC ajustée pour

les tests

Source	DL	SC séq	SC ajust	CM ajust	F	Р
Carburat	3	100,83	100,83	33,61	0,89	0,464
Erreur	20	757,00	757,00	37,85		
Total	23	857,83				

La p-valeur associée, par la statistique de Fisher, à l'hypothèse nulle \mathcal{H}_0 est de 0,464. Elle est strictement supérieure à $\alpha=5~\%$: le test n'est pas significatif à ce seuil. Nous ne pouvons rejeter l'hypothèse nulle \mathcal{H}_0 d'absence d'effet du facteur Carburateur sur la Consommation. Ainsi au niveau $\alpha=5~\%$, le facteur

Carburateur n'a pas d'effet significatif sur la Consommation. En prenant cette décision, nous risquons de commettre une erreur de deuxième espèce, il convient donc de calculer la puissance du test. À l'aide de l'entrée ANOVA à un facteur contrôlé du sous menu Puissance et effectif de l'échantillon du menu Stat de Minitab[©], nous obtenons le résultat suivant :

Puissance et effectif de l'échantillon

ANOVA à un facteur contrôlé

Sigma = 6,152 Alpha = 0,05 Nombre de niveaux = 4

Effectif de Différence Moyennes SC l'échantillon Puissance maximale 11,6838 6 0,1555 4,834

La Différence maximale correspond à l'écart le plus important en valeur absolue entre les estimations des différents niveaux du facteur. Ici c'est la valeur de $\widehat{A}_4 - \widehat{A}_2 = 4,834$ qui est la plus élevée. La puissance a posteriori est donc très faible : 0,1555 par rapport à la valeur de 0,80 qui est considérée comme étant acceptable. Nous aurions pu améliorer la puissance du test en augmentant le nombre de répétitions.

Puissance et effectif de l'échantillon

ANOVA à un facteur contrôlé

Sigma = 6,152 Alpha = 0,05 Nombre de niveaux = 4

	Effectif de	Puissance	Puissance	Différence
Moyennes SC	l'échantillon	cible	réelle	maximale
11,6838	37	0,8000	0,8084	4,834

Nous constatons qu'il aurait fallu 37 répétitions, donc 148 carburateurs, pour obtenir une puissance d'au moins 0,80. Nous aurions multiplié par plus de six l'ampleur de l'étude qui a été réalisée...

Les estimations des coefficients du modèle sont :

Terme	Coef	Er-T coef	T	P
Constante	22,083	1,256	17,58	0,000
Carburat				
A1	1,417	2,175	0,65	0,522
A2	2,583	2,175	1,19	0,249
A3	-1,750	2,175	-0,80	0,431

Nous en déduisons que :

$$\widehat{\mu}(y) = 22,083, \quad \widehat{\alpha}_1(y) = 1,417, \quad \widehat{\alpha}_2(y) = 2,583, \\ \widehat{\alpha}_3(y) = -1,750, \quad \widehat{\alpha}_4(y) = -2,250,$$

en utilisant la relation $\sum_{i=1}^4 \widehat{\alpha}_i(\boldsymbol{y}) = 0$ qui se déduit de la relation vérifiée par les estimateurs $\sum_{i=1}^4 \widehat{\alpha}_i = 0$.

Nous remarquons que c'est le carburateur A_4 qui fait consommer le moins de carburant. Toutefois, puisque nous n'avons pas pu rejeter l'hypothèse nulle \mathcal{H}_0 d'absence d'effet du facteur Carburateur sur la Consommation au seuil $\alpha = 5 \%$, ce comportement n'est pas significativement différent des autres au seuil $\alpha = 5 \%$.

Au seuil $\alpha = 5 \%$, l'hypothèse nulle \mathcal{H}_0 d'absence d'effet du facteur Carburateur sur la Consommation n'a pu être réfutée, nous ne devons donc pas faire de comparaisons multiples de l'effet des différents niveaux du facteur Carburateur.

11.2. Analyse de la variance à deux facteurs

11.2.1. Sans répétition

Carburateurs (suite et fin)²

Partie II:

Après avoir effectué l'analyse de la première partie nous apprenons que tous les essais numéro 1 ont été réalisés un lundi, tous les essais numéro 2 un mardi, ..., tous les essais numéro 6 un samedi.

Nous décidons donc dans cette partie **de tenir compte** de la possible influence de l'ordre de réalisation des essais, c'est-à-dire du facteur *Essai*.

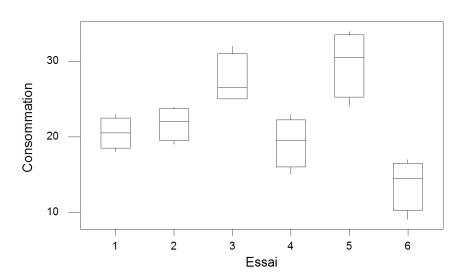
Une représentation graphique de la Consommation en fonction de Essai est donnée par la figure au ci-dessous.

- a) Proposer une méthode statistique permettant d'étudier conjointement l'influence du facteur *Carburateur* et du facteur *Essai* sur la consommation. Énoncer le modèle et les hypothèses nécessaires au modèle que vous projetez d'utiliser. Ce modèle comporte-t-il des répétitions?
- b) Il y a-t-il des différences entre les carburateurs? Il y a-t-il des différences dues à l'ordre de réalisation des essais? Quelles sont les estimations des paramètres du modèle? Si nécessaire, comparer les différents niveaux du facteur *Carburateur* ainsi que les différents niveaux du facteur *Essai*.

.

Éléments de corrigé : Carburateurs (suite et fin)

²Les données de cet exercice sont tirées du livre de Georges Parreins [Par74].



Boîtes à moustaches de Consommation par Essai

Fig. 11.2 – Graphique : Boite à moustaches des données.

Partie II:

Après avoir effectué l'analyse de la première partie nous apprenons que tous les essais numéro 1 ont été réalisés un lundi, tous les essais numéro 2 un mardi, ..., tous les essais numéro 6 un samedi.

Nous décidons donc dans cette partie **de tenir compte** de la possible influence de l'ordre de réalisation des essais, c'est-à-dire du facteur *Essai*.

a) La variable à expliquer, Consommation, est une variable continue. Les variables explicatives que nous considérons, le type de carburateur, Carburateur, et le jour de l'essai, Essai, sont qualitatives et contrôlées. Le plan qui a été utilisé pour réaliser l'expérience ne comporte pas de répétitions, nous pouvons donc essayer de nous servir d'un modèle d'analyse de la variance à deux facteurs contrôlés sans répétition.

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad i = 1 \dots 4, \ j = 1 \dots 6,$$
 avec les contraintes supplémentaires
$$\sum_{i=1}^4 \alpha_i = 0 \text{ et } \sum_{j=1}^6 \beta_j = 0,$$

où $Y_{i,j}$ la consommation de la voiture équipée du carburateur i lors du j—ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant 4, \ 1 \leqslant j \leqslant 6, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant 4 \text{ et } 1 \leqslant j,l \leqslant 6.$$

Ce modèle ne comporte aucune répétition pour aucun des niveaux du facteur. Il s'agit d'un plan expérimental équilibré.

- b) Nous commençons par vérifier que les conditions d'utilisation du modèle introduit à la question a) sont bien vérifiées. Pour cela nous calculons les résidus du modèle.
 - 1. Le protocole expérimental indique que nous pouvons faire comme si chacun des 24 carburateurs utilisés au cours de l'expérience a été monté sur une même voiture. Nous supposons négligeable la dégradation des véhicules suite à leur utilisation répétée au cours de l'expérience. Ces considérations nous permettent de supposer que les erreurs $\epsilon_{i,j}$ sont indépendantes.
 - 2. Il n'est pas possible de tester l'hypothèse d'égalité des variances des erreurs \mathcal{H}_0 ci-dessous à l'aide des données expérimentales dont nous disposons puisque le plan utilisé ne comporte pas de répétitions.

$$\mathcal{H}_0: \sigma_{1,1}^2 = \dots = \sigma_{4,1}^2 = \dots = \sigma_{1,6}^2 = \dots = \sigma_{4,6}^2$$

contre

 \mathcal{H}_1 : Il existe une variance différente des autres.

Par contre nous savons que si l'hypothèse nulle globale \mathcal{H}_0 ci-dessus est vérifiée, alors chacune des deux hypothèses nulles \mathcal{H}_0' d'homogénéité des variances des erreurs par rapport au facteur Carburateur et \mathcal{H}_0'' d'homogénéité des variances des erreurs par rapport au facteur Essai doivent l'être également. Nous effectuons deux tests d'homogénéité des variances des erreurs :

$$\boxed{\mathcal{H}_{0}^{'}:\sigma_{c,1}^{2}=\sigma_{c,2}^{2}=\sigma_{c,3}^{2}=\sigma_{c,4}^{2}}$$

contre

 \mathcal{H}_1 : Il existe une variance différente des autres pour Carburateur.

$$\boxed{\mathcal{H}_0^{''}:\sigma_{e,1}^2=\sigma_{e,2}^2=\sigma_{e,3}^2=\sigma_{e,4}^2=\sigma_{e,5}^2=\sigma_{e,6}^2}$$

contre

 \mathcal{H}_1'' : Il existe une variance différente des autres pour Essai.

Puisque nous ne connaissons pas la loi des erreurs, nous utilisons un test nonparamétrique, celui de Levene, sur les résidus du modèle :

Test de l'égalité des variances Facteurs Carburateur

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,842 P : 0,487

Test de l'égalité des variances

Facteurs Essai

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,925 P : 0,488

Puisque les p-valeurs des tests sont strictement supérieures au seuil $\alpha = 5 \%$, les tests sont non significatifs et nous ne pouvons rejeter les hypothèses nulles \mathcal{H}'_0 et \mathcal{H}''_0 .

3. Nous nous intéressons désormais à la normalité des erreurs. Nous cherchons si nous pouvons faire l'hypothèse que les résidus sont des réalisations d'une variable aléatoire ϵ dont la loi est une loi normale.

$$\mathcal{H}_0: \mathcal{L}(\epsilon) = \mathcal{N}$$

contre

$$\mathcal{H}_1:\mathcal{L}(\epsilon)\neq\mathcal{N}.$$

Nous utilisons alors le test de Ryan-Joiner :

W-test pour la normalité

R: 0,9725

Valeur de P (approximatif) : > 0,1000

Comme la p-valeur est strictement supérieure à 0, 1, elle est a fortiori strictement supérieure à 0,05 qui est le seuil α du test. Nous en déduisons que le test n'est pas significatif au niveau $\alpha = 5$ % et que nous ne pouvons donc pas rejeter l'hypothèse nulle \mathcal{H}_0 . Il n'y a pas de différences significatives entre la loi de ϵ et une loi normale, au seuil $\alpha = 5$ %.

4. Comme l'hypothèse de normalité des erreurs n'a pas été rejetée à la question 3., nous nous intéressons à nouveau à l'hypothèse d'homoscédasticité portant sur les erreurs.

Pour les mêmes raisons qu'au 2., il n'est pas possible de tester l'hypothèse d'égalité des variances des erreurs \mathcal{H}_0 :

d'égalité des variances des erreurs
$$\mathcal{H}_0$$
:
$$\mathcal{H}_0: \sigma^2_{1,1} = \cdots = \sigma^2_{4,1} = \cdots = \sigma^2_{1,6} = \cdots = \sigma^2_{4,6}$$

contre

 \mathcal{H}_1 : Il existe une variance différente des autres.

Nous nous intéressons aux deux hypothèses nulles \mathcal{H}_0' d'homogénéité des variances des erreurs par rapport au facteur Carburateur et \mathcal{H}_0'' d'homogénéité des variances des erreurs par rapport au facteur Essai. Nous effectuons deux tests d'homogénéité des variances des erreurs :

$$\boxed{\mathcal{H}_{0}^{'}:\sigma_{c,1}^{2}=\sigma_{c,2}^{2}=\sigma_{c,3}^{2}=\sigma_{c,4}^{2}}$$

contre

 \mathcal{H}_1^{\prime} : Il existe une variance différente des autres pour Carburateur.

$$\mathcal{H}_0'': \sigma_{e,1}^2 = \sigma_{e,2}^2 = \sigma_{e,3}^2 = \sigma_{e,4}^2 = \sigma_{e,5}^2 = \sigma_{e,6}^2$$

contre

 $\mathcal{H}_{1}^{''}$: Il existe une variance différente des autres pour Essai.

Il est maintenant possible d'utiliser le test paramétrique de Bartlett puisque ses conditions d'application, normalité des erreurs, sont vérifiées.

Test de l'égalité des variances

Facteurs Carburateur

Test de Bartlett (loi normale)

Statistique du test : 1,930 P : 0,587

Test de l'égalité des variances

Facteurs Essai

Test de Bartlett (loi normale)

Statistique du test : 3,525 P : 0,620

Puisque les p-valeurs des tests sont strictement supérieures au seuil $\alpha = 5 \%$, les tests sont non significatifs et nous ne pouvons rejeter les hypothèses nulles \mathcal{H}'_0 et \mathcal{H}''_0 .

Toutes les conditions d'application du modèle de l'analyse de la variance à deux facteurs contrôlés sans répétition sont vérifiées. Déterminons si le facteur Carburateur ou le facteur Essai a un effet sur la Consommation. Nous testons donc les hypothèses :

$$\mathcal{H}_0': \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$
 contre
$$\mathcal{H}_1': \text{Il existe } i_0 \in \{1, 2, 3, 4\} \text{ tel que } \alpha_{i_0} \neq 0.$$

$$\mathcal{H}_0'': \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$$
 contre
$$\mathcal{H}_1'': \text{Il existe } j_0 \in \{1, 2, 3, 4, 5, 6\} \text{ tel que } \beta_{j_0} \neq 0.$$

Nous consultons alors le tableau de l'analyse de la variance

Facteur Type Niveaux Valeurs
Carburat fixe 4 A1 A2 A3 A4
Essai fixe 6 1 2 3 4 5 6

Analyse de la variance pour Consomma, en utilisant la SC ajustée pour

les tests

Source	DL	SC séq	SC ajust	CM ajust	F	Р
Carburat	3	100,833	100,833	33,611	5,99	0,007
Essai	5	672,833	672,833	134,567	23,98	0,000
Erreur	15	84,167	84,167	5,611		
Total	23	857,833				

La p-valeur associée, par la statistique de Fisher, à l'hypothèse nulle \mathcal{H}_0' est de 0,007. Elle est inférieure ou égale à $\alpha=5$ %: le test est significatif à ce seuil. Nous devons rejeter l'hypothèse nulle \mathcal{H}_0' d'absence d'effet du facteur Carburateur sur la Consommation et décider l'hypothèse alternative \mathcal{H}_1' d'existence d'un effet du facteur Carburateur sur la Consommation. Ainsi au niveau $\alpha=5$ %, le facteur Carburateur a un effet significatif sur la Consommation. En prenant cette décision, nous risquons de commettre une erreur de première espèce, le risque associé à la décision est donc de 5 %.

La p-valeur associée, par la statistique de Fisher, à l'hypothèse nulle \mathcal{H}_0'' est de 0,000. Elle est inférieure ou égale à $\alpha=5$ %: le test est significatif à ce seuil. Nous devons rejeter l'hypothèse nulle \mathcal{H}_0'' d'absence d'effet du facteur Essai sur la Consommation et décider l'hypothèse alternative \mathcal{H}_1'' d'existence d'un effet du facteur Essai sur la Consommation. Ainsi au niveau $\alpha=5$ %, le facteur Essai a un effet significatif sur la Consommation. En prenant cette décision, nous risquons de commettre une erreur de première espèce, le risque associé à la décision est donc de 5 %.

Nous constatons que, contrairement à ce que nous avions pu montrer dans la partie I, nous arrivons à mettre en évidence un effet du facteur *Carburateur* sur la consommation. Il semblait nécessaire de prendre en compte ce facteur supplémentaire, *Essai*, à la vue des boîtes à moustaches qui étaient reproduites dans l'énoncé. La variabilité importante associée au jour où l'essai a été réalisé, liée par exemple à la densité du traffic automobile, masquait les variations liées au facteur *Carburateur*. Les estimations des coefficients du modèle sont :

Coef	Er-T coef	T	P
22,0833	0,4835	45,67	0,000
1,4167	0,8375	1,69	0,111
2,5833	0,8375	3,08	0,008
-1,7500	0,8375	-2,09	0,054
-1,583	1,081	-1,46	0,164
-0,333	1,081	-0,31	0,762
5,417	1,081	5,01	0,000
-2,833	1,081	-2,62	0,019
7,667	1,081	7,09	0,000
	22,0833 1,4167 2,5833 -1,7500 -1,583 -0,333 5,417 -2,833	22,0833 0,4835 1,4167 0,8375 2,5833 0,8375 -1,7500 0,8375 -1,583 1,081 -0,333 1,081 5,417 1,081 -2,833 1,081	22,0833 0,4835 45,67 1,4167 0,8375 1,69 2,5833 0,8375 3,08 -1,7500 0,8375 -2,09 -1,583 1,081 -1,46 -0,333 1,081 -0,31 5,417 1,081 5,01 -2,833 1,081 -2,62

Nous en déduisons que :

$$\widehat{\mu}(\boldsymbol{y}) = 22,083, \quad \widehat{\alpha}_1(\boldsymbol{y}) = 1,417, \quad \widehat{\alpha}_2(\boldsymbol{y}) = 2,583, \\ \widehat{\alpha}_3(\boldsymbol{y}) = -1,750, \quad \widehat{\alpha}_4(\boldsymbol{y}) = -2,250, \\ \widehat{\beta}_1(\boldsymbol{y}) = -1,583, \quad \widehat{\beta}_2(\boldsymbol{y}) = -0,333, \quad \widehat{\beta}_3(\boldsymbol{y}) = 5,417, \\ \widehat{\beta}_4(\boldsymbol{y}) = -2,833, \quad \widehat{\beta}_5(\boldsymbol{y}) = 7,667, \quad \widehat{\beta}_6(\boldsymbol{y}) = -8,335,$$

en utilisant les relations $\sum_{i=1}^{4} \widehat{\alpha}_i(\boldsymbol{y}) = 0$ et $\sum_{j=1}^{6} \widehat{\beta}_j(\boldsymbol{y}) = 0$ qui sont des conséquences de celles vérifiées par les estimateurs $\sum_{i=1}^{4} \widehat{\alpha}_i = 0$ et $\sum_{j=1}^{6} \widehat{\beta}_j = 0$. Nous remarquons que les estimations des coefficients associés aux carburateurs sont les mêmes que celles obtenues à la partie I. Il en va toujours de même lorsque le plan est équilibré.

Au seuil $\alpha = 5$ %, l'hypothèse nulle \mathcal{H}_0' d'absence d'effet du facteur Carburateur sur la Consommation a été rejetée, nous pouvons donc faire des comparaisons multiples de l'effet des différents niveaux du facteur Carburateur.

Tests de simultanéité de Tukey

Variable de réponse Consomma

Toutes comparaisons deux à deux entre niveaux de Carburat

Carburat = A1 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Carburat	des moyennes	la différence	de T	de P
A2	1,167	1,368	0,853	0,8284
A3	-3,167	1,368	-2,315	0,1385
A4	-3,667	1,368	-2,681	0,0726

Carburat = A2 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Carburat	des moyennes	la différence	de T	de P
A3	-4,333	1,368	-3,169	0,0290
A4	-4,833	1,368	-3,534	0,0142

Carburat = A3 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Carburat	des moyennes	la différence	de T	de P
A4	-0,5000	1,368	-0,3656	0,9827

Ainsi au seuil global de décision $\alpha_{global} = 5 \%$ les niveaux A_2 et A_3 , A_2 et A_4 sont significativement différents, pour les autres l'hypothèse d'égalité ne peut être rejetée.

Nous avons représenté, dans l'ordre de gauche à droite sur la figure, les estimations des valeurs des niveaux A_3 , A_1 , A_4 , A_2 du facteur Carburateur.

Au seuil $\alpha = 5 \%$, l'hypothèse nulle \mathcal{H}''_0 d'absence d'effet du facteur Essai sur la Consommation a été rejetée, nous pouvons donc faire des comparaisons multiples de l'effet des différents niveaux du facteur Essai.

Tests de simultanéité de Tukey

Variable de réponse Consomma

Toutes comparaisons deux à deux entre niveaux de Essai

Essai = 1 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Essai	des moyennes	la différence	de T	de P

Diagramme à points pour alpha

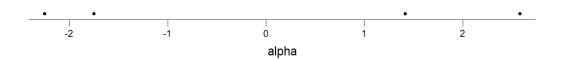


Fig. 11.3 - Graphique : Estimation des effets du facteur Carburateur.

2	1,250	1,675	0,746	0,9725
3	7,000	1,675	4,179	0,0086
4	-1,250	1,675	-0,746	0,9725
5	9,250	1,675	5,522	0,0007
6	-6,750	1,675	-4,030	0,0114

Essai = 2 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Essai	des moyennes	la différence	de T	de P
3	5,750	1,675	3,433	0,0355
4	-2,500	1,675	-1,493	0,6738
5	8,000	1,675	4,776	0,0027
6	-8,000	1,675	-4,776	0,0027

Essai = 3 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Essai	des moyennes	la différence	de T	de P
4	-8,25	1,675	-4,925	0,0021
5	2,25	1,675	1,343	0,7578
6	-13,75	1,675	-8,209	0,0000

Essai = 4 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Essai	des moyennes	la différence	de T	de P
5	10,500	1,675	6,269	0,0002
6	-5,500	1,675	-3,284	0,0469

Essai = 5 soustraites de :

Niveau	Différence	Er-T de	Valeur	Valeur ajustée
Essai	des moyennes	la différence	de T	de P
6	-16,00	1,675	-9,552	0,0000

Ainsi au seuil global de décision $\alpha_{global} = 5 \%$ les niveaux 1 et 3, 1 et 5, 2 et 3, 2 et 5, 2 et 6, 3 et 4, 3 et 6, 4 et 5, 5 et 6 sont significativement différents, pour les autres l'hypothèse d'égalité ne peut être rejetée.

Nous avons représenté, dans l'ordre de gauche à droite sur la figure, les estimations des valeurs des niveaux 4, 1, 2, 3, 5, 6 du facteur *Essai*.

Diagramme à points pour beta

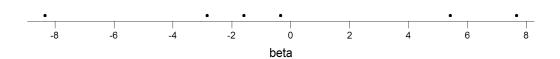


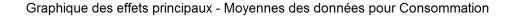
Fig. 11.4 - Graphique : Estimation des effets du facteur Essai.

À l'aide de l'entrée **Graphique des effets principaux** du sous menu **ANOVA** du menu **Stat** de Minitab[©], nous obtenons la représentation graphique pertinente suivante :

La ligne en pointillé en rouge³ est la valeur de l'estimation de la moyenne $\widehat{\mu}(\boldsymbol{y})$. Les $\widehat{\alpha}_i(\boldsymbol{y})$, $1 \leq i \leq 4$, et les $\widehat{\beta}_j(\boldsymbol{y})$, $1 \leq j \leq 6$, sont représentées par les valeurs des écarts à cette ligne.

.

³En gris si vous lisez une version imprimée du corrigé de cet exercice.



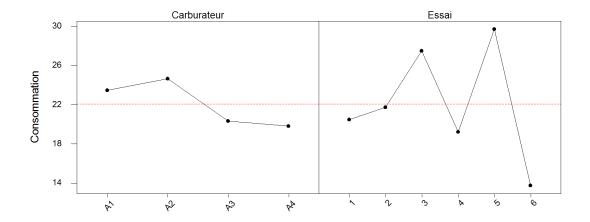


Fig. 11.5 - Graphique : Effets principaux.

11.2.2. Avec répétitions et plan équilibré

Comparaison de l'appréciation de huit eaux gazeuses⁴

Un panel de 16 juges évalue 8 types différents d'eau gazeuze. Chaque évalue 4 fois chaque eau. Nous supposons que les hypothèses, relatives à l'utilisation du modèle d'analyse de la variance qui a permis d'obtenir les résultats reportés dans les tableaux ci-dessous, sont bien vérifiées.

- 1. Décrire succintement le jeu de données (nombre total d'observations, nature des variables, etc.)
- 2. Construire le test de significativité de l'interaction $eau \times juge$ (hypothèses, statistique de test, loi de cette statistique sous \mathcal{H}_0 , décision à l'aide du tableau ci-dessous).
- 3. Commenter le tableau d'analyse de la variance ci-dessous.

	ddl	SCE	CM	f_{obs}	Proba
juge	15	731,3574	48,75716	25,03878	$5,91658 \times 10^{-48}$
eau	7	38,6543	5,52204	2,83579	0,006810201
juge : eau	105	508,5645	4,84347	2,48732	$1,19182\times10^{-10}$
Résiduelle	384	747,7500	1,94727		

4. L'estimation des coefficients pour la variable eau est fournie dans le listage cidessous. Quelle est la plus appréciée? Lors d'un rassemblement avec beaucoup d'individus, utiliseriez-vous seulement cette eau?

⁴Les données de cet exercice sont tirées du livre d'exercices de François Husson et de Jérôme Pagès [HPer].

	Value	Std. Error	t value	Pr(> t)
(Intercept)	3,0722656	0,06167052	49,8174098	$0,0000000 \times 10^{+000}$
St Yorre	-0,1660156	0,16316486	-1,017472	$3,095697 \times 10^{-001}$
Badoit	-0,1816406	0,16316486	-1,113234	$2,663044 \times 10^{-001}$
Vichy	-0,2441406	0,16316486	-1,496282	$1,354016 \times 10^{-001}$
Quézac	0,4277344	0,16316486	2,621486	$9,102684 \times 10^{-003}$
Arvie	-0,2128906	0,16316486	-1,304758	$1,927567 \times 10^{-001}$
Chateauneuf	0,2714844	0,16316486	1,663865	$9,695512 \times 10^{-002}$
Salvetat	0,3496094	0,16316486	2,142676	$3,276727 \times 10^{-001}$
Perrier	-0,2441406	0,16316486	-1,496282	$1,354016 \times 10^{-001}$

.

Éléments de corrigé : Comparaison de l'appréciation de huit eaux gazeuses

- 1. Il y a 8 × 16 × 4 = 512 observations. Pour chaque observation, nous disposons du nom du juge qui l'a effectuée (variable qualitative), de l'eau concernée (variable qualitative) et de la note mise (variable quantitative).
- 2. Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1...8, \ j = 1...16, \ k = 1...4,$$
avec les contraintes supplémentaires $\sum_{i=1}^{8} \alpha_i = 0, \ \sum_{j=1}^{16} \beta_j = 0,$

$$\sum_{i=1}^{8} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1,...,16\} \ \text{et} \ \sum_{j=1}^{16} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1,...,8\},$$

où $Y_{i,j,k}$ est la note du juge i lors de l'évaluation de l'eau j au cours du k-ème essai. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant 8, \ 1 \leqslant j \leqslant 16, \ 1 \leqslant k \leqslant 4, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant 8, \ 1 \leqslant j, m \leqslant 16 \text{ et } 1 \leqslant k, n \leqslant 4.$$

Ce modèle comporte quatre répétitions pour chacun des niveaux du facteur. Il s'agit d'un plan expérimental équilibré.

Pour tester la significativité de l'interaction, nous construisons le test suivant :

$$\mathcal{H}_0: (\alpha\beta)_{1,1} = (\alpha\beta)_{1,2} = \dots = (\alpha\beta)_{1,J} = (\alpha\beta)_{2,1} = \dots = (\alpha\beta)_{I,J} = 0$$
contre

$$\mathcal{H}_1$$
: Il existe $(i_0, j_0) \in \{1, 2, \dots, I\} \times \{1, 2, \dots, J\}$ tel que $(\alpha \beta)_{i_0, j_0} \neq 0$.

La statistique de test est :

$$F = \frac{CM_{\text{interaction}}}{CM_{\text{résiduelle}}}.$$

Ici : $ddl_{\text{interaction}} = (I-1)(J-1) = (8-1)(16-1) = 105$ et $ddl_{\text{résiduelle}} = n - IJ = 512 - 128 = 384$. Sous l'hypothèse nulle \mathcal{H}_0 et les hypothèses du modèle, F suit une loi de Fisher à 105 et 384 degrés de liberté. Décision : la p-valeur vaut $1,192 \times 10^{10}$, le test est donc significatif au seuil $\alpha = 5$ %. Nous considérons donc que l'interaction entre le facteur juge et le facteur eau est significative, c'est-à-dire que tous les juges n'ont pas les mêmes préférences.

- 3. Les tests sur les effets principaux eau et juge se construisent de la même façon que le test de l'interaction. Les effets eau et juge sont donc significatifs : certaines eaux sont globalement plus appréciées que d'autres ; certains juges mettent en moyenne des notes plus élevées que d'autres.
- 4. L'eau la plus appréciée est l'eau Quézac puisque cette eau a le coefficient $\widehat{\alpha}_i(\boldsymbol{y})$ le plus élevé (0,428). Mais comme l'interaction $juge \times eau$ est significative, tous les juges ne préfèrent pas forcément l'eau Quézac. A priori, lors d'un rassemblement, il sera bon de prévoir d'autres eaux minérales.

.

Rats et régimes 5

Nous testons l'influence de différents régimes alimentaires sur des rats de laboratoire.

Le gain de poids des rats est désigné par la variable Poids, exprimée en grammes, les deux facteurs sont les variables Calorie et Vitamine. La variable Calorie vaut 0 si les rats n'ont pas suivi un régime hypercalorique et 1 s'ils ont suivi un tel régime hypercalorique. La variable Vitamine vaut 0 si les rats n'ont pas reçu de compléments vitaminés et 1 s'ils ont reçu de tels compléments.

⁵Les données, fictives, de cet exercice sont tirées du livre de Bruno Falissard [Fal05].

Calorie	Vitamine	Poids	Calorie	Vitamine	Poids
1	1	84	1	1	66
1	2	62	1	2	59
2	1	87	2	1	89
2	2	103	2	2	90
1	1	66	1	1	56
1	2	84	1	2	74
2	1	92	2	1	101
2	2	107	2	2	116
1	1	82	1	1	79
1	2	73	1	2	74
2	1	77	2	1	95
2	2	95	2	2	112
1	1	62	1	1	89
1	2	75	1	2	74
2	1	88	2	1	91
2	2	96	2	2	92

- 1. Quels modèles d'analyse de la variance à deux facteurs pouvez-vous utiliser pour étudier ces données. Nous décidons de retenir, pour répondre aux questions suivantes, le modèle le plus complet parmi ceux dont il est possible de se servir. Rappeler les hypothèses associées au modèle.
- 2. Procéder à l'étude à l'aide de Minitab[©].
- 3. Quelles sont les estimations des paramètres du modèle?
- 4. Devons-nous réaliser des comparaisons multiples? Si oui pour quel facteur? Le faire.

• • • • • • • • • • • • •

Éléments de corrigé : Rats et régimes

1. La réponse observée, le gain de *Poids* exprimé en grammes, est considérée comme une variable quantitative. Le premier des deux facteurs, absence ou présence de compléments vitaminés, noté *Vitamine*, est qualitatif. Le second des deux facteurs, le type de régime suivi, hypocalorique ou non, noté *Calorie*, est également qualitatif. Le plan d'expérience comporte huit répétitions nous pouvons de ce fait utiliser deux modèles d'analyse de la variance à deux facteurs, l'un ne comportant pas d'interaction entre les deux facteurs *Vitamine* et *Calorie*, l'autre comportant cette interaction. Le modèle le plus complet parmi ces deux possibilités est celui de l'analyse de la variance avec répétitions et terme d'interaction. Nous décidons de le

retenir pour la suite de l'étude.

Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1, 2, \ j = 1, 2, \ k = 1 \dots 8,$$

avec les contraintes supplémentaires $\sum_{i=1}^{2} \alpha_i = 0, \ \sum_{j=1}^{2} \beta_j = 0,$

$$\sum_{i=1}^{2} (\alpha \beta)_{i,j} = 0, \ \forall j \in \{1, 2\} \ \text{et} \ \sum_{j=1}^{2} (\alpha \beta)_{i,j} = 0, \ \forall i \in \{1, 2\},$$

où $Y_{i,j,k}$ est le gain de poids dans la condition i du facteur Vitamine et dans la condition j du facteur Calorie lors de la k-ème répétition. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant 2, \ 1 \leqslant j \leqslant 2, \ 1 \leqslant k \leqslant 8, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant 2, \ 1 \leqslant j, m \leqslant 2 \text{ et } 1 \leqslant k, n \leqslant 8.$$

- 2. Nous commençons par vérifier que les conditions d'utilisation du modèle introduit à la question 1. sont bien vérifiées. Pour cela, nous calculons les résidus du modèle.
 - 1. Le protocole expérimental indique que l'expérience a bien porté sur 32 rats différents et que nous ne sommes pas en présence de mesures qui seraient répétées sur un ou des mêmes individus. Ceci nous permet de supposer que les erreurs $\epsilon_{i,j,k}$ sont indépendantes.
 - 2. Le plan d'expérience utilisé comporte des répétitions ce qui permet de tester l'hypothèse \mathcal{H}_0 d'égalité des variances des erreurs $\epsilon_{i,j,k}$:

$$\mathcal{H}_0: \sigma_{1,1,1}^2 = \sigma_{2,1,1}^2 = \sigma_{1,2,1}^2 = \sigma_{2,2,1}^2 = \dots = \sigma_{1,1,8}^2 = \sigma_{2,1,8}^2 = \sigma_{1,2,8}^2 = \sigma_{2,2,8}^2$$

$$\mathcal{H}_1$$
: Il existe une variance différente des autres.

Puisque nous ne connaissons pas la loi des erreurs, nous utilisons un test non-paramétrique, celui de Levene, sur les résidus du modèle :

Test de l'égalité des variances Facteurs Calorie Vitamine

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 2,347 P : 0,094

Puisque la p-valeur du test est strictement supérieure au seuil $\alpha=5\%$, le test est non significatif et nous ne pouvons rejeter l'hypothèses nulle \mathcal{H}_0 d'homoscédasticité.

3. Nous nous intéressons désormais à la normalité des erreurs. Nous cherchons à savoir s'il nous pouvons faire l'hypothèse que les résidus sont des réalisations d'une variable aléatoire ϵ dont la loi est une loi normale.

$$\mathcal{H}_0:\mathcal{L}(\epsilon)=\mathcal{N}$$

contre

$$\mathcal{H}_1: \mathcal{L}(\epsilon) \neq \mathcal{N}.$$

Nous utilisons alors le test de Ryan-Joiner :

W-test pour la normalité

R: 0,9906 Valeur de P (approximatif) : > 0,1000

Comme la p-valeur est strictement supérieure à 0, 1, elle est a fortiori strictement supérieure à 0,05 qui est le seuil α du test. Nous en déduisons que le test n'est pas significatif au niveau $\alpha = 5$ % et que nous ne pouvons donc pas rejeter l'hypothèse nulle \mathcal{H}_0 . Il n'y a pas de différences significatives entre la loi de ϵ et une loi normale, au seuil $\alpha = 5$ %.

4. Comme l'hypothèse de normalité des erreurs n'a pas été rejétée à la question 3., nous nous intéressons à nouveau à l'hypothèse d'homoscédasticité portant sur les erreurs.

Le plan d'expérience utilisé comporte des répétitions ce qui permet de tester l'hypothèse \mathcal{H}_0 d'égalité des variances des erreurs $\epsilon_{i,j,k}$:

$$\boxed{\mathcal{H}_0: \sigma_{1,1,1}^2 = \sigma_{2,1,1}^2 = \sigma_{1,2,1}^2 = \sigma_{2,2,1}^2 = \dots = \sigma_{1,1,8}^2 = \sigma_{2,1,8}^2 = \sigma_{1,2,8}^2 = \sigma_{2,2,8}^2}$$

contre

 \mathcal{H}_1 : Il existe une variance différente des autres.

Il est maintenant possible d'utiliser le test paramétrique de Bartlett puisque ses conditions d'application, normalité des erreurs, sont vérifiées.

Test de l'égalité des variances Facteurs Calorie Vitamine

Test de Bartlett (loi normale)

Statistique du test : 2,233 P : 0,525

Puisque la p-valeur du test est strictement supérieure au seuil $\alpha=5\%$, le test est non significatif et nous ne pouvons rejeter l'hypothèse nulle \mathcal{H}_0 d'homoscédasticité.

Toutes les conditions d'application du modèle de l'analyse de la variance à deux facteurs contrôlés avec répétitions et terme d'interaction sont vérifiées. Déterminons si le facteur *Calorie*, le facteur *Vitamine* ou l'interaction des deux facteurs a un effet sur le gain de *Poids*. Nous testons donc les hypothèses :

$$\boxed{\mathcal{H}_0': \alpha_1 = \alpha_2 = 0}$$

contre

 \mathcal{H}_1' : Il existe $i_0 \in \{1,2\}$ tel que $\alpha_{i_0} \neq 0$.

$$\mathcal{H}_{0}^{"}:\beta_{1}=\beta_{2}=0$$
 contre
$$\mathcal{H}_{1}^{"}:\text{Il existe }j_{0}\in\{1,2\}\text{ tel que }\beta_{j_{0}}\neq0.$$

$$\mathcal{H}_{0}^{"'}:(\alpha\beta)_{1,1}=(\alpha\beta)_{1,2}=(\alpha\beta)_{2,1}=(\alpha\beta)_{2,2}=0$$
 contre
$$\mathcal{H}_{1}^{"'}:\text{Il existe }(i_{0},j_{0})\in\{(1,1),(1,2),(2,1),(2,2)\}\text{ tel que }(\alpha\beta)_{i_{0},j_{0}}\neq0.$$

Nous consultons alors le tableau de l'analyse de la variance

Facteur	Туре	Niveaux	Valeurs
Vitamine	fixe	2	1 2
Calorie	fixe	2	1 2

Analyse de la variance pour Poids, en utilisant la SC ajustée pour les tests

Source	DL	SC séq	SC ajust	CM ajust	F	Р
Vitamine	1	215,3	215,3	215,3	2,51	0,124
Calorie	1	4347,8	4347,8	4347,8	50,69	0,000
Vitamine						
*Calorie	1	306,3	306,3	306,3	3,57	0,069
Erreur	28	2401,6	2401,6	85,8		
Total	31	7271,0				

La p-valeur associée, par la statistique de Fisher, à l'hypothèse nulle \mathcal{H}_0' est de 0,124. Elle est strictement supérieure à $\alpha=5$ %: le test n'est pas significatif à ce seuil. Nous ne pouvons pas rejeter l'hypothèse nulle \mathcal{H}_0' d'absence d'effet du facteur Vitamine sur le gain de Poids. Ainsi au niveau $\alpha=5$ %, le facteur Vitamine n'a pas un effet significatif sur le gain de Poids. En prenant cette décision, nous risquons de commettre une erreur de seconde espèce, il serait très intéressant de calculer la puissance a posteriori.

La p-valeur associée, par la statistique de Fisher, à l'hypothèse nulle \mathcal{H}_0'' est de 0,000. Elle est inférieure ou égale à $\alpha=5$ %: le test est significatif à ce seuil. Nous devons rejeter l'hypothèse nulle \mathcal{H}_0'' d'absence d'effet du facteur Calorie sur le Poids et décider l'hypothèse alternative \mathcal{H}_1'' d'existence d'un effet du facteur Calorie sur le Poids. Ainsi au niveau $\alpha=5$ %, le facteur Calorie a un effet significatif sur le Poids. En prenant cette décision, nous risquons de commettre une erreur de première espèce, le risque associé à la décision est donc de 5 %.

La p-valeur associée, par la statistique de Fisher, à l'hypothèse nulle \mathcal{H}_0''' est de 0,069. Elle est strictement supérieure à $\alpha=5$ %: le test n'est pas significatif à ce seuil. Nous ne pouvons pas rejeter l'hypothèse nulle \mathcal{H}_0''' d'absence d'effet de l'interaction des facteurs Vitamine et Calorie sur le gain de Poids. Ainsi au niveau $\alpha=5$ %, l'interaction des facteurs Vitamine et Calorie n'a pas un effet significatif sur le gain de Poids. En prenant cette décision, nous risquons de commettre une

erreur de seconde espèce, il serait très intéressant de calculer la puissance a posteriori.

Il est possible de calculer les puissances recherchées avec Minitab[©]. Nous utilisons le fait que le dispositif étudié est ce que nous appelons aussi un plan factoriel complet à deux niveaux puisqu'il s'agit d'un modèle d'analyse de la variance à deux facteurs avec le terme d'interaction et surtout que le plan d'expérience est équilibré. À l'aide de l'entrée Plan factoriel à 2 niveaux du sous menu Puissance et effectif de l'échantillon du menu Stat de Minitab[©], nous obtenons le résultat suivant :

Puissance et effectif de l'échantillon

Plan factoriel à 2 niveaux

 $Sigma = 9,26121 \quad Alpha = 0,05$

Facteurs: 2 Plan de base: 2; 4

Blocs: aucun

Points centraux

par bloc Effet Répétitions Puissance 0 5,187 8 0,3338 0 6,188 8 0,4464

La valeur de l'*Effet* correspond à l'écart le plus important en valeur absolue entre les estimations des différents niveaux du facteur. Ainsi pour le facteur *Vitamine* l'*Effet* vaut $\widehat{\alpha_2}(\boldsymbol{y}) - \widehat{\alpha_1}(\boldsymbol{y}) = 2,594 - (-2,594) = 5,187$, il n'y avait en fait qu'une possibilité. Pour l'interaction entre les deux facteurs *Vitamine* et *Calorie* l'*Effet* vaut : $\widehat{(\alpha\beta)_{1,1}}(\boldsymbol{y}) - \widehat{(\alpha\beta)_{1,2}}(\boldsymbol{y}) = \widehat{(\alpha\beta)_{2,2}}(\boldsymbol{y}) - \widehat{(\alpha\beta)_{2,1}}(\boldsymbol{y}) = 3,094 - (-3,094) = 6,188$. Il y a deux facteurs, quatre sommets dans ce plan et aucun point central. La puissance a posteriori est donc relativement faible, 0,3338, dans le cas du facteur *Calorie* et à peine meilleure, 0,4464, dans le cas de l'interaction entre les deux facteurs *Vitamine* et *Calorie*. Nous aurions pu améliorer la puissance du test en augmentant le nombre de répétitions. Nous déterminons le nombre de répétitions nécessaires pour que nous ayons une puissance de 0,80, qui est généralement considéré comme un niveau satisfaisant pour la puissance d'un test.

Puissance et effectif de l'échantillon

Plan factoriel à 2 niveaux

 $Sigma = 9,26121 \quad Alpha = 0,05$

Facteurs: 2 Plan de base: 2; 4

Blocs: aucun

Points				
centraux			Puissance	Puissance
par bloc	Effet	Répétitions	cible	réelle
0	5,187	26	0,8000	0,8074
0	6,188	19	0,8000	0,8195

Nous constatons qu'il aurait fallu 26 répétitions, donc 104 rats, pour obtenir une puissance d'au moins 0,80. Nous aurions multiplié par plus de trois l'ampleur de l'étude qui a été réalisée...

3. Les estimations des coefficients du modèle sont :

Terme	Coef	Er-T coef	T	Р
Constante	84,031	1,637	51,33	0,000
Vitamine				
1	-2,594	1,637	-1,58	0,124
Calorie				
1	-11,656	1,637	-7,12	0,000
Vitamine*Calori	е			
1 1	3,094	1,637	1,89	0,069

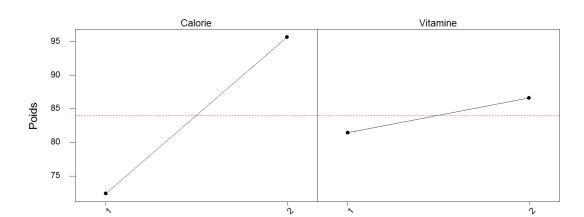
Nous en déduisons que :

$$\widehat{\mu}(\mathbf{y}) = 84,031, \quad \widehat{\alpha_1}(\mathbf{y}) = -2,594, \quad \widehat{\alpha_2}(\mathbf{y}) = 2,594,
\widehat{\beta_1}(\mathbf{y}) = -11,656, \quad \widehat{\beta_2}(\mathbf{y}) = 11,656,
\widehat{\alpha\beta}_{1,1}(\mathbf{y}) = 3,094, \quad \widehat{\alpha\beta}_{1,2}(\mathbf{y}) = -3,094,
\widehat{\alpha\beta}_{2,1}(\mathbf{y}) = -3,094, \quad \widehat{\alpha\beta}_{2,2}(\mathbf{y}) = 3,094,$$

en utilisant les relations
$$\sum_{i=1}^{2} \widehat{\alpha}_{i} = 0$$
, $\sum_{j=1}^{2} \widehat{\beta}_{j} = 0$, $\widehat{(\alpha\beta)_{1,1}} + \widehat{(\alpha\beta)_{1,2}} = 0$, $\widehat{(\alpha\beta)_{1,1}} + \widehat{(\alpha\beta)_{2,2}} = 0$ qui sont en particulier valables pour les données expérimentales $\boldsymbol{y} : \sum_{i=1}^{2} \widehat{\alpha}_{i}(\boldsymbol{y}) = 0$, $\sum_{j=1}^{2} \widehat{\beta}_{j}(\boldsymbol{y}) = 0$, $\widehat{(\alpha\beta)_{1,1}}(\boldsymbol{y}) + \widehat{(\alpha\beta)_{1,2}}(\boldsymbol{y}) = 0$, $\widehat{(\alpha\beta)_{1,1}}(\boldsymbol{y}) + \widehat{(\alpha\beta)_{2,1}}(\boldsymbol{y}) = 0$ et $\widehat{(\alpha\beta)_{2,1}}(\boldsymbol{y}) + \widehat{(\alpha\beta)_{2,2}}(\boldsymbol{y}) = 0$

Remarquons que nous n'avons pas eu à utiliser la relation $(\alpha\beta)_{1,2} + (\alpha\beta)_{2,2} = 0$ ce qui était prévisible car, d'après le cours, nous savons que nous imposons seulement I + J - 1 = 2 + 2 - 1 = 3 relations **indépendantes** aux coefficients $(\alpha\beta)_{i,j}$. Nous devons donc retrouver toutes les estimations $\widehat{(\alpha\beta)_{i,j}}(\boldsymbol{y})$ à l'aide des valeurs fournies par le logiciel et de seulement I + J - 1 = 3 des relations portant sur ces estimations.

À l'aide de l'entrée **Graphique des effets principaux** du sous menu **ANOVA** du menu **Stat** de Minitab[©], nous obtenons la représentation graphique des estimations des $\widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha_1}(\boldsymbol{y})$, $\widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha_2}(\boldsymbol{y})$, $\widehat{\mu}(\boldsymbol{y}) + \widehat{\beta_1}(\boldsymbol{y})$ et $\widehat{\mu}(\boldsymbol{y}) + \widehat{\beta_2}(\boldsymbol{y})$. Nous comprenons ainsi visuellement pourquoi le facteur facteur *Calorie* a un effet significatif sur le gain de *Poids* au seuil $\alpha = 5$ %. L'influence du facteur *Vitamine* n'est, quant à elle, pas significative au seuil $\alpha = 5$ % ce qui est bien confirmé par le graphique ci-dessous.



Graphique des effets principaux - Moyennes des données pour Poids

Fig. 11.6 - Graphique : Effets principaux.

A l'aide de l'entrée **Diagramme des interactions** du sous menu **ANOVA** du menu **Stat** de Minitab[©], nous obtenons la représentation graphique de l'effet des interactions. Sous l'hypothèse nulle \mathcal{H}_0''' d'absence d'interaction entre les deux facteurs Vitamine et Calorie, dans chacune des deux cases, inférieure gauche et supérieure droite, du graphique, les deux segments représentés en noir et rouge⁶ sont parallèles. La force d'une interaction est associée au défaut de parallélisme de ces deux segments. Nous constatons visuellement que dans les deux cases du graphique les deux segments ne sont pas parallèles mais ces interactions entre les deux facteurs ne sont pas assez importantes pour qu'elles soient significatives au seuil $\alpha=5$ %. Par contre ces interactions auraient été significatives au seuil $\alpha=10$ % puisque nous avons une p-valeur de 0,069 associée au test de l'hypothèse nulle \mathcal{H}_0''' .

4. Puisque nous avons rejeté l'hypothèse nulle \mathcal{H}_0'' d'absence d'effet du facteur *Calorie* sur le gain de *Poids*. Nous pouvons réaliser des comparaisons multiples pour le facteur *Calorie*. Or ce facteur n'a que deux modalités! Il n'est donc pas nécessaire de faire des investigations supplémentaires pour en déduire que ce sont les deux seuls niveaux du facteur *Calorie*, 1 et 2, qui sont significativement différents au seuil $\alpha = 5\%$.

⁶En gris si vous lisez une version imprimée du corrigé de cet exercice.

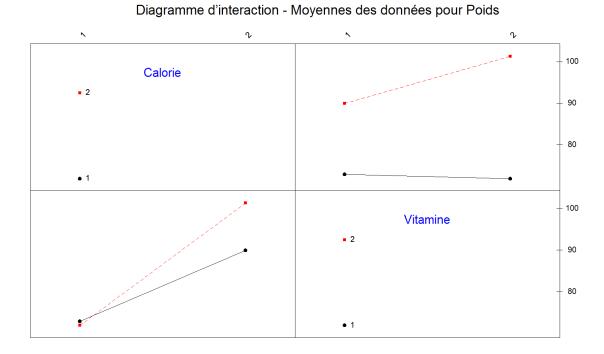


Fig. 11.7 - Graphique : Diagramme d'interaction.

.

Les préférences de biscuits sont-elles les mêmes d'un pays à l'autre?⁷

Une analyse sensorielle a été organisée simultanément en France et au Pakistan. Nous avons demandé à 150 français et à 163 pakistanais de donner une note d'appréciation à 8 biscuits (0 : je n'aime pas, 10 : j'aime beaucoup). Parmi ces biscuits, 4 sont fabriqués et vendus en France (biscuits notés F1, F2, F3 et F4) et 4 sont fabriqués et vendus au Pakistan (biscuits notés P1, P2, P3, et P4). L'objectif d'une telle analyse est de comparer les appréciations d'un pays à l'autre.

Un résumé des données est fourni dans le tableau ci-dessous.

	Origine française				Origine pakistanaise			
	F1	F2	F3	F4	P1	P2	Р3	P4
Jury français	7,35	6,06	5,08	5,75	4,99	6,03	4,22	5,18
Jury pakistanais	6.29	5.10	5.23	5.38	7.49	6.74	5.56	6.32

1. Proposer un modèle d'analyse de la variance sur les données du tableau précédent permettant de répondre à la question : dans l'ensemble, les biscuits d'origine française et pakistanaise sont-ils évalués de la même manière par les deux jurys (le

⁷Les données de cet exercice sont tirées du livre d'exercices de François Husson et de Jérôme Pagès [HPer].

premier constitué de juges exclusivement de nationalité française et le second constitué exclusivement de juges de nationalité pakistanaise)? Interpréter la variabilité résiduelle de ce modèle.

2. Le listage suivant donne les résultats du modèle d'analyse de la variance sur les seules données du tableau précédent. Que pouvez-vous dire?

	ddl	SCE	CM	f_{obs}	Proba
Nationalité jury	1	0,7439	0,7439	1,2398	0,28732
Origine biscuit	1	0,0053	0,0053	0,0088	0,92698
Nationalité jury : Origine biscuit	1	3,9303	3,9303	0,02503	0,02503
Résiduelle	12	7,2004	0,6000		

Nous analysons maintenant l'ensemble des données individuelles. Le tableau suivant donne les probabilités critiques de chacun des effets et de chacune des interactions calculées sur ces données brutes.

3. Pourquoi peut-il être plus intéressant de travailler sur les données brutes? Que pouvez-vous dire à partir du tableau d'analyse de la variance ci-dessous? Interpréter.

	ddl	SCE	CM	f_{obs}	Proba
Nationalité jury	1	1,5	1,5	0,245	0,621
Origine biscuit	1	0,06	0,06	0,0098	0,9212
Nationalité jury : Origine biscuit	1	410,17	410,17	66,91	$5,126 \times 10^{-16}$
Résiduelle	1907	11689,94	6,130		

- 4. Construire un graphique avec en abscisse les biscuits et en ordonnée les notes moyennes par jury. Relier les points d'un même jury. Que représente ce graphique?
- 5. Quelle critique pouvez-vous formuler concernant ce modèle?

.

Éléments de corrigé : Les préférences de biscuits sont-elles les mêmes d'un pays à l'autre?

1. Dire que les biscuits ne sont pas évalués de la même manière par les deux jurys revient à mettre en évidence une interaction entre les facteurs biscuit et jury. Si nous considérons l'ensemble des biscuits, le tableau ne fait pas apparaître de répétitions et il est impossible de mettre en évidence une interaction. En revanche, si nous regroupons les biscuits par origine, alors nous pouvons construire un modèle d'analyse de variance à deux facteurs avec interaction. La variable Y sera l'appréciation et les facteurs seront la nationalité du jury (française ou pakistanaise) et l'origine des

biscuits (française ou pakistanaise) ainsi que l'interaction de ces deux facteurs. Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1, 2, \ j = 1, 2, \ k = 1 \dots 4,$$

avec les contraintes supplémentaires $\sum_{i=1}^{2} \alpha_i = 0, \ \sum_{j=1}^{2} \beta_j = 0,$
 $\sum_{i=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1,2\} \text{ et } \sum_{j=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1,2\},$

où $Y_{i,j,k}$ est la moyenne des appréciations du k-ème biscuit d'origine i évalué par l'ensemble des juges de nationalité j. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant 2, \ 1 \leqslant j \leqslant 2, \ 1 \leqslant k \leqslant 4, \ \mathcal{L}(\epsilon_{i,j,k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i,j,k}, \epsilon_{l,m,n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant 2, \ 1 \leqslant j, m \leqslant 2 \text{ et } 1 \leqslant k, n \leqslant 4.$$

La variabilité résiduelle est alors celle des biscuits d'une même origine évalués par un même jury (ceci est dû à notre regroupement).

2. Nous nous intéressons à la validité des hypothèses du modèle.

Le test de l'homoscédasticité des résidus à l'aide d'un test de Levene n'est pas significatif :

Test de l'égalité des variances

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,296 P : 0,827

Le test de normalité à l'aide d'un test de Shapiro-Wilk (car N=45) n'est pas significatif :

Valeur de P (approximatif) : > 0,1000 R: 0,9719

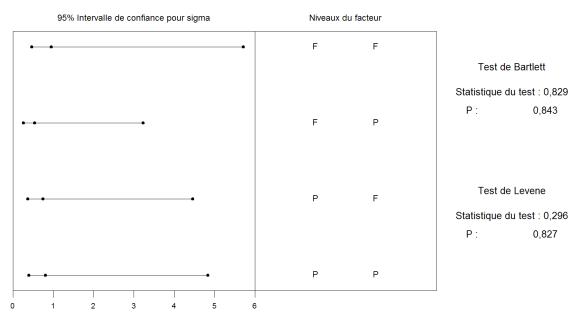
W-test pour la normalité

Nous allons donc faire également un test de Bartlett (plus puissant que Levene à cause de la normalité) :

Test de l'égalité des variances

Test de Bartlett (loi normale)

Statistique du test : 0,296 P : 0,843



Test de l'égalité des variances pour RESI1

Fig. 11.8 – Graphique : Test de l'égalité des variances.

Graphique de la courbe normale ou droite de Henry

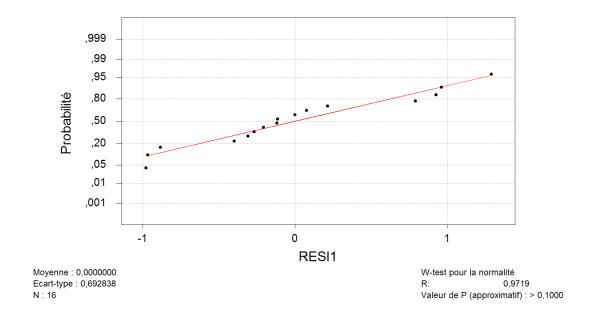


Fig. 11.9 - Graphique : Test de normalité.

Ce test n'est pas significatif ce qui confirme bien l'homoscédasticité des résidus. Nous obtenons les résultats suivants, qui sont bien identiques à ceux qui figurent dans le tableau de l'énoncé.

Modèle linéaire généralisé : Note en fonction de Origine; Jury

Facteur	Type N	iveaux	Valeurs
Origine	fixe	2	FΡ
Jury	fixe	2	FΡ

Analyse de la variance pour Note, en utilisant la SC ajustée pour les tests

Source	DL	SC séq	SC ajust	CM ajus	st F	Р
Origine	1	0,0053	0,0053	0,005	0,01	0,927
Jury	1	0,7439	0,7439	0,743	39 1,24	0,287
Origine*Jury	1	3,9303	3,9303	3,930	6,55	0,025
Erreur	12	7,2004	7,2004	0,600	00	
Total	15	11,8798				
Terme	(Coef	Er-T coef	T	P	
Constante	5,	7981	0,1937	29,94	0,000	
Origine						
F	-0,0	0181	0,1937	-0,09	0,927	
Jury						
F	-0,2	2156	0,1937	-1,11	0,287	
Origine*Jury						
F F	0,4	4956	0,1937	2,56	0,025	

Au seuil $\alpha=5$ %, il y a un effet de l'interaction nationalité du jury × origine des biscuits mais il n'y a pas d'effet de la nationalité du jury ni d'effet de l'origine des biscuits. Cela signifie qu'aucun des jurys ne met en moyenne des notes plus élevées (pas d'effet jury), et que les biscuits français sont en moyenne autant appréciés que les biscuits pakistanais (pas d'effet origine) mais il existe une interaction. Donc les français n'évaluent pas les biscuits comme les pakistanais.

3. Nous introduisons le modèle :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + \epsilon_{i,j,k,l},$$

$$i = 1, 2, \ j = 1, 2, \ k = 1 \dots 4, \ l = 1 \dots L(i, j, k),$$
avec les contraintes supplémentaires
$$\sum_{i=1}^{2} \alpha_i = 0, \ \sum_{j=1}^{2} \beta_j = 0 \text{ et } \sum_{k=1}^{4} \gamma_k = 0,$$

$$\sum_{i=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1, 2\} \text{ et } \sum_{j=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1, 2\},$$

où $Y_{i,j,k,l}$ l'appréciation du l-ème juge de nationalité j évaluant le k-ème biscuit d'origine i. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k, l), 1 \leqslant i \leqslant 2, \ 1 \leqslant j \leqslant 2, \ 1 \leqslant k \leqslant 4, \ 1 \leqslant l \leqslant L(i, j, k),$$

$$\mathcal{L}(\epsilon_{i, j, k, l}) = \mathcal{N}(0, \sigma^2),$$

$$\operatorname{Cov}(\epsilon_{i, j, k, l}, \epsilon_{m, n, o, p}) = 0 \text{ si } (i, j, k, l) \neq (m, n, o, p)$$
 avec $1 \leqslant i, m \leqslant 2, \ 1 \leqslant j, n \leqslant 2, \ 1 \leqslant k, o \leqslant 4, \ 1 \leqslant l \leqslant L(i, j, k)$ et $1 \leqslant p \leqslant L(m, n, o)$.

Graphique des effets principaux - Moyennes LS pour Note

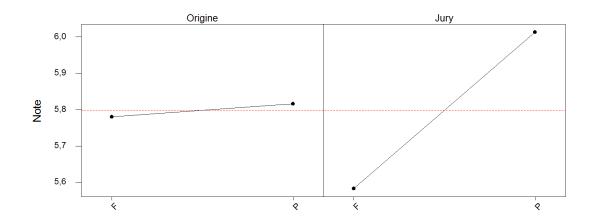


Fig. 11.10 - Graphique : Effets principaux.

Diagramme d'interaction - Moyennes LS pour Note

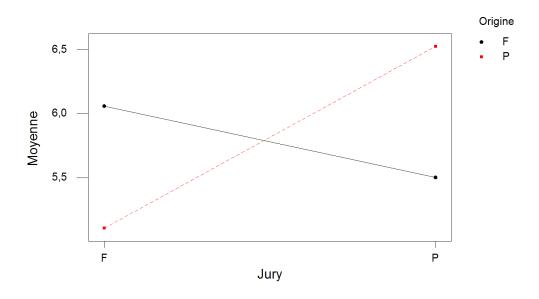


Fig. 11.11 - Graphique : Diagramme d'interaction.

Si nous travaillons sur les données brutes, nous pouvons donc construire le modèle ci-dessus et la variablité résiduelle change donc de signification par rapport à la question 1. En effet deux indices n'interviennent qu'à travers la résiduelle : à la variabilité des biscuits d'une même origine s'ajoute la variabilité des juges d'un même jury. Mais parallèlement il y a beaucoup plus de données et donc les tests

sont plus puissants. Cependant malgré des tests plus puissants nous ne mettons toujours pas en évidence l'effet de l'origine du biscuit ni l'effet de la nationalité du jury. L'interaction entre ces deux facteurs est par contre beaucoup mieux mise en évidence puisque la p-valeur associée est maintenant de $5,126\times10^{-16}$ (contre 0,025 précedemment).

- 4. Le graphique demandé représente l'interaction origine du biscuit × jury. S'il n'y avait pas d'interaction, les lignes brisées seraient parallèles. Nous pouvons voir ici que les pakistanais apprécient surtout les biscuits pakistanais (biscuits P1, P2, P3 et P4) tandis que les français préfèrent les biscuits français (biscuits F1 à F4). Peut-être y a-t-il une sorte de rejet devant un produit nouveau ou une sur-notation pour des produits nationaux qui sont reconnus et appréciés?
- 5. Nous ne tenons pas compte du facteur type de biscuit qui est emboîté dans le facteur *Origine* du biscuit.

.

11.2.3. Avec répétitions et plan déséquilibré

Analyse sensorielle de trois chocolats⁸

Lors d'un test de dégustation hédonique, nous nous intéressons à l'appréciation globale de trois chocolats. Pour cela, 45 juges ont participé à cette évaluation qui a eu lieu sur 2 jours (nous disposons de 15 échantillons par chocolat). Les notes d'appréciation des juges, comprises en 0 et 7, sont données dans le tableau suivant. Chaque juge n'a évalué qu'un chocolat. Comme chacun choisit son jour de dégustation et le chocolat qu'il évalue, le nombre de données et la répartition des chocolats évalués ne sont pas les mêmes d'un jour à l'autre.

Nous souhaitons d'une part vérifier qu'il y a bien un effet *chocolat*, s'il y a un effet *jour* (les chocolats pouvant être plus ou moins appréciés lors du premier ou du deuxième jour) et un effet de l'interaction entre *chocolat* et *jour*.

	Chocolat 1		Ch	Chocolat 2		Chocolat 3		t 3	
	5.2	6	5.4	4.2	5.2	5	4.6	5.6	5.2
Jour 1	5.2	6.6		4.4	5.4	4.8	4.8	5.8	6.4
				4.4	5.6	6	5	6.2	5.2
							5.4	6.4	
	3.2	4	3.6	3.2	3.6	4.2	3	3.8	3.4
Jour 2	4.2	3.8	3.4	4	3.6	4	4.4		
	4	4.4	4.6						
		4							

⁸Les données de cet exercice sont tirées du livre d'exercices de François Husson et de Jérôme Pagès [HPer].

- 1. Écrire le modèle permettant de répondre à la problématique. Que signifie l'interaction entre les facteurs *chocolat* et *jour*?
- 2. Comment (par quelle formule) sont estimés les paramètres de ce modèle?
- 3. Il y a-t-il un effet jour, un effet chocolat et un effet de l'interaction?
- 4. Par chocolat, calculer la moyenne des notes et la comparer avec la moyenne ajustée $(\widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha}_i(\boldsymbol{y}))$. Qu'en pensez-vous? Quel est le chocolat préféré?
- 5. Tester l'hypothèse « \mathcal{H}_0 : l'effet du chocolat 1 est nul » (préciser les hypothèses du test, la statistique de test, la loi de la statistique de test sous \mathcal{H}_0 , et la décision)

.

Éléments de corrigé : Analyse sensorielle de trois chocolats

1. Nous introduisons le modèle :

$$Y_{i,j,k} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{i,j} + \epsilon_{i,j,k}, \quad i = 1...3, \ j = 1, 2, \ k = 1...K(i,j),$$
avec les contraintes supplémentaires $\sum_{i=1}^{3} \alpha_i = 0, \ \sum_{j=1}^{2} \beta_j = 0,$

$$\sum_{i=1}^{3} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1,2\} \ \text{et} \ \sum_{i=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1,...,3\},$$

où $Y_{i,j,k}$ est la k-ème note obtenue le jour j par le chocolat i. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i, j, k), 1 \leqslant i \leqslant 3, \ 1 \leqslant j \leqslant 2, \ 1 \leqslant k \leqslant K(i, j), \ \mathcal{L}(\epsilon_{i, j, k}) = \mathcal{N}(0, \sigma^2),$$

et $\text{Cov}(\epsilon_{i, j, k}, \epsilon_{l, m, n}) = 0 \text{ si } (i, j, k) \neq (l, m, n) \text{ avec}$
$$1 \leqslant i, l \leqslant 3, \ 1 \leqslant j, m \leqslant 2 \text{ et } 1 \leqslant k, n \leqslant K(i, j).$$

Une interaction $Jour \times Chocolat$ signifie qu'un même chocolat n'est pas apprécié de la même façon les 2 jours.

- 2. Le vecteur des paramètres peut être estimé par moindres carrés.
- 3. Nous procédons à l'ANOVA (en stockant les résidus afin de pouvoir vérifier s'ils vérifient les hypothèses) à l'aide de la fonction modèle linéaire généralisé et nous obtenons les résultats suivant :

Modèle linéaire généralisé : note en fonction de jour; chocolat

Facteur Type Niveaux Valeurs jour fixe 2 1 2 chocolat fixe 3 1 2 3

Analyse de la variance pour note

Source	DL	SC séq	SC ajust	CM ajust	F	Р
jour	1	26,3511	25,6301	25,6301	84,45	0,000
chocolat	2	1,3894	1,2021	0,6010	1,98	0,152
jour*chocolat	2	0,7662	0,7662	0,3831	1,26	0,294
Erreur	39	11,8364	11,8364	0,3035		
Total	44	40,3431				

Le test de l'homoscédasticité des résidus à l'aide d'un test de Levene n'est pas significatif :

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,613 P : 0,691

Le test de normalité à l'aide d'un test de Shapiro-Wilk (car N=45) n'est pas significatif :

Valeur de P (approximatif) : > 0,1000 R: 0,9885

W-test pour la normalité

Nous allons donc faire également un test de Bartlett (plus puissant que Levene à cause de la normalité) :

Test de Bartlett (loi normale)

Statistique du test : 2,643 P : 0,755

Ce test n'est pas significatif ce qui confirme bien l'homoscédasticité des résidus.

L'étude du protocole expérimental nous assure de l'indépendance des variables $\epsilon_{i,j,k}$. Puisque les conditions d'application de l'ANOVA sont bien respectées, nous pouvons déduire des résultats reportés dans le tableau ci-dessus qu'en considérant le modèle introduit à la première question il n'y a, au seuil $\alpha = 5$ %, ni effet chocolat (0, 152 > 0, 05) ni effet de l'interaction (0, 294 > 0, 05).

4. La moyenne des notes est de 4,676. Les moyennes par chocolat sont :

Variable	chocolat	N	Moyenne	EcarType
note	1	15	4,507	0,982
	2	15	4,507	0,807
	3	15	5.013	1.041

Pour obtenir les moyennes ajustées $\widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha_1}(\boldsymbol{y}), \widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha_2}(\boldsymbol{y}), \widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha_3}(\boldsymbol{y})$ nous faisons appel à la technique apprise dans le cours, basée sur la régression linéaire multiple, afin d'estimer les coefficients $\widehat{\mu}(\boldsymbol{y}), \widehat{\alpha_1}(\boldsymbol{y}), \widehat{\alpha_2}(\boldsymbol{y}), \widehat{\alpha_3}(\boldsymbol{y})$. Cette estimation des paramètres est encore obtenue à l'aide du modèle linéaire généralisé (pensez à afficher les résultats les plus détaillés). Les calculs renvoient les résultats ci-dessous :

Terme	Coef	Er-T coef	T	P
Constante	4,58763	0,08801	52,13	0,000
jour				

1		0,80874	0,08801	9,19	0,000
choc	olat				
1		0,2124	0,1238	1,72	0,094
2		-0,2043	0,1215	-1,68	0,101
jour	*chocolat				
1	1	0,0713	0,1238	0,58	0,568
1	2	-0,1921	0,1215	-1,58	0,122

Nous en déduisons que :

$$\widehat{\mu}(\mathbf{y}) = 4,588, \ \widehat{\alpha}_1(\mathbf{y}) = 0,212, \ \widehat{\alpha}_2(\mathbf{y}) = -0,204, \ \widehat{\alpha}_3(\mathbf{y}) = -0,008$$

et que les moyennes ajustées valent :

$$\widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha}_1(\boldsymbol{y}) = 4,800, \quad \widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha}_2(\boldsymbol{y}) = 4,384, \quad \widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha}_3(\boldsymbol{y}) = 4,580.$$

Par conséquent c'est le chocolat 1 qui est le préféré. Le déséquilibre des données fait que la moyenne d'un chocolat n'est plus égale à sa moyenne ajustée. Ainsi contrairement à ce que la moyenne des notes semblaient indiquer ce n'est pas le chocolat 3 qui est le préféré.

5. \mathcal{H}_0 : $\alpha_1 = 0$ contre \mathcal{H}_1 : $\alpha_1 \neq 0$. La statistique du test est $\frac{\widehat{\alpha_1}}{\widehat{\sigma_{\widehat{\alpha_1}}}}$ et suit, sous l'hypothèse nulle \mathcal{H}_0 , une loi de Student avec autant de degrés de liberté que ceux de la variance résiduelle (i.e. 39). La probabilité critique associée à cette valeur est de 0,094, ce chocolat n'est donc pas significativement plus apprécié que les autres.

.

11.3. Analyse de la variance à deux facteurs emboîtés

11.3.1. Plan déséquilibré

Les cyclamens⁹

Les résultats suivants sont relatifs à la vitesse moyenne de croissance, en mm par jour, des pédoncules floraux observés sur huit plantes de cyclamen, réparties au hasard entre deux milieux de culture.

Milieu 1					Mili	eu 2	
Plante 1	Plante 2	Plante 3	Plante 4	Plante 5	Plante 6	Plante 7	Plante 8
0,76	0,97	0,58	0,86	0,81	1,07	0,62	0,93
0,66	0,74	0,57	0,93	0,77	0,82	0,99	1,07
0,61		0,51			1,02		0,95
0,65		0,62					0,79
							0,66

⁹Les données de cet exercice sont tirées du livre de Pierre Dagnélie [Dag98b].

11.3 Analyse de la variance à deux facteurs emboîtés

- 1. De quel modèle d'analyse de la variance pouvons-nous nous servir pour étudier ces données ?
- 2. Pouvons-nous conclure sur cette base à l'existence d'une différence significative de vitesse de croissance entre les deux milieux?

.

Éléments de corrigé : Cyclamens

Test de l'égalité des variances

Réponse RESI1

Facteurs Milieu Plante

NivConf 95,0000

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 1,671 P : 0,187

W-test pour la normalité

R: 0,9928) Valeur de P (approximatif) : > 0,1000

Graphique de la courbe normale ou droite de Henry

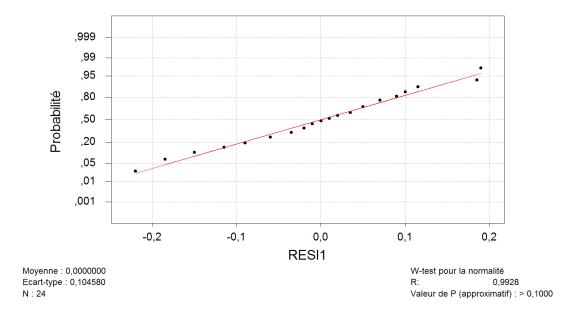


Fig. 11.12 - Graphique : Test de normalité.

Test de l'égalité des variances

Réponse RESI1

Facteurs Milieu Plante

NivConf 95,0000

Test de Bartlett (loi normale)

Statistique du test : 8,702 P : 0,275

Test de l'égalité des variances pour RESI1

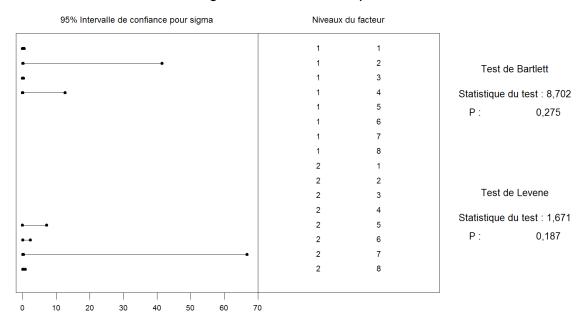


Fig. 11.13 – Graphique : Test de l'égalité des variances.

Modèle linéaire généralisé : Croissance en fonction de Milieu; Plante

Facteur Type Niveaux Valeurs

Milieu fixe 2 1 2

Plante(Milieu) fixe 8 1 2 3 4 1 2 3 4

Analyse de la variance pour Croissan, en utilisant la SC ajustée pour les tests

Source	DL	SC séq	SC ajust	CM ajust	F	P
Milieu	1	0,17340	0,06825	0,06825	4,34	0,054
Plante(Milieu)	6	0,24645	0,24645	0,04107	2,61	0,058
Erreur	16	0,25155	0,25155	0,01572		

Total	23 0,	67140		
Terme	Coef	Er-T coef	Т	Р
Constante	0,80438	0,02730	29,47	0,000
Milieu				
1	-0,05687	0,02730	-2,08	0,054
(Milieu)Pl	ante			
1 1	-0,07750	0,05864	-1,32	0,205
1 2	0,10750	0,07351	1,46	0,163
1 3	-0,17750	0,05864	-3,03	0,008
2 1	-0,07125	0,07374	-0,97	0,348
2 2	0,10875	0,06424	1,69	0,110
2 3	-0,05625	0,07374	-0,76	0,457

Graphique des effets principaux - Moyennes LS pour Croissance

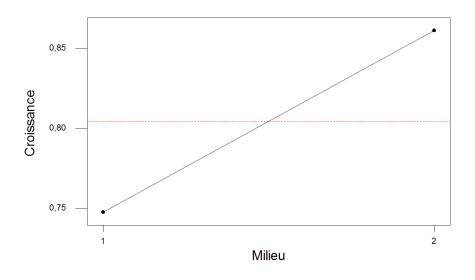


Fig. 11.14 - Graphique : Effets principaux.

.

11.4. Analyse de la variance à trois facteurs

11.4.1. Sans répétition

Détermination d'une fumure optimale pour le blé¹⁰

Une expérience en blocs aléatoires complets a été réalisée sur du blé au Rwanda. Trois doses d'acide phosphorique (100, 200 et 300 kg/ha) et trois doses de chaux (1000, 4500 et 8000 kg/ha), les neufs combinaisons des engrais ayant été affectées chacune au hasard et indépendamment à une parcelle au sein de chacun des trois blocs.

Fum	Fumures		Bloc			Bloc	
P_2O_5	CaO	1	2	3			
1	1	1,30	0,80	2,01			
1	2	2,05	2,37	2,52			
1	3	2,07	2,60	2,25			
2	1	2,25	2,36	2,71			
2	2	2,99	2,92	3,63			
2	3	2,62	2,89	3,43			
3	1	2,61	2,36	3,29			
3	2	3,22	2,93	3,85			
3	3	3,15	3,35	3,67			

- 1. Quel modèle d'analyse de la variance pouvons-nous utiliser avec ces données? Le plan est-il équilibré? Il y a-t-il des facteurs à effets aléatoires?
- 2. Nous décidons dans cette question de négliger l'influence du facteur *bloc*. Procéder à l'étude de ces données en utilisant le modèle d'analyse de la variance à deux facteurs le plus complet que nous pouvons utiliser.
- 2. Nous décidons dans cette question de ne plus négliger l'influence du facteur *bloc*. Procéder à l'étude de ces données en utilisant le modèle d'analyse de la variance à trois facteurs le plus complet que nous pouvons utiliser.

.

Éléments de corrigé : Rendement de blé

En absence de répétitions, nous ne pouvons tester l'hypothèse d'homogénéité des variances des erreurs. Nous nous contentons de vérifier partiellement cette hypothèse par rapport à chacun des couples de trois variables (P2O5, CaO), (P2O5, Bloc) et (CaO, Bloc).

¹⁰Les données de cet exercice sont inspirées du livre de Pierre Dagnélie [Dag98b].

Test de l'égalité des variances

Réponse RESI1 Facteurs P205 CaO NivConf 95,0000

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,904 P : 0,534

Test de l'égalité des variances

Réponse RESI1 Facteurs P205 Bloc NivConf 95,0000

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,626 P : 0,746

Test de l'égalité des variances

Réponse RESI1 Facteurs CaO Bloc NivConf 95,0000

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,880 P : 0,551

W-test pour la normalité

R: 0,9856) Valeur de P (approximatif) : > 0,1000

Test de l'égalité des variances

Réponse RESI1 Facteurs P205 CaO NivConf 95,0000

Test de Bartlett (loi normale)

Statistique du test : 12,426 P : 0,133

Graphique de la courbe normale ou droite de Henry

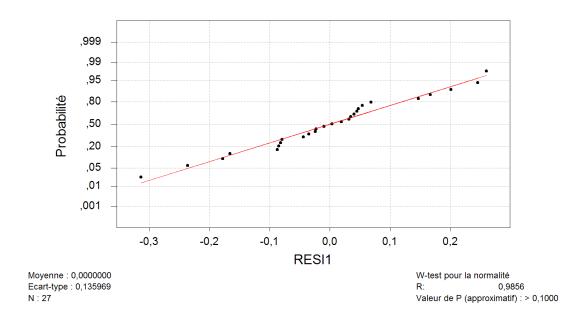


Fig. 11.15 – Graphique : Test de normalité.

Test de l'égalité des variances pour RESI1

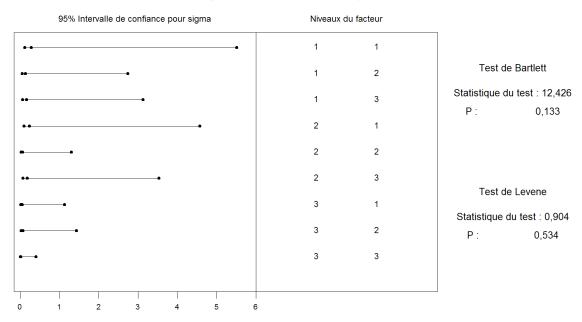


Fig. 11.16 – Graphique : Test de l'égalité des variances.

Test de l'égalité des variances

Réponse RESI1 Facteurs P205 Bloc NivConf 95,0000 Test de Bartlett (loi normale)

Statistique du test : 14,135 P : 0,078

Test de l'égalité des variances pour RESI1

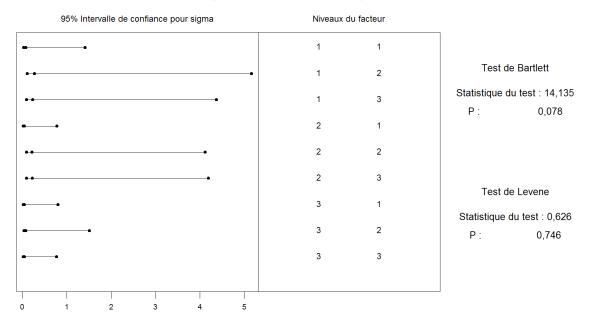


Fig. 11.17 - Graphique : Test de l'égalité des variances.

Test de l'égalité des variances

Réponse RESI1 Facteurs CaO Bloc NivConf 95,0000

Test de Bartlett (loi normale)

Statistique du test : 11,554 P : 0,172

Modèle linéaire généralisé : Rendement en fonction de P205; CaO; Bloc

Facteur Type Niveaux Valeurs P205 fixe 3 1 2 3 CaO fixe 3 1 2 3 Bloc aléatoire 3 1 2 3

95% Intervalle de confiance pour sigma 1 1 1 1 2 Test de Bartlett 1 3 Statistique du test : 11,554 P: 0,172 2 1 2 2 2 3 Test de Levene Statistique du test : 0,880 P: 0,551

Test de l'égalité des variances pour RESI1

Fig. 11.18 – Graphique : Test de l'égalité des variances.

Analyse de la variance pour Rendemen, en utilisant la SC ajustée pour les tests

Source	DL	SC séq	SC ajust	CM ajust	F	P
P205	2	6,57916	6,57916	3,28958	103,02	0,000
CaO	2	3,20379	3,20379	1,60189	16,72	0,011
Bloc	2	1,81336	1,81336	0,90668	13,40	0,108 x
P205*Ca0	4	0,18764	0,18764	0,04691	0,78	0,568
P205*Bloc	4	0,12773	0,12773	0,03193	0,53	0,717
CaO*Bloc	4	0,38330	0,38330	0,09583	1,59	0,266
Erreur	8	0,48067	0,48067	0,06008		
Total	26	12,77565				

x Pas un test F exact.

Terme	Coef	Er-T coef	Т	Р
Constante	2,67407	0,04717	56,69	0,000
P205				
1	-0,67741	0,06671	-10,15	0,000
2	0,19259	0,06671	2,89	0,020
CaO				
1	-0,48630	0,06671	-7,29	0,000
2	0,26815	0,06671	4,02	0,004
Bloc				
1	-0,20074	0,06671	-3,01	0,017

2		-0,16519	0,06671	-2,48	0,038
P20	5*CaO				
1	1	-0,14037	0,09435	-1,49	0,175
1	2	0,04852	0,09435	0,51	0,621
2	1	0,05963	0,09435	0,63	0,545
2	2	0,04519	0,09435	0,48	0,645
P20	5*Bloc				
1	1	0,01074	0,09435	0,11	0,912
1	2	0,09185	0,09435	0,97	0,359
2	1	-0,04593	0,09435	-0,49	0,639
2	2	0,02185	0,09435	0,23	0,823
CaO	*Bloc				
1	1	0,06630	0,09435	0,70	0,502
1	2	-0,18259	0,09435	-1,94	0,089
2	1	0,01185	0,09435	0,13	0,903
2	2	-0,03704	0,09435	-0,39	0,705

Remarque:

Nous remarquons qu'ici Minitab[©] 13.31 se comporte de manière étrange pour réaliser le test de l'effet du facteur Bloc. En effet, comme indiqué au paragraphe 5.3.1, la statistique de ce test suit une exactement une loi de Fisher à K-1=2 et $(I-1)(J-1)(K-1)=2\times2\times2=8$ degrés de liberté. Minitab[©] réalise ici l'approximation de Satterthwaite alors que cela n'est pas nécessaire. La version 14 de Minitab[©] n'a pas corrigé ce problème.

.

11.4.2. Avec répétitions

Rendement de blé¹¹

Nous étudions le rendement du blé en fonction des trois variables suivantes : la présence ou l'absence d'irrigation, la quantité d'engrais apportée (faible, moyenne ou importante) et la présence ou l'absence de fongicide. Pour chaque combinaison des facteurs, deux essais ont été mis en place.

1. Définir le modèle (sous la forme indicée) que nous utilisons si nous considérons que toutes les interactions d'ordre 2 sont présentes.

 $^{^{11}\}mathrm{Les}$ données de cet exercice sont tirées du livre d'exercices de François Husson et de Jérôme Pagès [HPer].

Graphique des effets principaux - Moyennes LS pour Rendement

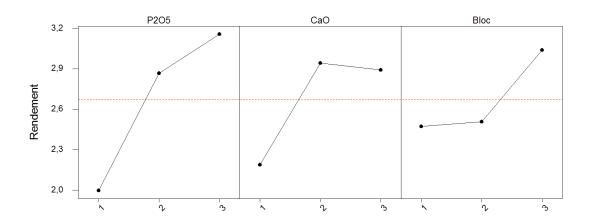


Fig. 11.19 - Graphique : Effets principaux.

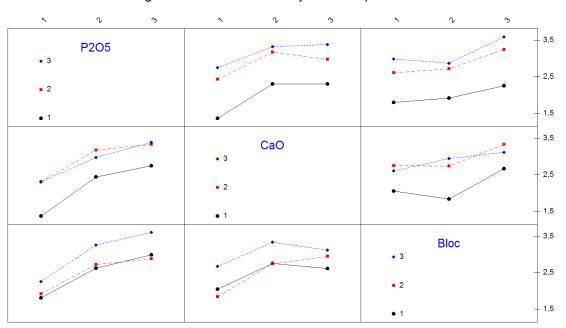


Diagramme d'interaction - Moyennes LS pour Rendement

Fig. 11.20 - Graphique : Diagramme des interactions.

Les interactions $fongicide \times engrais$ et $fongicide \times irrigation$ sont considérées a priori comme négligeables par l'expérimentateur.

- 2. Déterminer les valeurs de tous les coefficients du modèle.
- 3. Décrire le test de significativité de l'interaction $irrigation \times engrais$. Conclure.
- 4. Y a-t-il un effet engrais (Décrire le test et la décision)? Pour le facteur engrais, la

- modalité « importante » fait-elle varier le rendement significativement par rapport au rendement moyen (Décrire le test et la décision)?
- 5. Quel rendement pouvons-nous prévoir dans les conditions suivantes : avec irrigation, avec fongicide et une dose d'engrais importante?

.

Éléments de corrigé : Rendement de blé

1. Le modèle s'écrit, en notant $Y_{i,j,k,l}$ le rendement de la l-ème parcelle cultivée avec l'irrigation i, le fongicide j et la dose d'engrais k:

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{i,j} + (\alpha\gamma)_{i,k} + (\beta\gamma)_{j,k} + \epsilon_{i,j,k,l}$$
avec $i = 1, 2, \ j = 1, 2, \ k = 1 \dots 3, \ l = 1, 2$
avec les contraintes supplémentaires
$$\sum_{i=1}^{2} \alpha_i = 0, \ \sum_{j=1}^{2} \beta_j = 0 \text{ et } \sum_{k=1}^{3} \gamma_k = 0,$$

$$\sum_{i=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall j \in \{1,2\} \text{ et } \sum_{j=1}^{2} (\alpha\beta)_{i,j} = 0, \ \forall i \in \{1,2\},$$

$$\sum_{i=1}^{2} (\alpha\gamma)_{i,k} = 0, \ \forall k \in \{1,\dots,3\} \text{ et } \sum_{k=1}^{3} (\alpha\gamma)_{i,k} = 0, \ \forall i \in \{1,2\},$$

$$\sum_{i=1}^{2} (\beta\gamma)_{j,k} = 0, \ \forall k \in \{1,\dots,3\} \text{ et } \sum_{k=1}^{3} (\beta\gamma)_{j,k} = 0, \ \forall j \in \{1,2\},$$

avec les hypothèses suivantes pour les résidus :

$$\forall (i,j,k,l) \ \mathcal{L}(\epsilon_{i,j,k,l}) = \mathcal{N}(0,\sigma^2) \text{ et } \operatorname{Cov}(\epsilon_{i,j,k,l},\epsilon_{m,n,o,p}) = 0 \text{ si } (i,j,k,l) \neq (m,n,o,p).$$

2. Les contraintes imposées par le modèle donnent les relations suivantes :

$$\sum_{i=1}^{2} \widehat{\alpha}_{i}(\boldsymbol{y}) = 0 \text{ donc } \widehat{\alpha}_{\text{avec irrigation}}(\boldsymbol{y}) = -\widehat{\alpha}_{\text{sans irrigation}}(\boldsymbol{y}) = 4,8922$$

$$\sum_{j=1}^{2} \widehat{\beta}_{j}(\boldsymbol{y}) = 0 \text{ donc } \widehat{\beta}_{\text{avec fongicide}}(\boldsymbol{y}) = -\widehat{\alpha}_{\text{sans fongicide}}(\boldsymbol{y}) = 3,8917$$

$$\sum_{j=1}^{3} \widehat{\gamma}_{k}(\boldsymbol{y}) = 0 \text{ donc } \widehat{\gamma}_{\text{engrais important}}(\boldsymbol{y}) = -\widehat{\gamma}_{\text{engrais moyen}}(\boldsymbol{y}) - \widehat{\gamma}_{\text{engrais faible}}(\boldsymbol{y}) = 11,2751$$

$$\forall i \in \{1, 2\}, \sum_{k=1}^{3} \widehat{\alpha \gamma}_{i,k}(\boldsymbol{y}) = 0 \text{ donc}:$$

$$\widehat{\alpha \gamma}_{\rm ss\ irr,eng\ imp}(\boldsymbol{y}) = -\widehat{\alpha \gamma}_{\rm ss\ irr,eng\ faible}(\boldsymbol{y}) - \widehat{\alpha \gamma}_{\rm ss\ irr,eng\ moy}(\boldsymbol{y}) = 0,7960$$

$$\forall k \in \{1, 2, 3\}, \sum_{i=1}^{2} \widehat{\alpha \gamma}_{i,k}(\boldsymbol{y}) = 0 \text{ donc}:$$

$$\widehat{\alpha \gamma}_{\text{ss irr,eng imp}}(\boldsymbol{y}) = -\widehat{\alpha \gamma}_{\text{av irr,eng imp}}(\boldsymbol{y}) = -0,7960$$

$$\widehat{\alpha \gamma}_{\text{ss irr,eng moy}}(\boldsymbol{y}) = -\widehat{\alpha \gamma}_{\text{av irr,eng moy}}(\boldsymbol{y}) = 0,9467$$

$$\widehat{\alpha \gamma}_{\text{ss irr,eng faib}}(\boldsymbol{y}) = -\widehat{\alpha \gamma}_{\text{av irr,eng faib}}(\boldsymbol{y}) = -0,1507.$$

Les autres coefficients étaient renseignés dans le tableau fourni avec l'énoncé.

3. Test de significativité de l'interaction $irrigation \times engrais$:

$$\begin{aligned} \mathcal{H}_0: \forall (i,k), (\alpha \gamma)_{i,k} &= 0 \\ & \text{contre} \\ \\ \mathcal{H}_1: \exists (i_0,k_0), (\alpha \gamma)_{i_0,k_0} \neq 0. \end{aligned}$$

La statistique de test utilisée est :

$$F = \frac{CM_{\text{interaction}}}{CM_{\text{résiduelle}}}.$$

Ici $ddl_{\text{interaction}} = (I-1)(K-1) = 2$ et $ddl_{\text{r\'esiduelle}} = n-1-(I-1)-(J-1)-(K-1)-(K-1)-(I-1)(K-1) = 24-1-1-1-2-2=17$. Sous l'hypothèse nulle \mathcal{H}_0 et une hypothèse de normalité des données, F suit une loi de Fisher à 2 et 17 degrés de liberté. Décision : soit nous comparons f_{obs} avec le quantile $1-\alpha$ de la loi de Fisher à 2 et 17 degrés de liberté, soit nous comparons la p-valeur avec le seuil α du test. Ici la p-valeur vaut 0,7535, nous ne rejetons pas l'hypothèse nulle \mathcal{H}_0 au seuil de $\alpha=5$ %. Nous considérons donc qu'il n'y a pas d'interaction entre le facteur irrigation et le facteur engrais.

- 4. La probabilité critique du test pour l'effet engrais est inférieure à 0,0005, nous en déduisons que le test est significatif : il y a un effet engrais. Nous nous demandons si le coefficient $\gamma_{\rm eng\ imp}$ est significativement différent de 0 au seuil $\alpha=5$ %. Pour cela nous testons l'hypothèse $\mathcal{H}_0:\gamma_{\rm eng\ imp}=0$ $\mathcal{H}_1:\gamma_{\rm eng\ imp}\neq 0$. La statistique du test est $\widehat{\frac{\gamma_{\rm eng\ imp}}{\widehat{\sigma_{\gamma_{\rm eng\ imp}}}}}$ et suit, sous l'hypothèse nulle, une loi de Student avec autant de degrés de liberté que ceux de la variance résiduelle (i.e. 17). La probabilité critique associée à cette valeur est <0,0005 donc $<\alpha=0,05$. Par conséquent les rendements observés pour un apport important d'engrais sont significativement supérieurs (en moyenne de 11,2751) au rendement moyen.
- 5. Le modèle retenu est le modèle sans interaction :

$$Y_{i,j,k,l} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{i,j,k,l}, \quad i = 1 \dots 2, \ j = 1, 2, \ k = 1 \dots 3, \ l = 1, 2$$
 avec les contraintes
$$\sum_{i=1}^{2} \alpha_i = 0, \sum_{j=1}^{2} \beta_j = 0 \text{ et } \sum_{k=1}^{3} \gamma_k = 0,$$

et les hypothèses suivantes pour les erreurs :

$$\forall (i,j,k,l) \ \mathcal{L}(\epsilon_{i,j,k,l}) = \mathcal{N}(0,\sigma^2) \text{ et } \text{Cov}(\epsilon_{i,j,k,l},\epsilon_{m,n,o,p}) = 0 \text{ si } (i,j,k,l) \neq (m,n,o,p).$$

Les estimations des paramètres des effets principaux sont identiques dans le modèle avec ou sans interaction car les données sont équilibrées (cf cours sur les plans d'expérience).

$$\widehat{Y_{\text{av irr,av fon,eng imp}}}(\boldsymbol{y}) = \widehat{\mu}(\boldsymbol{y}) + \widehat{\alpha_{\text{av irr}}}(\boldsymbol{y}) + \widehat{\beta_{\text{av fon}}}(\boldsymbol{y}) + \widehat{\gamma_{\text{eng imp}}}(\boldsymbol{y}) = 88,68 \text{ qx/ha.}$$

.

Résistance de panneaux de particules à l'arrachage des clous¹²

Une des qualités essentielles des panneaux agglomérés constitués de particules ou de fibres de bois est la résistance de ces panneaux à l'arrachage des clous. Au cours d'une étude nous avons étudié simultanément l'influence de trois facteurs : la grosseur des clous, le diamètre des anneaux sur lesquels sont déposées les éprouvettes soumises aux essais et la vitesse d'arrachage.

Les essais ont été effectués sur des éprouvettes carrées de $50 \ mm$ de côté, les modalités des trois facteurs sont :

- -i- le diamètre de la tête des clou est soit de 6,5 mm soit de 8 mm,
- -ii- le diamètre des anneaux servant de support est soit de 22 mm soit de 30 mm,
- -iii- les vitesses d'arrachage ont été de 22, 45 et 90 par minute.

De plus 5 éprouvettes ont été utilisées pour chacune des 12 combinaisons des modalités du facteur.

Nous disposons ainsi au total de 60 résultats de la mesure de la résistance de panneaux de particules à l'arrachage des clous exprimée en kg.

¹²Les données de cet exercice sont tirées du livre de Pierre Dagnélie [Dag98b].

groggour	annaaux	witoggo	oggoi	resistance
grosseur	anneaux	vitesse	essai	
1	1	1	1	54
1	1	1	2	56
1	1	1	3	58
1	1	1	4	51
1	1	1	5	57
1	1	2	1	57
1	1	2	2	58
1	1	2	3	61
1	1	2	4	59
1	1	2	5	55
1	1	3	1	60
1	1	3	2	68
1	1	3	3	61
1	1	3	4	61
1	1	3	5	67
1	2	1	1	54
1	2	1	2	51
1	2	1	3	47
1	2	1	4	51
1	2	1	5	59
1	2	2	1	52
1	2	2	2	56
1	2	2	3	52
1	2	2	4	52
1	2	2	5	53
1	2	3	1	63
1	2	3	2	54
1	2	3	3	65
1	2	3	4	62
1	2	3	5	60
1				00

grosseur	anneaux	vitesse	essai	resistance
2	1	1	1	67
2	1	1	2	71
2	1	1	3	72
2	1	1	4	70
2	1	1	5	81
2	1	2	1	79
2	1	2	2	80
2	1	2	3	81
2	1	2	4	80
2	1	2	5	85
2	1	3	1	78
2	1	3	2	78
2	1	3	3	77
2	1	3	4	83
2	1	3	5	79
2	2	1	1	67
2	2	1	2	66
2	2	1	3	62
2	2	1	4	71
2	2	1	5	69
2	2	2	1	72
2	2	2	2	67
2	2	2	3	75
2	2	2	4	70
2	2	2	5	71
2	2	3	1	78
2	2	3	2	81
2	2	3	3	67
2	2	3	4	76
2	2	3	5	75

- 1. Quel modèle d'analyse de la variance pouvons-nous utiliser avec ces données? Le plan est-il équilibré? Il y a-t-il des facteurs à effets aléatoires?
- 2. Nous décidons dans cette question de négliger l'influence du facteur *essai*. Procéder à l'étude de ces données en utilisant le modèle d'analyse de la variance à trois facteurs le plus complet que nous pouvons utiliser.

.

Éléments de corrigé : Résistance de panneaux de particules à l'arrachage des clous

Test de l'égalité des variances

Réponse RESI1

Facteurs grosseur anneaux vitesse

NivConf 95,0000

Test de Levene (pour toute loi de probabilité continue)

Statistique du test : 0,436 P : 0,932

Graphique de la courbe normale ou droite de Henry

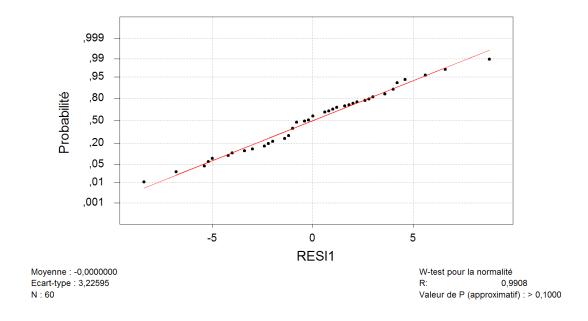


Fig. 11.21 – Graphique : Test de normalité.

W-test pour la normalité

R: 0,9908 Valeur de P (approximatif) : > 0,1000

Test de l'égalité des variances

Réponse RESI1

Facteurs grosseur anneaux vitesse

NivConf 95,0000

Test de Bartlett (loi normale)

Statistique du test : 9,893 P : 0,540

Test de l'égalité des variances pour RESI1

Fig. 11.22 – Graphique : Test de l'égalité des variances.

Modèle linéaire généralisé : resistance en fonction de anneaux; grosseur; ...

Facteur	Type Niv	reaux	Valeurs
anneaux	fixe	2	1 2
grosseur	fixe	2	1 2
vitesse	fixe	3	1 2 3

Analyse de la variance pour resistan, en utilisant la SC ajustée pour les tests

Source	DL	SC séq	SC ajust	CM ajust	F	Р
anneaux	1	355,27	355,27	355,27	27,77	0,000
grosseur	1	4403,27	4403,27	4403,27	344,23	0,000
vitesse	2	632,10	632,10	316,05	24,71	0,000
anneaux*grosseur	1	29,40	29,40	29,40	2,30	0,136
grosseur*vitesse	2	86,23	86,23	43,12	3,37	0,043
anneaux*vitesse	2	54,03	54,03	27,02	2,11	0,132
anneaux*	2	10,30	10,30	5,15	0,40	0,671
grosseur*vitesse						
Erreur	48	614,00	614,00	12,79		
Total	59	6184,60				
Terme			Coef	Er-T coef	Т	Р
Constante		65,	7000	0,4617	142,29	0,000
anneaux						
1		2,	4333	0,4617	5,27	0,000

grosse	grosseur						
1			-8,5667	0,4617	-18,55	0,000	
vitess	е						
1			-4,0000	0,6530	-6,13	0,000	
2			0,0500	0,6530	0,08	0,939	
anneau	x*grosseui	c					
1	1		-0,7000	0,4617	-1,52	0,136	
grosse	ur*vitess	Э					
1	1		0,6667	0,6530	1,02	0,312	
1	2		-1,6833	0,6530	-2,58	0,013	
anneau	x*vitesse						
1	1		-0,4333	0,6530	-0,66	0,510	
1	2		1,3167	0,6530	2,02	0,049	
anneau	anneaux*grosseur*vitesse						
1	1	1	0,1000	0,6530	0,15	0,879	
1	1	2	-0,5500	0,6530	-0,84	0,404	

Graphique des effets principaux - Moyennes LS pour resistance

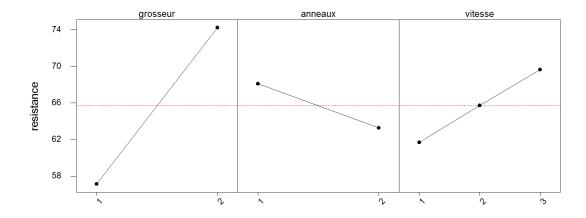


Fig. 11.23 - Graphique : Effets principaux.

.

11.5. Analyse de la variance à trois facteurs totalement emboîtés

Nous renvoyons le lecteur à l'exemple page 337 du livre de Pierre Dagnélie [Dag98b].

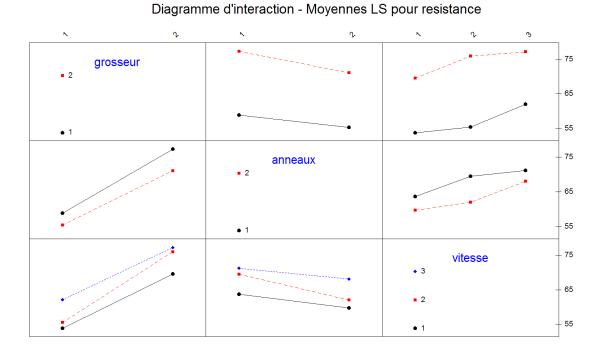


Fig. 11.24 - Graphique : Diagramme des interactions.

.

11.6. Analyse de la variance à trois facteurs partiellement emboîtés

Nous renvoyons le lecteur à l'exemple page 340 du livre de Pierre Dagnélie [Dag98b].

.

Liste des figures de la première partie

11.1 Graphique : Boite à moustaches des données
11.2 Graphique : Boite à moustaches des données
11.3 Graphique : Estimation des effets du facteur Carburateur
11.4 Graphique : Estimation des effets du facteur $Essai$
11.5 Graphique : Effets principaux
11.6 Graphique : Effets principaux
11.7 Graphique : Diagramme d'interaction
11.8 Graphique : Test de l'égalité des variances
11.9 Graphique : Test de normalité
11.10Graphique : Effets principaux
11.11Graphique : Diagramme d'interaction
11.12Graphique : Test de normalité
11.13Graphique : Test de l'égalité des variances
11.14Graphique : Effets principaux
11.15Graphique : Test de normalité
11.16Graphique : Test de l'égalité des variances
11.17Graphique : Test de l'égalité des variances
11.18Graphique : Test de l'égalité des variances
11.19Graphique : Effets principaux
11.20Graphique : Diagramme des interactions
11.21Graphique : Test de normalité
11.22Graphique : Test de l'égalité des variances
11.23Graphique : Effets principaux
11.24Graphique : Diagramme des interactions

LISTE	DES	FIGUR	RES DE L	A PREMIÈRI	${f E}$ ${f PARTIF}$

Liste des tableaux de la première partie

2.1	Représentation de la réponse en fonction des niveaux du facteur A	13
2.1	Liste de données expérimentales en fonction des niveaux du facteur A	14
2.1	Tableau d'ANOVA : un facteur à effets fixes	15
2.2	Tableau d'ANOVA : un facteur à effets aléatoires	17
3.1	Représentation de la réponse en fonction des niveaux des facteurs A et B .	20
3.1	Liste de données expérimentales et niveaux des facteurs A et B	20
3.1	Degrés de liberté : deux facteurs à effets fixes sans interaction	21
3.1	Tableau d'ANOVA : deux facteurs à effets fixes sans interaction	22
3.1	Représentation de la réponse en fonction des niveaux des facteurs A et B .	24
3.1	Liste de données expérimentales et niveaux des facteurs A et B	24
3.1	Degrés de liberté : deux facteurs à effets fixes avec interaction	25
3.1	Tableau d'ANOVA : deux facteurs à effets fixes avec interaction	26
3.2	Degrés de liberté : deux facteurs à effets aléatoires sans interaction	28
3.2	Tableau d'ANOVA : deux facteurs à effets aléatoires sans interaction	29
3.2	Degrés de liberté : deux facteurs à effets aléatoires avec interaction	31
3.2	Tableau d'ANOVA : deux facteurs à effets aléatoires avec interaction	32
3.3	Degrés de liberté : deux facteurs à effets mixtes sans interaction	34
3.3	Tableau d'ANOVA : deux facteurs à effets mixtes sans interaction	35
3.3	Degrés de liberté : deux facteurs à effets mixtes avec interaction	37
3.3	Tableau d'ANOVA : deux facteurs à effets mixtes avec interaction	38
4.1	Réponse et niveaux des deux facteurs d'un plan complètement emboîté	42
4.1	Données et niveaux des deux facteurs d'un plan complètement emboîté	43
4.1	Degrés de liberté : deux facteurs emboîtés et à effets fixes	44
4.1	Tableau d'ANOVA : deux facteurs emboîtés et à effets fixes	44
4.2	Degrés de liberté : deux facteurs emboîtés et à effets aléatoires	47
4.2	Tableau d'ANOVA : deux facteurs emboîtés et à effets aléatoires	47
4.3	Degrés de liberté : deux facteurs emboîtés et à effets mixtes	49
4.3	Tableau d'ANOVA : deux facteurs emboîtés et à effets mixtes	50
5.1	Représentation de la réponse en fonction des niveaux des trois facteurs	54
5.1	Liste de données expérimentales et niveaux des trois facteurs	55
5.1	Degrés de liberté : trois facteurs à effets fixes sans interaction	57
5.1	Tableau d'ANOVA : trois facteurs à effets fixes sans interaction	57
5.1	Représentation de la réponse en fonction des niveaux des trois facteurs	62
5.1	Liste de données expérimentales et niveaux des trois facteurs	63
5.1	Degrés de liberté : trois facteurs à effets fixes avec interaction	65

LISTE DES TABLEAUX DE LA PREMIÈRE PARTIE

5.1	Tableau d'ANOVA: trois facteurs à effets fixes avec interaction	66
5.2	Degrés de liberté : trois facteurs à effets aléatoires sans interaction	71
5.2	Tableau d'ANOVA : trois facteurs à effets aléatoires sans interaction	72
5.2	Degrés de liberté : trois facteurs à effets aléatoires avec interaction	76
5.2	Tableau d'ANOVA : trois facteurs à effets aléatoires avec interaction	77
5.3	Degrés de liberté : trois facteurs à effets mixtes $(2F,1A)$ sans interaction	82
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (2F,1A) sans interaction	83
5.3	Degrés de liberté : trois facteurs à effets mixtes $(1F,2A)$ sans interaction	87
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (1F,2A) sans interaction	88
5.3	Degrés de liberté : trois facteurs à effets mixtes $(2F,1A)$ avec interaction	92
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (2F,1A) avec interaction	93
5.3	Degrés de liberté : trois facteurs à effets mixtes (1F,2A) avec interaction	98
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (1F,2A) avec interaction	99
6.1	Réponse et niveaux des trois facteurs d'un plan complètement emboîté	105
6.2	Données et niveaux des trois facteurs d'un plan complètement emboîté	105
6.1	Degrés de liberté : trois facteurs emboîtés et à effets fixes	107
6.1	Tableau d'ANOVA : trois facteurs emboîtés et à effets fixes	107
6.2	Degrés de liberté : trois facteurs emboîtés et à aléatoires	110
6.2	Tableau d'ANOVA : trois facteurs emboîtés et à effets aléatoires	110
6.3	Degrés de liberté : trois facteurs emboîtés et à effets mixtes $(2F,1A)$	113
6.3	Tableau d'ANOVA : trois facteurs emboîtés et à effets mixtes $(2F,1A)$ 1	114
6.3	Degrés de liberté : trois facteurs emboîtés et à effets mixtes $(1F,2A)$	117
6.3	Tableau d'ANOVA : trois facteurs emboîtés et à effets mixtes (1F,2A) 1	117

Bibliographie de la première partie

- [Cha73] P. Chapouille. Planification et analyse des expériences. Masson, Paris, 1973.
- [Dag98a] P. Dagnélie. Statistique Théorique et Appliquée, volume 1. De Boeck & Larcier, Bruxelles, 1998.
- [Dag98b] P. Dagnélie. Statistique Théorique et Appliquée, volume 2. De Boeck & Larcier, Bruxelles, 1998.
- [Fal05] B. Falissard. Comprendre et utiliser les statistiques dans les sciences de la vie. Abrégés. Masson, Paris, 3ème edition, 2005.
- [Fle86] J.L. Fleiss. *The Design and Analysis of Clinical Experiments*. John Wiley, New-York, 1986.
- [HPer] F. Husson and J. Pagès. Statistiques générales pour utilisateurs. PUR, Rennes, a trouver.
- [KRB96] S. Kotz, C.B. Read, and N. Balakrishnan, editors. *Encyclopædia Of Statistical Sciences*. Wiley-Interscience, 2nd edition, 1996.
- [Par74] G. Parreins. Techniques Statistiques: moyens rationnels de choix et de décision. Dunod technique, Paris, 1974.
- [Phi82] G. Philippeau. Théorie des plans d'expérience. ICTF, Paris, 1982.
- [Ric89] W.R. Rice. Analysing tables of statistical tests. *Evolution*, 43(1):223–225, 1989.
- [SA00] H. Sahai and M.I. Ageel. *The Analysis of Variance : Fixed, Random and Mixed Models*. Birkhäuser, Boston, 2000.

Deuxième partie Approches complémentaires

Table des Matières

Ta	ble d	les matières de la seconde partie	263
12	Que	elques tests non paramétriques	265
	•	Les tests non paramétriques sur un échantillon	
		12.1.1 Test du signe	
		12.1.2 Test des rangs signés de Wilcoxon	
	12.2	Les tests non paramétriques sur deux échantillons	
		12.2.1 Les échantillons sont indépendants : Test de Mann-Whitney	. 269
		12.2.2 Les échantillons sont indépendants : Test de la médiane de Mood	. 271
		12.2.3 Les échantillons sont dépendants : Test de Wilcoxon	. 272
	12.3	Les tests non paramétriques sur k échantillons : 1 facteur	. 273
		12.3.1 Les échantillons sont indépendants : Test de Kruskal-Wallis	. 273
		12.3.2 Les échantillons sont indépendants : Test de Jonckheere-Terpstra .	. 276
		12.3.3 Les échantillons ne sont pas indépendants : Test de Friedman	. 277
	12.4	Les tests non paramétriques sur nk échantillons : 2 facteurs	. 279
		12.4.1 Les échantillons sont indépendants : Test de Friedman	. 279
	12.5	Exercices	. 281
13	Val	eurs non représentatives	289
	13.1	Valeurs extrêmes, valeurs non représentatives	. 289
	13.2	Que vérifier?	. 290
	13.3	Que faire avec une valeur potentiellement non-représentative?	. 291
		13.3.1 Notations	. 291
		13.3.2 Test de Grubbs pour une seule valeur non représentative	. 292
		13.3.3 Test de Dixon pour une seule valeur non représentative	. 293
		13.3.4 Test basé sur l'étendue	. 295
	13.4	Test simultané de k valeurs non représentatives $\ldots \ldots \ldots \ldots$. 296
		13.4.1 Test de Grubbs pour k valeurs non représentatives	. 296
		13.4.2 Test de Grubbs pour deux valeurs non représentatives	. 297
		13.4.3 Test de Tietjen-Moore pour k valeurs non représentatives	. 298
	13.5	Détection d'un nombre de valeurs non représentatives non fixé à l'avance	. 300
		13.5.1 La boîte à moustaches	. 300
		13.5.2 Test basé sur le coefficient d'asymétrie	. 301
		13.5.3 Test basé sur le coefficient d'aplatissement	. 302
	13.6	Procédures séquentielles de détections de valeurs non représentatives	. 302

TABLE DES MATIÈRES

13.6.1 Procédure séquentielle de Prescot	t				302		
13.6.2 Procédure RST de Rosner					303		
13.7 Conclusion					304		
13.8 Exercices					305		
13.9 Corrigé des exercices					306		
Liste des figures de la deuxième partie 3 Liste des tableaux de la deuxième partie							
niste des tableaux de la deuxielle partie					315		
Bibliographie de la deuxième partie							

Chapitre 12

Quelques tests non paramétriques.

12.1. Les tests non paramétriques sur un échantillon

Dans cette section nous nous intéressons à deux tests non paramétriques :

- le test du signe et
- le test des rangs signés.

Nous utiliserons de préférence le test des rangs signés dès que les conditions de son utilisation sont remplies, sa puissance étant alors supérieure à celle du test du signe.

12.1.1. Test du signe

Soit un échantillon indépendant et identiquement distribué X_1, \ldots, X_n d'une loi continue F dont la valeur médiane est notée m_e et la moyenne μ . Le test du signe permet de tester les hypothèses suivantes :

Hypothèses:

$$\mathcal{H}_0: m_e = 0$$
 ou de façon équivalente $\mathbb{P}\left[X_i > 0\right] = \frac{1}{2}$

contre

$$\mathcal{H}_1: m_e \neq 0$$
 ou de façon équivalente $\mathbb{P}[X_i > 0] \neq \frac{1}{2}$.

Remarque 12.1.1. La formulation de ce test est bien sûr la formulation d'un test bilatéral. Nous pouvons envisager les deux tests unilatéraux correspondants. À ce moment là, la formulation de l'hypothèse alternative \mathcal{H}_1 est différente et s'écrit soit :

$$\boxed{\mathcal{H}_{1}^{'}:\mathbb{P}\left[X_{i}>0\right]<\frac{1}{2}}$$

soit

$$\boxed{\mathcal{H}_{1}^{"}: \mathbb{P}\left[X_{i}>0\right] > \frac{1}{2}.}$$

¹Les références [KRB96], [PP98] et [Fal05] ayant servi à l'élaboration de ce chapitre sont mentionnées dans la bibliographie.

Remarque 12.1.2. Plus généralement ce test permet de tester l'hypothèse nulle

$$\mathcal{H}_0: m_e = m_0$$
 ou de façon équivalente $\mathbb{P}\left[X_i > 0\right] = p$ contre
$$\mathcal{H}_1: m_e \neq m_0$$
 ou de façon équivalente $\mathbb{P}\left[X_i > 0\right] \neq p$

où m_0 est un nombre réel et p est une constante comprise entre 0 et 1, ou encore, dans la version unilatérale, contre l'hypothèse alternative

$$\mathcal{H}_1': m_e < m_0$$

ou encore, dans la version unilatérale, contre l'hypothèse alternative

$$\mathcal{H}_1'': m_e > m_0.$$

Pour cela il suffit de considérer l'échantillon Z_1, \ldots, Z_n avec $Z_i = X_i - m_0$ et de lui appliquer le test décrit ci-dessous.

Statistique : S_n désigne le nombre de variables X_i , $1 \le i \le n$, qui prennent une valeur positive.

Propriétés 12.1.1. Lorsque l'hypothèse nulle \mathcal{H}_0 est vraie, la variable aléatoire S_n suit exactement une loi binomiale $\mathcal{B}(n,p)$ de paramètres n et p.

Concrètement cette hypothèse nulle \mathcal{H}_0 signifie que l'effectif de l'échantillon considéré est faible devant celui de la population dont il est issu.

Remarque 12.1.3. Nous pourrons prendre comme taille limite des échantillons dont les effectifs sont inférieurs à une fraction de 1/10 de la population. Dans ce cas nous pouvons assimiler les tirages réalisés ici à des tirages avec remise.

Cas le plus souvent utilisé : p = 1/2. Nous nous proposons de tester :

Hypothèses:

$$\boxed{\mathcal{H}_0: \mathbb{P}\left[X_i > 0\right] = \frac{1}{2}}$$

contre

$$\boxed{\mathcal{H}_1: \mathbb{P}\left[X_i > 0\right] \neq \frac{1}{2}.}$$

Statistique: S_n désigne le nombre de variables X_i , $1 \le i \le n$, qui prennent une valeur positive.

Propriétés 12.1.2. Lorsque l'hypothèse nulle \mathcal{H}_0 est vraie, la variable aléatoire S_n a les trois propriétés suivantes :

- 1. La variable aléatoire S_n suit une loi binomiale $\mathfrak{B}(n,1/2)$ de paramètres n et 1/2. De ce fait, découle les deux propriétés suivantes :
- 2. $\mathbb{E}[S_n] = n/2$.

3.
$$Var[S_n] = n/4$$
.

Cette distribution binomiale est symétrique. Pour n grand $(n \ge 40)$, nous pouvons utiliser l'approximation normale avec correction de continuité :

$$\mathbb{P}_{\mathcal{H}_0}\left[S_n \leqslant h\right] = \mathbb{P}_{\mathcal{H}_0}\left[S_n \geqslant n - h\right] = \frac{\Phi(2h + 1 - n)}{\sqrt{n}}$$

où Φ est la fonction de répartition d'une loi normale centrée réduite.

Décision 12.1.1. Pour un seuil donné α (= 5% = 0,05 en général), nous cherchons le plus grand entier s_{α}^{\star} tel que $\mathbb{P}[Y \leq s_{\alpha}^{\star}] \leq \alpha/2$ où Y suit une loi binomiale $\mathfrak{B}(n,1/2)$ de paramètres n et 1/2. Alors nous décidons :

$$\begin{cases} \mathcal{H}_1 \text{ est vraie } si & S_{n,obs} \notin]s_{\alpha}^{\star}, n - s_{\alpha}^{\star}[\\ \mathcal{H}_0 \text{ est vraie } si & S_{n,obs} \in]s_{\alpha}^{\star}, n - s_{\alpha}^{\star}[. \end{cases}$$

Remarque 12.1.4. Le niveau de signification réel du test est alors égal à $2\mathbb{P}[Y \leqslant s_{\alpha}^{\star}]$ qui est généralement différent de α .

Remarque 12.1.5. Pour voir un exemple, nous renvoyons à la feuille de travaux dirigés qui sera traitée lors de la première séance de travaux dirigés.

12.1.2. Test des rangs signés de Wilcoxon

Soit un échantillon indépendant et identiquement distribué X_1, \ldots, X_n d'une loi continue F dont la valeur médiane est notée m_e et la moyenne μ .

Hypothèses: Le test des rangs signés permet de tester l'hypothèse nulle

$$\mathcal{H}_0$$
: La loi continue F est symétrique en 0 contre \mathcal{H}_1 : La loi continue F n'est pas symétrique en 0 .

De plus, si nous savons que la loi continue F est symétrique, alors le test des rangs signés de Wilcoxon devient

$$\mathcal{H}_0: \mu = \mu_0$$
contre
$$\mathcal{H}_1: \mu \neq \mu_0.$$

Ici μ_0 est un nombre réel et ce jeu d'hypothèses permet alors de s'intéresser à la moyenne de la loi continue F.

Cas où il n'y a pas d'ex æquo.

Soit x_1, \ldots, x_n n réalisations de l'échantillon précédent. À chaque x_i nous attribuons le rang r_i^a qui correspond au rang de $|x_i|$ lorsque que les n réalisations sont classées par ordre croissant de leurs valeurs absolues.

Statistique : Nous déterminons alors la somme w des rangs r_i^a des seules observations positives. La statistique W_n^+ des rangs signés de Wilcoxon est la variable aléatoire qui prend pour valeur la somme w. Par conséquent, la statistique W_n^+ des rangs signés de Wilcoxon s'écrit

$$W_n^+ = \sum_{\substack{1 \leqslant i \leqslant n \\ X_i > 0}} R_i^a.$$

Propriétés 12.1.3. Lorsque l'hypothèse nulle \mathcal{H}_0 est vraie, la variable aléatoire W_n^+ a les trois propriétés suivantes :

- 1. W_n^+ est symétrique autour de sa valeur moyenne $\mathbb{E}[W_n^+] = n(n+1)/4$.
- 2. Var $[W_n^+] = n(n+1)(2n+1)/24$.
- 3. Elle est tabulée pour de faibles valeurs de n. Pour $n \ge 15$, nous avons l'approximation normale avec correction de continuité :

$$\mathbb{P}\left[W_n^+ \leqslant w\right] = \Phi\left(\frac{w + 0, 5 - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}\right)$$

 $où \Phi$ est la fonction de répartition de la loi normale centrée réduite.

Décision 12.1.2.

- **Premier cas**: Pour tester l'hypothèse nulle « \mathcal{H}_0 : La loi continue F est symétrique en 0 » contre l'hypothèse alternative « \mathcal{H}_1 : La loi continue F n'est pas symétrique en 0 » pour un seuil donné α , nous cherchons l'entier w_{α} tel que $\mathbb{P}[W_n^+ \leq w_{\alpha}] \approx \alpha/2$. Alors nous décidons:

$$\left\{ \begin{array}{ll} \mathcal{H}_1 \ est \ vraie \ si & W_{n,obs}^+ \notin]w_\alpha + 1, n(n+1)/2 - w_\alpha - 1[, \\ \mathcal{H}_0 \ est \ vraie \ si & W_{n,obs}^+ \in]w_\alpha + 1, n(n+1)/2 - w_\alpha - 1[. \end{array} \right.$$

- Second cas: Pour tester l'hypothèse nulle « \mathcal{H}_0 : $\mu = \mu_0$ », nous introduisons l'échantillon Z_1, \ldots, Z_n avec $Z_i = X_i - \mu$, $1 \le i \le n$.

Cas où il y a des ex æquo.

Les observations x_1, \ldots, x_n peuvent présenter des ex æquo et *a fortiori* leurs valeurs absolues. Il s'agit en particulier du cas où la loi F est discrète. Deux procédures sont alors employées.

• Méthode de départition des ex æquo

Nous départageons les ex æquo à l'aide d'une table de nombres aléatoires. À chacune des valeurs égales nous associons un entier au hasard puis nous affectons, par ordre croissant de ces entiers, un rang différent à chaque observation. Ainsi chacun des rangs des observations est différent et nous pouvons directement appliquer les résultats du paragraphe précédent.

• Méthode des rangs moyens

En associant à la variable X_i son rang moyen $R_i^{a^*}$ dans le classement des valeurs absolues et en sommant tous les rangs pour lesquels $X_i > 0$ nous obtenons la statistique :

$$W_n^{+\star} = \sum_{\substack{1 \leqslant i \leqslant n \\ X_i > 0}} R_i^{a^{\star}}.$$

Les valeurs absolues observées $|x_1|, \ldots, |x_n|$ étant ordonnées puis regroupées en classes d'ex æquo, C_0 pour la première classe qui est constituée des nombres $|x_i|$ nuls, s'il en existe, et C_j , $1 \le j \le h$ pour les autres nombres, certaines classes C_j pouvant comporter un seul élément, si cet élément n'a pas d'ex æquo, notons d_j le nombre d'ex æquo de la classe C_j . Nous avons

$$d_0 + \sum_{j=1}^h d_j = n.$$

Sous l'hypothèse nulle \mathcal{H}_0 et si n>15, il est d'usage d'utiliser l'approximation normale

$$\frac{W_n^{+\star} - m^{\star}}{\sigma^{\star}} \approx \mathcal{N}(0, 1)$$

οù

$$m^* = \frac{1}{4} \left(n(n+1) - d_0(d_0 + 1) \right)$$

et

$$(\sigma^{\star})^2 = \frac{1}{24} \left(n(n+1)(2n+1) - d_0(d_0+1)(2d_0+1) \right) - \frac{1}{48} \sum_{i=1}^h \left(d_i^3 - d_i \right).$$

Dans le cas où nous utilisons cette méthode des rangs moyens, nous ne pouvons pas utiliser les tables statistiques usuelles qui concernent la distribution de la variable aléatoire W_n^+ .

12.2. Les tests non paramétriques sur deux échantillons

12.2.1. Les échantillons sont indépendants : Test de Mann-Whitney

Nous observons, de manière indépendante, une variable Y, continue, sur deux populations, ou sur une population divisée en deux sous-populations. Nous notons \mathcal{L}_i la loi de Y sur la (sous-)population d'ordre i. Nous allons présenter le test :

Hypothèses:

 \mathcal{H}_0 : Les deux lois \mathcal{L}_i sont égales ou encore de façon équivalente : $\mathcal{L}_1 = \mathcal{L}_2$

contre

 \mathcal{H}_1 : Les deux lois \mathcal{L}_i ne sont pas égales ou encore de façon équivalente : $\mathcal{L}_1 \neq \mathcal{L}_2$.

Cas où il n'y a pas d'ex aequo.

Statistique : Pour obtenir la statistique du test notée U en général, nous devons procéder à des étapes successives :

- 1. En nous plaçant sous l'hypothèse nulle \mathcal{H}_0 , nous classons par ordre croissant l'ensemble des observations des deux échantillons (x_1, \ldots, x_{n_1}) et (y_1, \ldots, y_{n_2}) de taille respective n_1 et n_2 .
- 2. Nous affectors le rang correspondant.
- 3. Nous effectuons la somme des rangs pour chacun des deux échantillons, notés R_1 et R_2 .
- 4. Nous en déduisons les quantités U_1 et U_2 qui se calculent ainsi :

$$U_1 = n_1 \times n_2 + \frac{n_1(n_1+1)}{2} - R_1 \tag{12.2.1}$$

et

$$U_2 = n_1 \times n_2 + \frac{n_2(n_2 + 1)}{2} - R_2 = n_1 \times n_2 - U_1.$$
 (12.2.2)

La plus petite des deux valeurs U_1 et U_2 , notée U_{n_1,n_2} , est utilisée pour tester l'hypothèse nulle \mathcal{H}_0 .

Propriétés 12.2.1. Lorsque l'hypothèse nulle \mathcal{H}_0 est vraie, la variable aléatoire U_{n_1,n_2} a les trois propriétés suivantes :

- 1. $\mathbb{E}[U_{n_1,n_2}] = (n_1 \times n_2)/2$.
- 2. Var $[U_{n_1,n_2}] = (n_1 \times n_2)(n_1 + n_2 + 1)/12$.
- 3. La variable aléatoire U_{n_1,n_2} est tabulée pour de faibles valeurs de n. Pour $n \ge 20$, nous avons l'approximation normale :

$$\mathbb{P}\left[U_{n_1,n_2} \leqslant u\right] = \Phi\left(\frac{u - (n_1 \times n_2)/2}{\sqrt{(n_1 \times n_2)(n_1 + n_2 + 1)/12}}\right)$$

 $où \Phi$ est la fonction de répartition de la loi normale centrée réduite.

Décision 12.2.1.

Premier cas: Si les tailles n₁ ou n₂ sont inférieures à 20, alors, pour un seuil donné α (= 5% = 0,05 en général), la table de Mann-Whitney nous fournit une valeur critique c. Alors nous décidons :

$$\left\{ \begin{array}{ll} \mathcal{H}_1 \ est \ vraie \ si & U_{n_1,n_2,obs} \leqslant c, \\ \mathcal{H}_0 \ est \ vraie \ si & U_{n_1,n_2,obs} > c. \end{array} \right.$$

- Second cas : Si les tailles n_1 et n_2 sont supérieures à 20, alors la quantité est décrite approximativement par une loi normale et nous utilisons alors le test de l'écart réduit :

$$Z_{n_1,n_2} = \frac{U_{n_1,n_2} - (n_1 \times n_2)/2}{\sqrt{(n_1 \times n_2)(n_1 + n_2 + 1)/12}}$$

Pour un seuil donné α (= 5% = 0,05 en général), la table de la loi normale centrée réduite nous fournit une valeur critique c. Alors nous décidons :

$$\left\{ \begin{array}{ll} \mathcal{H}_1 \ est \ vraie \ si & Z_{n_1,n_2,obs} \geqslant c, \\ \mathcal{H}_0 \ est \ vraie \ si & Z_{n_1,n_2,obs} < c. \end{array} \right.$$

Cas où il y a des ex æquo.

Les observations $x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}$ peuvent présenter des ex æquo. Il s'agit en particulier du cas où les lois F et G dont sont issus les deux échantillons sont discrètes. Deux procédures sont alors employées.

• Méthode de départition des ex æquo

Nous départageons les ex æquo à l'aide d'une table de nombres aléatoires. À chacune des valeurs égales nous associons un entier au hasard puis nous affectons, par ordre croissant de ces entiers, un rang différent à chaque observation. Ainsi chacun des rangs des observations est différent et nous pouvons directement appliquer les résultats du paragraphe précédent.

• Méthode des rangs moyens

Les valeurs absolues observées $x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}$ étant ordonnées puis regroupées en h classes d'ex æquo C_j , $1 \leq j \leq h$, certaines classes C_j pouvant comporter un seul élément, si cet élément n'a pas d'ex æquo, notons d_j le nombre d'ex æquo de la classe

$$C_j$$
. Nous avons $\sum_{j=1}^h d_j = n_1 + n_2$.

En associant à l'observation X_i son rang moyen R_i^* dans ce classement et en sommant tous les rangs de tous les X_i , nous obtenons la statistique :

$$U_{n_1,n_2}^{\star} = \sum_{i=1}^{n_2} R_i^{\star}.$$

Sous l'hypothèse nulle \mathcal{H}_0 : « X et Y ont la même distribution » et pour $n_1 > 15$ et $n_2 > 15$, il est d'usage d'utiliser l'approximation normale

$$\frac{U_{n_1,n_2}^{\star} - m^{\star}}{\sigma^{\star}} \approx \mathcal{N}(0,1)$$

οù

$$m^* = \frac{1}{2} (n_1(n_1 + n_2 + 1))$$

et

$$(\sigma^{\star})^2 = \frac{1}{12} \left(n_1 n_2 (n_1 + n_2 + 1) \right) - \frac{1}{12} \frac{n_1 n_2}{(n_1 + n_2)(n_1 + n_2 - 1)} \sum_{j=1}^h \left(d_j^3 - d_j \right).$$

Dans le cas où nous utilisons cette méthode des rangs moyens nous ne pouvons pas utiliser les tables statistiques usuelles qui concernent la distribution de la variable aléatoire U_{n_1,n_2} .

12.2.2. Les échantillons sont indépendants : Test de la médiane de Mood

Nous considèrons deux échantillons indépendants (X_1, \ldots, X_{n_1}) et (Y_1, \ldots, Y_{n_2}) . (X_1, \ldots, X_{n_1}) est un échantillon indépendant et identiquement distribué d'une loi continue F et (Y_1, \ldots, Y_{n_2}) est un échantillon indépendant et identiquement distribué d'une loi

continue G.

Après regroupement des $n_1 + n_2$ valeurs des deux échantillons, $n_1 \times M_N$ est le nombre d'observations X_i qui sont supérieures à la médiane des $N = n_1 + n_2$ observations.

Sous l'hypothèse nulle \mathcal{H}_0 : « Les variables X et Y suivent la même loi continue c'est-à-dire G = F», la variable $n_1 \times M_N$ peut prendre les valeurs $0, 1, \ldots, n_1$ selon la distribution hypergéométrique suivante :

$$\mathbb{P}[n_1 \times M_N = k] = \frac{C_{n_1}^k C_{n_2}^{N/2-k}}{C_N^{N/2}}.$$

Ainsi nous avons:

$$\mathbb{E}\left[n_1 \times M_N\right] = \frac{n_1(n_1 + n_2 - \epsilon_N)}{2N}$$

$$\text{Var}\left[n_1 \times M_N\right] = \frac{n_1n_2(n_1 + n_2 + 1)}{4(n_1 + n_2 - 1 + \epsilon_N)(n_1 + n_2 + 1 - \epsilon_N)},$$

où $\epsilon_N = 0$ si N est pair et $\epsilon_N = 1$ si N est impair.

Lorsque n_1 et n_2 sont grands, c'est-à-dire $n_1 \ge 25$ et $n_2 \ge 25$, nous utilisons l'approximation normale :

$$\frac{n_1 \times M_N - \mathbb{E}\left[n_1 \times M_N\right]}{\sqrt{\operatorname{Var}\left[n_1 \times M_N\right]}} \approx \mathcal{N}(0, 1)$$

avec correction de continuité.

La distribution est symétrique lorsque N est pair.

Pour tester l'hypothèse nulle \mathcal{H}_0 : « G=F » contre \mathcal{H}_1 : « $G\neq F$ » avec un niveau de signification égal à α , nous cherchons les entiers k_α et k'_α tels que $\mathbb{P}\left[n_1\times M_N\leqslant k_\alpha\right]\approx \alpha/2$ et $\mathbb{P}\left[n_1\times M_N\geqslant n_1-k'_\alpha\right]\approx \alpha/2$, puis nous rejetons l'hypothèse nulle \mathcal{H}_0 si la réalisation de la statistique du test calculée à l'aide de l'échantillon n'est pas dans l'intervalle $[k_\alpha,k'_\alpha]$. Cette statistique permet également de réaliser des tests unilatéraux.

12.2.3. Les échantillons sont dépendants : Test de Wilcoxon

Nous considérons deux variables aléatoires X et Y, de même nature, observées toutes les deux sur les mêmes unités d'un n-échantillon. Les observations se présentent alors sous la forme d'une suite de couples $(x_1, y_1), \ldots, (x_n, y_n)$. Ce test concerne les lois des deux variables. Pour ce faire nous testons :

Hypothèses:

 \mathcal{H}_0 : Les deux lois sont égales ou encore de façon équivalente $\mathcal{L}(X) = \mathcal{L}(Y)$

contre

 \mathcal{H}_1 : Les deux lois ne sont pas égales ou encore de façon équivalente $\mathcal{L}(X) \neq \mathcal{L}(Y)$.

Cas où il n'y a pas d'ex aequo.

Statistique : Pour obtenir la statistique du test notée S^+ en général, nous devons procéder à des étapes successives :

- 1. Ce test suppose que la loi de la différence entre les deux variables étudiées est symétrique par rapport à 0.
- 2. Après avoir calculé les différences d_i , nous classons par ordre croissant les $|d_i|$ non nulles, c'est-à-dire les d_i sans tenir compte des signes.
- 3. Nous attribuons à chaque $|d_i|$ le rang correspondant.
- 4. Nous restituons ensuite à chaque rang le signe de la différence correspondante.
- 5. Enfin, nous calculons la somme S^+ des rangs positifs (P) et la somme S^- des rangs négatifs (M).

La somme S^+ des rangs positifs (P) permet de tester l'hypothèse nulle \mathcal{H}_0 .

Décision 12.2.2.

- Premier cas: Si n < 15, nous utilisons une table et nous comparons la valeur de (S⁺)
 à la valeur critique c associée au seuil α du test.
- Second cas : $Si \ n \geqslant 15$, nous utilisons l'approximation normale avec correction de continuité :

$$\mathbb{P}_{\mathcal{H}_0} \left[S^+ \leqslant h \right] \approx \Phi \left(\frac{h + 0, 5 - n(n+1)/4}{\sqrt{(n(n+1)(2n+1))/24}} \right)$$

 $où \Phi$ est la fonction de répartition d'un loi normale centrée réduite.

Cas où il y a des ex æquo.

Il se traite de la même manière que pour la statistique de Wilcoxon pour un échantillon, voir le paragraphe 12.1.2.

12.3. Les tests non paramétriques sur k échantillons : 1 facteur

12.3.1. Les échantillons sont indépendants : Test de Kruskal-Wallis

Nous supposons que nous disposons de k échantillons **indépendants** et identiquement distribués $(X_{1,1},\ldots,X_{1,n_1}),\ldots,(X_{k,1},\ldots,X_{k,n_k})$. La distribution du i-ème échantillon est notée F_i . Nous admettons **a priori** que $F_i(x) = G(x - \alpha_i)$ où G est une fonction de répartition inconnue mais continue de moyenne μ et les α_i sont des nombres réels. Ainsi nous supposons que le seul paramètre qui diffère d'une distribution F_i à l'autre est un paramètre de position α_i . C'est pourquoi même lorsque vous effectuez un test de Kruskal-Wallis vous devez vous assurer que vous pouvez au moins supposer que les variances des variables sont égales d'un échantillon à l'autre à l'aide d'un test non paramétrique de Levene d'égalité des variances.

Les hypothèses ci-dessus impliquent que nous pouvons écrire, pour tout $1 \le i \le k$ la décomposition suivante :

$$X_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad 1 \leqslant j \leqslant n_i,$$

les $N = \sum_{i=1}^{k} n_i$ variables aléatoires $\epsilon_{i,j}$ étant indépendantes et ayant une même distribution inconnue et de moyenne nulle.

Cas où il n'y a pas d'ex æquo.

La variable KW_N de Kruskal-Wallis est utilisée pour tester l'hypothèse

$$\boxed{\mathcal{H}_0: \alpha_1 = \ldots = \alpha_k = 0}$$

 \mathcal{H}_1 : Il existe au moins un i_0 tel que $\alpha_{i_0} \neq 0$.

Nous commençons par calculer le rang $R_{i,j}$ de $X_{i,j}$ parmi les N valeurs, puis la somme des rangs associée à chaque échantillon : $R_{i,\bullet} = \sum_{j=1}^{n_i} R_{i,j}$ et enfin la moyenne des rangs de

chaque échantillon : $\overline{R_{i,\bullet}} = \frac{R_{i,\bullet}}{n_i}$.

La statistique de Krukal-Wallis KW_N prend en compte l'écart entre la moyenne des rangs de chaque échantillon et la moyenne de tous les rangs, qui vaut (N+1)/2:

$$KW_N = \frac{12}{N(N+1)} \sum_{i=1}^k n_i \left(\overline{R_{i,\bullet}} - \frac{N+1}{2} \right).$$

Sous l'hypothèse nulle \mathcal{H}_0 : « X_1, \ldots, X_k ont la même distribution continue », qui dans notre cas est équivalente à \mathcal{H}_0 : « $\alpha_1 = \ldots = \alpha_k = 0$ », il est possible de déterminer la distribution de KW_N bien que le calcul soit complexe.

- Si l'un des effectifs n_i , $1 \le i \le k$, est inférieur ou égal à 4, nous utilisons une table spécifique.
- Si $n_i \geqslant 5$, pout tout $1 \leqslant i \leqslant k$ nous utilisons l'approximation $KW_N \approx \chi_{k-1}^2$. Pour un seuil de signification de α , nous déterminons c_{α} tel que $\mathbb{P}[KW_N \geqslant c_{\alpha}] \cong \alpha$ et nous rejetons l'hypothèse nulle \mathcal{H}_0 lorsque la valeur prise par KW_N est supérieure à c_{α} .

Cas où il y a des ex æquo.

• Méthode de départition des ex æquo

Nous départageons les ex æquo à l'aide d'une table de nombres aléatoires. À chacune des valeurs égales nous associons un entier au hasard puis nous affectons, par ordre croissant de ces entiers, un rang différent à chaque observation. Ainsi chacun des rangs des observations est différent et nous pouvons directement appliquer les résultats du paragraphe

précédent.

• Méthode des rangs moyens

À chaque nombre appartenant à un groupe d'ex æquo nous attribuons le rang moyen du groupe auquel il appartient puis nous déterminons la somme $T = \sum_{l=1}^h (t_l^3 - t_l)$ où t_l désigne le nombre d'éléments du l—ème groupe d'ex æquo. Il est d'usage de substituer à KW_N la variable KW_N^{\star} définie par :

$$KW_N^{\star} = \frac{KW_N}{1 - \frac{T}{N^3 - N}}.$$

Comparaisons multiples

Si nous rejetons l'hypothèse nulle \mathcal{H}_0 : « $\alpha_1 = \ldots = \alpha_k = 0$ » d'absence de différence entre les distributions F_i des k échantillons, nous pouvons être amenés à nous demander quelles sont les distributions qui sont différentes.

Nous décidons que **deux distributions** F_i et $F_{i'}$ sont significativement différentes au seuil α si :

$$\left|\overline{R_{i,\bullet}} - \overline{R_{i',\bullet}}\right| \geqslant \sqrt{\chi^2(k-1,1-\alpha)} \sqrt{\frac{N(N+1)}{12}} \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}},$$

où $\chi^2(k-1,1-\alpha)$ est le $100(1-\alpha)$ quantile de la loi du χ^2 à k-1 degrés de liberté.

Nous décidons qu'au seuil global α deux distributions F_i et $F_{i'}$, parmi les k(k-1) comparaisons que nous allons faire, sont significativement différentes si :

$$\left|\overline{R_{i,\bullet}} - \overline{R_{i',\bullet}}\right| \geqslant u \left(1 - \frac{\alpha}{k(k-1)}\right) \sqrt{\frac{N(N+1)}{12}} \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}},$$

où $u\left(1-\frac{\alpha}{k(k-1)}\right)$ est le $100\left(1-\frac{\alpha}{k(k-1)}\right)$ quantile de la loi normale centrée réduite. Il s'agit d'une application des inégalités de Bonferroni². Cette procédure est plus puissante que la précédente.

Nous décidons qu'au seuil global α deux distributions F_i et $F_{i'}$, parmi les k(k-1) comparaisons que nous allons faire, sont significativement différentes si :

$$\left|\overline{R_{i,\bullet}} - \overline{R_{i',\bullet}}\right| \geqslant q(k, +\infty, 1 - \alpha) \sqrt{\frac{N(N+1)}{12}} \sqrt{\frac{1}{2} \left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)},$$

²Consulter le chapitre 9 pour plus de détails sur les procédures de comparaisons multiples.

où $q(k, +\infty, 1 - \alpha)$ est le $100(1 - \alpha)$ quantile de la loi de l'étendue studentisée pour k moyennes et $+\infty$ degrés de liberté. Il s'agit d'une procédure analogue à celle de Tukey-Kramer² dans le cas paramétrique et valide asymptotiquement. Elle est généralement plus puissante que les deux approches précédentes.

12.3.2. Les échantillons sont indépendants : Test de Jonckheere-Terpstra

La statistique J_N de Jonckheere-Terpstra permet de raffiner l'approche de la statistique KW_N de Kruskal-Wallis : supposons que les k modalités du facteur pour lequel nous avons réalisé les expériences soient naturellement ordonnées. C'est par exemple le cas dans la situation suivante : vous souhaitez trouver la dose optimale d'engrais à utiliser pour améliorer un rendement. Vous allez donc réaliser des expériences avec des doses de plus en plus importantes d'engrais et les modalités de votre facteur explicatif seront donc naturellement ordonnées par la quantité croissante d'engrais utilisé.

La statistique J_N de Jonckheere-Terpstra permet de tester l'hypothèse :

$$\left[\mathcal{H}_0 : \alpha_1 = \ldots = \alpha_k = 0 \right]$$
 contre

 $|\mathcal{H}_1:\alpha_1\leqslant\ldots\leqslant\alpha_k=0$ et il existe au moins un i_0 tel que $\alpha_{i_0}<\alpha_{i_0+1}$.

Cas où il n'y a pas d'ex æquo.

La statistique J_N est construite à l'aide de toutes les variables de Mann-Whitney $U_{i,j}$, associées à l'échantillon i et l'échantillon j, lorsque $1 \le i < j \le k$:

$$J_N = \sum_{1 \leqslant i < j \leqslant k} U_{i,j}.$$

Sous l'hypothèse nulle \mathcal{H}_0 : « $\alpha_1 = \ldots = \alpha_k = 0$ » :

- L'espérance et la variance de la statistique J_N sont :

$$\mathbb{E}[J_N] = \frac{N^2 - \sum_{i=1}^k n_i^2}{4},$$

$$\operatorname{Var}[J_N] = \frac{1}{72} \left(N^2 (3 + 2N) - \sum_{i=1}^k n_i^2 (3 + 2n_i) \right).$$

- Les valeurs critiques de la statistique J_N sont tabulées pour de faibles valeurs de k et des n_i .
- Lorsque $n_i \geqslant 5$, pour tout $1 \leqslant i \leqslant k$, nous avons l'approximation normale avec correction de continuité :

$$\frac{J_{N} - \mathbb{E}\left[J_{N}\right]}{\sqrt{\operatorname{Var}\left[J_{N}\right]}} \approx \mathcal{N}\left(0, 1\right).$$

Nous cherchons l'entier ϕ_{α} tel que $\mathbb{P}[J_N \geqslant \phi_{\alpha}] \approx \alpha$ puis nous rejetons l'hypothèse nulle \mathcal{H}_0 au seuil α si la valeur prise par la statistique J_N est supérieure ou égale à ϕ_{α} .

Cas où il y a des ex æquo.

Nous pouvons utiliser une méthode de départition des ex æquo ou des tests de Mann-Whitney basés sur des rangs moyens, l'inconvient de la seconde méthode étant que nous ne pouvons utiliser les mêmes tables qu'en absence d'ex æquo.

12.3.3. Les échantillons ne sont pas indépendants : Test de Friedman

Nous nous plaçons ici dans le cas où les échantillons utilisés pour tester l'influence d'un facteur **ne sont pas indépendants**.

Individu	Facteur A					
	1	•••	n			
1	$x_{1,1}$		$x_{n,1}$			
:	:	:	:			
k	$x_{1,k}$		$x_{n,k}$			

Nous construisons alors le tableau des rangs :

Individu	Facteur A			Total
	1	• • •	n	
1	$r_{1,1}$	• • •	$r_{n,1}$	n(n+1)/2
:	:	:	:	n(n+1)/2
k	$r_{1,k}$		$r_{n,k}$	n(n+1)/2
Total	$r_{1,ullet}$		$r_{n,\bullet}$	kn(n+1)/2

Si nous sommes en présence de répétitions $x_{i,j,k}$ nous remplaçons $x_{i,j}$ par la moyenne $\overline{x_{i,j}}$ des valeurs pour chaque cas où il y a des répétitions.

Nous cherchons alors à tester l'hypothèse :

 \mathcal{H}_0 : Les niveaux du facteur ont tous la même influence

contre

 \mathcal{H}_1 : Les niveaux du facteur n'ont pas tous la même influence.

Cas où il n'y a pas d'ex æquo.

La statistique de Friedman $F_{k,n}$ est définie par :

$$F_{k,n} = \frac{12k}{n(n+1)} \sum_{i=1}^{n} \left(\frac{R_{i,\bullet}}{k} - \frac{n+1}{2} \right)^2 = \frac{12}{kn(n+1)} \sum_{i=1}^{n} R_{i,\bullet}^2 - 3k(n+1).$$

Nous admettons que sous l'hypothèse nulle \mathcal{H}_0 : « Les niveaux du facteur ont tous la même influence » les distributions pour chaque individu ne diffèrent que par un paramètre de position, ce que nous pouvons vérifier par un test non paramétrique de Levene par exemple.

- Pour de petites valeurs de k nous utilisons une table spécifique. Il se peut que nous vous fournissions une table du coefficient de concordance $W_{k,n}$ de Kendall car la statistique de Friedman $F_{k,n} = k(n-1)W_{k,n}$.
- Pour des valeurs de k assez grandes nous utilisons l'approximation asymptotique suivante :

$$F_{k,n} \approx \chi_{n-1}^2$$
.

Nous rejetons l'hypothèse nulle \mathcal{H}_0 si la valeur prise par $F_{k,n}$ est trop grande.

Cas où il y a des ex æquo.

• Méthode de départition des ex æquo

Nous départageons les ex æquo à l'aide d'une table de nombres aléatoires. À chacune des valeurs égales nous associons un entier au hasard puis nous affectons, par ordre croissant de ces entiers, un rang différent à chaque observation. Ainsi chacun des rangs des observations est différent et nous pouvons directement appliquer les résultats du paragraphe précédent.

• Méthode des rangs moyens

Dans chaque classement présentant des ex æquo nous attribuons à chacun de ceux-ci le rang moyen du groupe d'ex æquo auquel il appartient et qui n'est pas nécessairement un entier. Lorsque le classement numéro m a h_m groupes d'ex æquo, nous lui attribuons la

somme
$$T_m = \sum_{l=1}^{h_m} \left(t_{l,m}^3 - t_{l,m}\right)$$
 où $t_{l,m}$ désigne le nombre d'éléments du l -ème de ces h_m

groupes. S'il n'y a pas d'ex æquo nous avons évidemment $T_m = 0$ puisque la répartition des n entiers du classement en classes de nombres égaux donne $h_m = n$ et $t_{l,m} = 1$ pour tout l. Alors la statistique de Friedman corrigée est définie par :

$$F_{k,n}^{\star} = \frac{12k(n-1)}{(n^3 - n) - \frac{1}{k} \sum_{m=1}^{k} T_m} \sum_{l=1}^{n} \left(\frac{R_{l,\bullet}}{k} - \frac{n+1}{2}\right)^2$$

$$= \frac{1}{1 - \frac{1}{(n^3 - n)} \frac{1}{k} \sum_{m=1}^{k} T_m} \frac{12k}{n(n+1)} \sum_{l=1}^{n} \left(\frac{R_{l,\bullet}}{k} - \frac{n+1}{2}\right)^2.$$

Nous en déduisons que :

$$F_{k,n}^{\star} = \frac{F_{k,n}}{1 - \frac{1}{(n^3 - n)} \frac{1}{k} \sum_{m=1}^{k} T_m}.$$

12.4. Les tests non paramétriques sur nk échantillons : 2 facteurs

12.4.1. Les échantillons sont indépendants : Test de Friedman

Nous nous plaçons ici dans le cas où les échantillons utilisés pour tester l'influence d'un facteur sont indépendants.

Facteur B	Facteur A					
	1	• • •	n			
1	$x_{1,1}$		$x_{n,1}$			
:	:	:	:			
k	$x_{1,k}$		$x_{n,k}$			

Nous construisons alors le tableau des rangs :

Facteur B	Facteur A			Total
	1	• • •	n	
1	$r_{1,1}$	• • •	$r_{n,1}$	n(n+1)/2
:	:	:	:	n(n+1)/2
k	$r_{1,k}$		$r_{n,k}$	n(n+1)/2
Total	$r_{1,\bullet}$		$r_{n,ullet}$	kn(n+1)/2

Si nous sommes en présence de répétitions $x_{i,j,k}$ nous remplaçons $x_{i,j}$ par la moyenne $\overline{x_{i,j}}$ des valeurs pour chaque cas où il y a des répétitions.

Nous admettons **a priori** que l'influence des couples de niveaux (A_i, B_j) des facteurs A et B, pour $1 \le i \le n, 1 \le j \le k$, se traduit par une décomposition de la forme :

$$X_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad 1 \leqslant i \leqslant n, \quad 1 \leqslant j \leqslant k$$

avec $\sum_{i=1}^{n} \alpha_i = 0$ et $\sum_{j=1}^{k} \beta_j = 0$. Les $N = \sum_{i=1}^{n} k = n \times k$ variables aléatoires $\epsilon_{i,j}$ étant indépendantes et ayant une même distribution inconnue et de moyenne nulle.

Cas où il n'y a pas d'ex æquo.

La variable $F_{k,n}$ de Friedman est utilisée pour tester l'hypothèse

$$\left[\mathfrak{H}_0 : \alpha_1 = \ldots = \alpha_n = 0 \right]$$

 \mathcal{H}_1 : Il existe au moins un i_0 tel que $\alpha_{i_0} \neq 0$.

Nous commençons par calculer le rang $R_{i,j}$ de $X_{i,j}$ parmi les n valeurs de la colonne i, puis la somme des rangs associée à chaque colonne : $R_{i,\bullet} = \sum_{j=1}^k R_{i,j}$ et enfin la moyenne des rangs de chaque colonne : $\overline{R_{i,\bullet}} = \frac{R_{i,\bullet}}{k}$.

La statistique de Friedman $F_{k,n}$ est définie par :

$$F_{k,n} = \frac{12k}{n(n+1)} \sum_{i=1}^{n} \left(\frac{R_{i,\bullet}}{k} - \frac{n+1}{2} \right)^2 = \frac{12}{kn(n+1)} \sum_{i=1}^{n} R_{i,\bullet}^2 - 3k(n+1).$$

- Pour de petites valeurs de k nous utilisons une table spécifique. Il se peut que nous vous fournissions une table du coefficient de concordance $W_{k,n}$ de Kendall car $F_{k,n} = k(n-1)W_{k,n}$.
- Pour des valeurs de k assez grandes nous utilisons l'approximation asymptotique suivante :

$$F_{k,n} \approx \chi_{n-1}^2$$
.

Nous rejetons l'hypothèse nulle \mathcal{H}_0 si la valeur prise par la statistique de Friedman $F_{k,n}$ est trop grande.

Si nous voulions également tester l'influence du facteur B nous aurions analysé les tableaux ci-dessous avec la même méthode.

Facteur A	Facteur B				
	1		n		
1	$x_{1,1}$	• • •	$x_{n,1}$		
i i	:	:	:		
k	$x_{1,k}$	• • •	$x_{n,k}$		

Facteur A	Facteur B			Total
	1	• • •	n	
1	$r_{1,1}$	• • •	$r_{n,1}$	n(n+1)/2
:	:	:	:	n(n+1)/2
k	$r_{1,k}$		$r_{n,k}$	n(n+1)/2
Total	$r_{1,\bullet}$		$r_{n,ullet}$	kn(n+1)/2

Comme nous avons échangé le rôle du facteur A et du facteur B nous testons maintenant :

 \mathcal{H}_0 : Les niveaux du facteur B ont tous la même influence

contre

 $|\mathcal{H}_1|$: Les niveaux du facteur B n'ont pas tous la même influence.

Nous ne pouvons pas tester l'existence d'une interaction par cette méthode puisque le modèle utilisé ne comporte pas de terme d'interaction. Il existe d'autres tests pour étudier l'existence d'une interaction.

Cas où il y a des ex æquo.

• Méthode de départition des ex æquo

Nous départageons les ex æquo à l'aide d'une table de nombres aléatoires. À chacune des valeurs égales nous associons un entier au hasard puis nous affectons, par ordre croissant de ces entiers, un rang différent à chaque observation. Ainsi chacun des rangs des observations est différent et nous pouvons directement appliquer les résultats du paragraphe précédent.

• Méthode des rangs moyens

Dans chaque classement présentant des ex æquo nous attribuons à chacun de ceux-ci le rang moyen du groupe d'ex æquo auquel il appartient et qui n'est pas nécessairement un entier. Lorsque le classement numéro m a h_m groupes d'ex æquo, nous lui attribuons la

somme
$$T_m = \sum_{l=1}^{h_m} (t_{l,m}^3 - t_{l,m})$$
 où $t_{l,m}$ désigne le nombre d'éléments du l -ème de ces h_m

groupes. S'il n'y a pas d'ex æquo nous avons évidemment $T_m = 0$ puisque la répartition des n entiers du classement en classes de nombres égaux donne $h_m = n$ et $t_{l,m} = 1$ pour tout l. Alors la statistique de Friedman corrigée est définie par :

$$F_{k,n}^{\star} = \frac{12k(n-1)}{(n^3 - n) - \frac{1}{k} \sum_{m=1}^{k} T_m} \sum_{l=1}^{n} \left(\frac{R_{l,\bullet}}{k} - \frac{n+1}{2}\right)^2$$

$$= \frac{1}{1 - \frac{1}{(n^3 - n)} \frac{1}{k} \sum_{m=1}^{k} T_m} \frac{12k}{n(n+1)} \sum_{l=1}^{n} \left(\frac{R_{l,\bullet}}{k} - \frac{n+1}{2}\right)^2.$$

Nous en déduisons que :

$$F_{k,n}^{\star} = \frac{F_{k,n}}{1 - \frac{1}{(n^3 - n)} \frac{1}{k} \sum_{m=1}^{k} T_m}.$$

12.5. Exercices

Les données des deux premiers exercices sont inspirées du livre de G. Pupion et P.-C. Pupion, éditions Economica.

Exercice 1. Économie

Nous mesurons un indice économique sur onze entreprises. Nous sommes amenés à nous poser la question suivante : « Pouvons-nous considérer que la médiane associée à cet indice est nulle ? »

Entreprise	Indice
1	1
2	4
3	10
4	20
5	0,5
6	-3
7	-7
8	5
9	4
10	3
11	1

.

Exercice 2. Étude d'activité

Nous disposons de la variation du chiffre d'affaires de 20 entreprises dans un même secteur d'activité. Le chiffre d'affaires dans ce secteur d'activité est-il resté stable?

Entreprise	1	2	3	4	5	6	7	8	9	10
x_i	-25	-2156	4525	2697	-379	404	-1123	-1733	-2658	-477
Entreprise	11	12	13	14	15	16	17	18	19	20
x_i	-3568	-12071	165	269	-4306	-983	-582	-1897	-1412	662

.

Exercice 3. Âge des arbres

Nous souhaitons évaluer une nouvelle méthode permettant de déterminer l'âge d'un arbre sans avoir à l'abattre. Pour ce faire, nous sacrifions 11 arbres pour lesquels nous avons réalisé les deux types mesures : estimation de l'âge de l'arbre à l'aide de la méthode dont nous souhaitons tester l'efficacité puis calcul de l'âge exact de l'arbre après abattage. Nous avons reporté les données dans le tableau ci-dessous :

Arbre	1	2	3	4	5	6	7	8	9	10	11
Âge estimé avant abattage	29	28	42	32	22	32	28	21	30	23	39
Âge réel après abattage	25	24	38	27	19	28	24	22	26	19	34

Pouvons-nous nous fier aux résultats de la nouvelle méthode proposée pour estimer l'âge d'un arbre ?

Exercice 4. Hauteurs des arbres

Nous souhaitons comparer la hauteur des arbres de deux types de hêtraies. Pouvons-nous dire, à l'aide des mesures de taille exprimées en m et que nous avons reportées dans le tableau ci-dessous, qu'il y a une différence entre les tailles moyennes des arbres des deux hêtraies?

Type 1	Type 2	Type 1	Type 2
23,4	22,5	24,4	22,9
24,6	23,7	24,9	24,0
25,0	24,4	26,2	24,5
26,3	25,3	26,8	26,0
26,8	26,2	26,9	26,4
27,0	26,7	27,6	26,9
27,7	27,4		28,5

Nous disposons désormais de mesures de taille, exprimées en m, provenant d'une troisième hêtraie.

Type 3 18,9 21,1	21,2 22,1	22,5 23,6	24,5	24,6	26,2	26,7
----------------------	-------------	-------------	------	------	------	------

Y a-t-il des différences entres les tailles moyennes des arbres provenant des trois différentes hêtraies?

.

Exercice 5. Rendements fouragers

Nous nous intéressons à l'ensemble des prairies d'une région donnée et nous souhaitons identifier l'importance, absolue ou relative, de la variabilité de la production fourragère, d'une part, d'une prairie à l'autre, et d'autre part, d'un endroit à l'autre, à l'intérieur des différentes prairies. Dans ce but, nous avons tout d'abord choisi au hasard trois prairies, dans l'ensemble du territoire, puis au sein de chacune de ces trois prairies, cinq petites parcelles, de deux mètres carrés. Dans l'optique d'un échantillonnage à deux degrés, les trois prairies constituent trois unités du premier degré, et les quinze petites parcelles quinze unités du deuxième degré.

Dans chacune des petites parcelles, nous avons mesuré les rendements en matière sèche à une date donnée. Les valeurs observées, exprimées en tonne par hectare, figurent dans le tableau ci-dessous.

	Prairie 1	Prairie 2	Prairie 3
Parcelle 1	2,06	1,59	1,92
Parcelle 2	2,99	2,63	1,85
Parcelle 3	1,98	1,98	2,14
Parcelle 4	2,95	2,25	1,33
Parcelle 5	2,70	2,09	1,83

Les rendements sont-ils homogènes?

.

Exercice 6. Impact de promotions

Un dirigeant de magasin à succursales multiples envisage de faire trois types de promotions P1, P2 et P3 qui ont un coût sensiblement égal. Afin de déterminer celle qui sera finalement retenue, il fait tester les trois possibilités de promotion par un total de 10 magasins : 3 pour P1, 3 pour P2 et 4 pour P3. Le relevé de δ , le taux d'accroissement du chiffre d'affaires, exprimé en %, de chacun de ces magasins a été reporté dans le tableau ci-dessous.

Promotion 1	2,1	3,5	4,0	3,1	2,3	
Promotion 2	1,8	3,6	4,3	2,7	5,1	
Promotion 3	2,2	2,5	3,1	3,8	6,0	3,5

En utilisant la statistique de Jonckheere-Terpstra, déterminer si les promotions ont la même influence sur δ le taux d'accroissement du chiffre d'affaires.

.

Exercice 7. Comparaison de résultats

Nous disposons de trente échantillons dont nous souhaitons déterminer la teneur en un composé chimique donné. Chacun d'entre eux est analysé avec trois méthodes différentes d'analyse chimique. Les résultats obtenus ont été reproduits dans le tableau ci-dessous.

	N	I éthoc	le		N	léthoc	le
Échantillon	1	2	3	Échantillon	1	2	3
1	133	129	138	16	153	150	152
2	131	132	138	17	125	123	122
3	119	121	121	18	124	120	124
4	124	124	121	19	127	125	124
5	123	124	124	20	136	132	130
6	122	122	123	21	131	130	133
7	127	131	135	22	136	136	133
8	116	116	115	23	123	120	123
9	116	118	122	24	123	117	116
10	104	101	101	25	122	118	121
11	119	117	115	26	101	104	107
12	126	120	121	27	96	97	98
13	96	93	93	28	108	106	108
14	100	97	99	29	124	122	119
15	103	99	102	30	137	136	134

Observons-nous une différence entre les résultats des différentes méthodes d'analyse chimique?

.

Exercice 8. Compotes de pommes

Lors d'une évaluation sensorielle, 31 personnes ont jugé 6 compotes de pommes sur la base de critères relatifs à l'odeur, l'aspect, la texture et la saveur. À la fin chacun attribue une note allant de 0 (je n'aime pas du tout) à 10 (j'aime beaucoup), avec une précision de un dixième. Nous considérerons ces notes comme issues de réalisations de variables quantitatives continues. Le tableau ci-dessous reprend un extrait des $31 \times 6 = 186$ données sur lesquelles sont réalisées les analyses.

Les résultats ont été reportés dans les tableaux suivants. Pouvons-nous mettre en évidence l'influence d'un des facteurs Juge ou Produit sur la note finale?

										r					r	1											
Note	5	3	0	0	7	0	1	9	1	6	7	3	0	0	9	0	2	0	∞	0	3	2	1	0	ಬ	9	ಬ
Produit	delisse	delisse	poti	dnoss	st mamet	dnoos	poti	poti	andros	carrefour	carrefour	st mamet	dnoss	poti	delisse	poti	delisse	st mamet	andros	dnoss	andros	poti	carrefour	poti	st mamet	dnoos	delisse
Ordre	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9
Juge	1	2	2	3	4	4	ಬ	9	9	∞	10	10	11	13	13	15	16	16	17	18	18	20	22	22	23	24	24
Note	1	9	7	∞	3	2	П	33	0	2	9	∞	0	9	0	П	9	П	7	ಬ	0	33	4	1	2	3	0
Produit	st mamet	dnoss	st mamet	poti	poti	delisse	dnoss	carrefour	dnoss	dnoss	delisse	dnoss	carrefour	andros	dnoss	dnoss	carrefour	andros	delisse	delisse	poti	dnoss	dnoss	andros	delisse	st mamet	poti
Ordre	3	1	ಬ	3	1	ರ	3	1	ಬ	3	1	ಬ	3	1	2	3	1	ಬ	3	П	ಬ	3	1	ಬ	3	1	2
Juge	1	2	2	က	4	4	ಬ	9	9	∞	10	10	11	13	13	15	16	16	17	18	18	20	22	22	23	24	24
Note	4	7	33	6	0	2	2	33	П	6	∞	9	0	33	2	3	9	33	1	0	ಬ	33	4	1	7	4	4
Produit	dnoss	carrefour	carrefour	andros	delisse	andros	carrefour	st mamet	st mamet	delisse	andros	andros	st mamet	poti	carrefour	andros	carrefour	dnoss	st mamet	poti	st mamet	delisse	andros	delisse	andros	dnoss	carrefour
Ordre	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4
Juge	1	1	2	3	3	4	ಬ	ಬ	9	8	∞	10	11	11	13	15	15	16	17	17	18	20	20	22	23	23	24
Note	4	2	ಬ	7	0	7	6	0	4	7	7	2	∞	0	8	5	1	1	ಬ	4	1	4	2	3	4	3	0
Produit	andros	poti	andros	st mamet	carrefour	carrefour	delisse	andros	delisse	poti	st mamet	poti	andros	delisse	st mamet	st mamet	delisse	poti	dnoss	carrefour	carrefour	carrefour	st mamet	st mamet	poti	carrefour	andros
Ordre	1	ಬ	က	1	ಬ	33	П	ಬ	က	1	ಬ	33	T	ಬ	33	П	ಬ	33	1	ಬ	33	1	ಬ	က	1	ಬ	3
Juge	1	П	2	3	3	4	ಬ	ಬ	9	∞	∞	10	11	11	13	15	15	16	17	17	18	20	20	22	23	23	24

_				_	_				_	_	_								_	_
Note	1	2	2	3	9	2	5	6	∞	0	2	9	4	ಬ	3	2	9	4	1	
Produit	poti	st mamet	carrefour	delisse	dnoss	delisse	andros	delisse	st mamet	poti	poti	delisse	st mamet	delisse	st mamet	st mamet	poti	andros	andros	
Ordre	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	
$_{ m Juge}$	56	27	27	28	29	29	30	31	31	36	39	39	41	42	42	44	46	46	47	
Note	2	2	7	2	∞	4	3	4	0	2	7	3	ಬ	ಬ	3	3	4	0	1	
Produit	carrefour	poti	delisse	st mamet	st mamet	andros	dnoss	andros	dnoss	carrefour	dnoss	andros	carrefour	carrefour	dnoss	delisse	carrefour	dnos	carrefour	
Ordre	3	1	ಬ	3	1	ಬ	3	1	ಬ	3	1	ಬ	3	1	ಬ	3	1	5	3	
Juge	26	27	27	28	59	59	30	31	31	36	39	39	41	42	42	44	46	46	47	
Note	2	4	3	3	33	9	ಬ	2	1	T	1	ಬ	4	2	ಬ	9	2	4	3	0
Produit	andros	st mamet	dnos	carrefour	andros	carrefour	delisse	poti	carrefour	dnoss	andros	carrefour	andros	dnos	andros	dnoss	carrefour	delisse	delisse	dnoss
Ordre	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9	4	2	9
Juge	56	56	27	28	28	59	30	30	31	36	36	39	41	41	42	44	44	46	47	47
Note	ಸ	0	9	3	0	2	7	4	1	3	1	3	∞	10	7	9	2	0	∞	4
Produit	delisse	dnoss	andros	dnoss	poti	poti	carrefour	st mamet	poti	st mamet	delisse	st mamet	delisse	poti	poti	andros	poti	st mamet	poti	st mamet
Ordre	1	ಬ	က	1	ಬ	က	1	ಬ	က	1	ಬ	3	1	ಬ	3	1	ಬ	3	1	ಬ
Juge	26	56	27	28	28	59	30	30	31	36	36	39	41	41	42	44	44	46	47	47

Chapitre 12.	Quelques tests n	on paramétriques

Chapitre 13

Valeurs non représentatives.

13.1. Valeurs extrêmes, valeurs non représentatives

La plupart des distributions statistiques ont la majeure partie de leurs réalisations comprises dans un intervalle d'une largeur de 6 écarts types autour de la moyenne μ . Par exemple dans le cas de la loi normale de paramètres μ et σ , la probabilité d'obtenir une valeur dans un intervalle $[\mu - 3\sigma, \mu + 3\sigma]$ est de 99,8 %. Il ne faut pas déduire de cette propriété que nous n'observerons jamais de réalisations se trouvant en dehors de cet intervalle dans la pratique. En effet, bien que la soit probabilité de se trouver face à une telle situation soit faible, elle n'est pas nulle. De surcroît, plus l'effectif de l'échantillon est important, plus ce cas de figure est susceptible de se produire.

En effet, comme vous le savez, en notant X une variable aléatoire d'espérance μ et d'écart type σ et n le nombre de réalisations de X que nous considérons, la fréquence théorique de l'évènement considéré est

$$n \times (1 - \mathbb{P}[-3\sigma \leqslant X - \mu \leqslant +3\sigma])$$
.

En considérant le cas d'un loi normale de moyenne $\mu=0$ et d'écart type $\sigma=1$, nous obtenons :

$$n\times (1-\mathbb{P}\left[-3\leqslant X\leqslant +3\right])=n\times 0,00270.$$

Ainsi pour un effectif de 400 la fréquence attendue est de 1,080.

Plus généralement, l'inégalité de Bienaymé-Tchebychev, valable pour toute variable aléatoire Y admettant une variance σ_Y^2 , et par conséquent une moyenne μ_Y , permet d'obtenir la relation non paramétrique suivante :

$$\Phi_{Y}(\lambda) = 1 - \mathbb{P}\left[\mu - \lambda\sigma < Y < \mu + \lambda\sigma\right] \leqslant \frac{1}{\lambda^{2}}.$$

Ainsi pour toute variable aléatoire Y dont la loi est une distribution de probabilité admettant une variance l'évènement $\mathbb{P}[|Y - \mu| \ge 2\sigma]$ a au plus une probabilité de 1/4 = 0, 25 et l'évènement $\mathbb{P}[|Y - \mu| \ge 3\sigma]$ a au plus une probabilité de $1/9 \approx 0, 11$. Notons que cette estimation est trop pessimiste pour un emploi pratique et est donc exclusivement réservée au cas où nous ne connaissons rien sur la loi de Y.

¹Les références [Par74], [Tho02] ayant servi à l'élaboration de ce chapitre sont mentionnées dans la bibliographie.

Exemple 13.1.1.

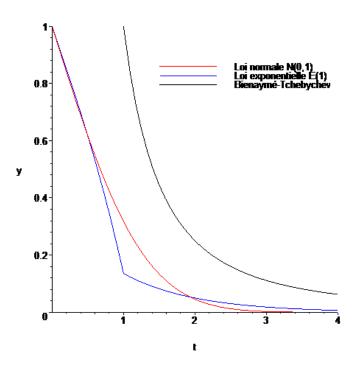


Fig. 13.1 - Graphique : Inégalité de Bienaymé-Tchebychev.

Dans le graphique ci-dessus, la valeur de la probabilité Φ_Y est réprésentée sur l'axe des ordonnées en fonction de la valeur de λ qui varie selon l'axe des abscisses.

Trois courbes ont été tracées, l'une associée à l'inégalité de Bienaymé-Tchebychev, les deux autres étant les valeurs exactes des probabilités Φ_Y pour une loi normale centrée-réduite $\mathcal{N}(0,1)$ et pour une loi exponentielle de moyenne 1, $\mathcal{E}(1)$.

13.2. Que vérifier?

Lorsque que vous rencontrez ce type de valeurs dans un échantillon vous devez avoir la réaction suivante :

- L'hypothèse qui est faite sur la loi de ma variable aléatoire est-elle fondée? Une alternative non paramétrique ou robuste n'est-elle pas préférable dans ma situation? Certains des phénomènes que vous étudiez sont connus pour avoir des modélisations qui ont déjà été étudiées. Vous devez alors vous référer à la bibliographie pour déterminer si la modélisation que nous faisons est en accord avec les connaissances a priori que nous avons du phénomène.
- Si nous utilisons un modèle statistique, les autres hypothèses sous-jacentes au modèle sont-elles toutes vérifiées?
- Les données sont-elles fiables? Si vous les avez récoltées, les conditions expérimentales étaient-elles semblables à celles que vous avez fixées ou observées lors des autres essais?
- Ne s'agit-il pas d'une simple erreur de copie et donc alors d'une valeur aberrante?

13.3. Que faire avec une valeur potentiellement nonreprésentative?

Si vous soupçonnez une valeur d'être une valeur non représentative, il existe plusieurs procédures de tests possibles. Attention, il ne faut pas abuser de ces pratiques et ne les utiliser que pour des cas légitimes. De plus si vous soupçonnez plusieurs valeurs d'être des valeurs non représentatives, nous verrons par la suite comment il faut procéder : il ne s'agit pas simplement de répéter le traitement d'une seule valeur non représentative plusieurs fois de suite. Outre les problèmes d'évaluation du risque de première espèce, la présence d'autre valeurs non représentatives peut fausser les résultats des tests.

13.3.1. Notations

Soit $\mathbf{x} = (x_1, \dots, x_n)$ un n-échantillon d'une variable aléatoire X.

Notons $x_{(1)}, \ldots, x_{(n)}$ les valeurs x_1, \ldots, x_n ordonnées dans l'ordre croissant $(x_{(1)} \leqslant x_{(2)} \leqslant \ldots \leqslant x_{(n)})$. Nous notons $\boldsymbol{x}_{(\bullet)}$ ce nouvel échantillon.

Le classement des valeurs de x ne change ni la valeur de la moyenne de l'échantillon, notée \bar{x} , ni celle de l'écart type de l'échantillon, noté s(x). En effet nous montrons que :

$$\bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} x_{(i)} = \bar{\boldsymbol{x}}_{(\bullet)},$$

$$s^2(\boldsymbol{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{\boldsymbol{x}})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_{(i)} - \bar{\boldsymbol{x}}_{(\bullet)})^2 = s^2(\boldsymbol{x}_{(\bullet)}).$$

Nous appelons variation d'un échantillon x la quantité VA(x):

$$VA(\boldsymbol{x}) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
$$= (n-1) s^2(\boldsymbol{x}) = (n-1) s^2(\boldsymbol{x}_{(\bullet)}) = VA(\boldsymbol{x}_{(\bullet)}).$$

La variation n'est pas affectée par le classement des valeurs dans l'ordre croissant.

Nous appelons somme des carrés d'un échantillon x la quantité SC(x):

$$SC(\boldsymbol{x}) = \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_{(i)}^2 = SC(\boldsymbol{x}_{(\bullet)}).$$

La somme des carrés n'est pas affectée par le classement des valeurs dans l'ordre croissant.

Nous considérerons **systématiquement** dans ce chapitre que X suit une **loi normale**. Il est possible de réaliser les mêmes types de tests pour des variables aléatoires qui suivent des lois autres que la loi normale; il faut alors utiliser d'autres valeurs critiques que celles qui vous ont été fournies.

13.3.2. Test de Grubbs pour une seule valeur non représentative

Nous construisons les trois statistiques suivantes :

$$T = \max\left(T_1, T_n\right),\,$$

avec

$$T_1 = \frac{(\bar{x} - x_{(1)})}{s},$$

$$T_n = \frac{(x_{(n)} - \bar{x})}{s},$$

où \bar{x} est la moyenne de l'échantillon $\mathbf{x} = (x_1, \dots, x_n)$ et s est son écart type, donc corrigé. Nous utilisons T_1 ou T_n si nous suspectons la présence d'une valeur non représentative dans une direction donnée et T si nous n'avons pas d'idée a priori sur la direction dans laquelle il pourrait y avoir une valeur non représentative. En effet T_1 mesure la déviation de la plus petite valeur de l'échantillon par rapport à la moyenne standardisée par l'écart type corrigé de l'échantillon. De même T_n mesure la déviation de la plus grande valeur de l'échantillon par rapport à la moyenne standardisée par l'écart type corrigé de l'échantillon.

Nous comparons alors la valeur de T_1, T_n ou T avec la valeur de référence correspondante de la table adéquate (Table de Grubbs). Ainsi pour T_1 et T_n nous prendrons la valeur du $(1-\alpha)$ % quantile et pour T celle du $(1-\alpha/2)$ % quantile.

Exemple 13.3.1.

i	1	2	3	4	5
$ x_i $	0,26787	3,01367	-0,27047	-7,61567	-4,60385
$x_{(i)}$	-7,61567	-4,60385	-1,11060	-0,82072	-0,27047
i	6	7	8	9	10
x_i	0,54445	-0,10821	1,99539	-1,11060	-0,82072
$x_{(i)}$	-0,10821	0,26787	0,54445	1,99539	3,01367

 $T_1 = 2,85558$ et $T_{10} = 0,79458$ donc T = 2,85558. La valeur de T est supérieure à celle de la table pour $\alpha = 5$ % (2,290). Nous avons donc détecté une valeur non représentative. Nous en déduisons que $x_{(1)} = -7,61567$ ou que $x_{(10)} = 3,01367$ est une valeur non représentative avec un risque de première espèce de 5 %. Nous aurions pu procéder uniquement au test de $x_{(1)}$ ou respectivement de $x_{(10)}$ à l'aide de la statistique T_1 ou respectivement de T_{10} . Pour un risque de première espèce de 5 %, la valeur critique à utiliser avec les statistiques T_1 et T_{10} est de 2,176. Nous en déduisons que $x_{(1)} = -7,61567$ est une valeur non représentative avec un risque de première espèce de 5 %.

• • • • • • • •



Fig. 13.2 - Graphique : Test de normalité.

13.3.3. Test de Dixon pour une seule valeur non représentative

La statistique du test de Dixon pour détecter une seule valeur non représentative parmi les grandes valeurs de l'échantillon, $r_{1,0}$, est le rapport entre l'écart entre les deux observations les plus grandes et l'étendue de l'échantillon.

$$r_{1,0} = \frac{x_{(n)} - x_{(n-1)}}{x_{(n)} - x_{(1)}}.$$

La statistique du test de Dixon pour détecter une valeur non représentative parmi les petites valeurs de l'échantillon, $r'_{1,0}$, est le rapport entre l'écart entre les deux observations les plus petites et l'étendue de l'échantillon.

$$r'_{1,0} = \frac{x_{(2)} - x_{(1)}}{x_{(n)} - x_{(1)}}.$$

En posant $r = \max(r_{1,0}, r'_{1,0})$, nous obtenons une statistique de test, r, permettant de tester la présence d'une valeur non repésentative dans l'une des deux directions. Nous comparons alors la valeur de $r_{1,0}, r'_{1,0}$ ou r avec la valeur de référence, au niveau α , de la table de Dixon.

Notons qu'il s'agit du test le plus simple à réaliser en pratique puisqu'il ne nécessite que peu de calculs.

Exemple 13.3.2.

Nous reprenons les données de l'exemple ci-dessus. Nous avons alors :

$$x_{(1)} = -7,61567,$$

$$x_{(2)} = -4,60385,$$

$$x_{(9)} = 1,99539,$$

$$x_{(10)} = 3,01367,$$

$$x_{(10)} - x_{(1)} = 10,62934.$$

Nous calculons:

$$r_{1,0} = 0,09580,$$

 $r'_{1,0} = 0,28335,$
 $r = 0,28335.$

La valeur critique, pour $\alpha = 5$ % et n = 10, est de 0,412 pour $r_{1,0}$ et $r'_{1,0}$. Celle pour r est égale à 0,469.

Nous constatons qu'aucune des réalisations des statistiques de test n'est supérieure à la valeur critique au seuil $\alpha = 5$ % qui lui est associée. Les tests ne sont donc pas significatifs. Ainsi pour ces procédures de tests il n'y a pas de valeurs non représentatives.

Cette conclusion n'est pas la même que celle du test de Grubbs. Afin de savoir quel crédit nous pouvons lui accorder nous devrions calculer le risque de deuxième espèce associé à une telle décision. Malheureusement sa détermination n'est pas aisée et nous ne pourrons le faire ici.

.

Notons que le test de Dixon proposé ci-avant ne parvient pas à détecter ni la valeur non-représentative $x_{(10)}$ de la partie supérieure de l'échantillon, ni la valeur non-représentative $x_{(1)}$ de la partie inférieure de l'échantillon. Ceci peut être dû à un effet masquant lié aux valeurs de $x_{(1)}$, $x_{(2)}$ et $x_{(9)}$.

Nous introduisons alors les statistiques $r_{j,k}$ suivantes qui permettent de ne pas tenir compte des j-1 valeurs les plus fortes, $x_{(n-1)}, \ldots, x_{(n-j+1)}$, et des k valeurs les plus faibles de l'échantillon, $x_{(1)}, \ldots, x_{(k+1)}$, lors du test de la valeur $x_{(n)}$. En effet si celles-ci sont elles aussi non représentatives, cela peut fausser le résultat du test.

$$r_{j,k} = \frac{x_{(n)} - x_{(n-j)}}{x_{(n)} - x_{(k+1)}}.$$

Symétriquement, nous introduisons les statistiques $r'_{j,k}$ pour la détermination de la représentativité de $x_{(1)}$ sans tenir compte des valeurs les plus fortes ou les plus faibles.

$$r'_{j,k} = \frac{x_{(j+1)} - x_{(1)}}{x_{(n-k)} - x_{(1)}}.$$

Quelles valeurs choisir pour les valeurs de j et de k?

Dixon a formulé les recommandations d'utilisation suivantes. Si l'effectif n de l'échantillon est inférieur ou égal à 7, il faut utiliser j=1 et k=0. Si $8 \le n \le 14$, il faut utiliser j=2 et k=1. Enfin si $n \ge 15$, il faut utiliser j=2 et k=2.

Exemple 13.3.3.

L'effectif de l'échantillon utilisé dans les exemples ci-dessus est de 10. Calculons donc $r_{2,1}$ et $r_{2,1}'$:

$$r_{2,1} = \frac{x_{(10)} - x_{(8)}}{x_{(10)} - x_{(2)}}$$

$$= \frac{3,01367 - 0,54445}{3,01367 - (-4,60385)} = 0,32415,$$

$$r'_{2,1} = \frac{x_{(3)} - x_{(1)}}{x_{(9)} - x_{(1)}}$$

$$= \frac{-1,11060 - (-7,61567)}{1,99539 - (-7,61567)} = 0,67683.$$

Les valeurs critiques du test sont : pour $\alpha = 10 \%$, 0,551, pour $\alpha = 5 \%$, 0,612, et pour $\alpha = 1 \%$, 0,726. Ainsi, même au seuil $\alpha = 10 \%$, le test basé sur $r_{2,1}$ n'est pas significatif : $x_{(10)}$ n'est pas une valeur non-représentative. Par contre, aux seuils $\alpha = 10 \%$ et $\alpha = 5 \%$, le test basé sur $r_{2,1}'$ est significatif. Ainsi après avoir éliminé l'effet masquant de $x_{(2)}$, nous pouvons à nouveau mettre en évidence la non représentativité de $x_{(1)}$.

.

L'exemple que nous venons de traiter pose le problème pratique suivant : en utilisant r ou $r'_{1,0}$ les tests ne sont pas significatifs. Tandis qu'en utilisant $r'_{2,1}$, le test est significatif. Cette situation ne serait-elle pas due au fait que la valeur $x_{(2)}$ n'est pas, elle non plus, représentative. Or si, comme dans cet exemple, nous soupçonnons non pas la présence d'une valeur non représentative mais de plusieurs, il existe d'autres procédures de tests à appliquer qui seront détaillées à la section 13.4 et à la section 13.6.

13.3.4. Test basé sur l'étendue

La statistique du test basé sur l'étendue de l'échantillon est :

$$u = \frac{x_{(n)} - x_{(1)}}{s},$$

où nous rappelons que l'étendue e d'un échantillon est la longueur de l'intervalle séparant la plus petite valeur de la plus grande valeur de l'échantillon, entre d'autres termes, $e = x_{(n)} - x_{(1)}$. Ce test permet de détecter une valeur non représentative dans l'une quelconque des directions, c'est-à-dire à la fois une valeur trop faible ou trop forte. Il est néanmoins plus naturel de s'en sevir pour tester la paire de valeurs potentiellement non représentative $(x_{(1)}, x_{(n)})$ puisque nous comparons l'étendue e de l'échantillon à son écart type e.

Exemple 13.3.4.

En reprenant les données ci-dessus, calculons u pour notre exemple :

$$u = \frac{3,01367 - (-7,61567)}{3,10974} = 3,41808.$$

Les valeurs critiques pour $\alpha=5$ % et $\alpha=10$ % sont respectivement 3,68 et 3,57. Ainsi à aucun de ces niveaux le test n'est significatif. La paire $(x_{(1)},x_{(n)})$ n'est pas constituée de valeurs toutes les deux non représentatives, ce qui est bien cohérent avec les résultats précédents.

• • • • • • • •

13.4. Test simultané de k valeurs non représentatives

Le nombre k est ici fixé avant la procédure de test. Le cas où k serait également à déterminer sera abordé aux sections 13.5 et 13.6.

13.4.1. Test de Grubbs pour k valeurs non représentatives dans une direction donnée

La statistique exposée ci-après a été proposée par Grubbs en 1950 pour k=2 puis étendue par Tietjen and Moore en 1972 au cas 1 < k < n. À la fois la queue de la distribution (valeurs fortes ou valeurs faibles) dans laquelle nous procédons au test et le nombre de valeurs testées k doivent être fixés à l'avance. Nous notons L_k les statistiques associées à la détection de valeurs non représentatives parmi les fortes valeurs de l'échantillon et L_k^* celles associées à la recherche parmi les faibles valeurs de l'échantillon.

$$L_k = \frac{\sum_{i=1}^{n-k} (x_{(i)} - \bar{x}_{n-k})^2}{(n-1)s^2}$$

où \bar{x}_{n-k} est la moyenne des n-k plus petites valeurs de l'échantillon, c'est-à-dire $\bar{x}_{n-k} = \frac{1}{n-k} \sum_{i=1}^{n-k} x_{(i)}$ et s^2 est toujours la variance corrigée de l'échantillon de taille n.

$$L_k^{\star} = \frac{\sum_{i=k+1}^{n} (x_{(i)} - \bar{x}_{n-k}^{\star})^2}{(n-1)s^2}$$

où \bar{x}_{n-k}^{\star} est la moyenne des n-k plus grandes valeurs de l'échantillon, c'est-à-dire $\bar{x}_{n-k}^{\star}=\frac{1}{n-k}\sum_{i=k+1}^n x_{(i)}.$

Ainsi dans chacun des deux cas nous faisons le rapport de la somme des carrés des déviations à la moyenne de l'échantillon privé des k valeurs que nous suspectons d'être non représentatives par la somme des carrés des déviations à la moyenne de l'échantillon tout entier. Ces rapports sont toujours inférieurs ou égaux à 1. Une valeur proche de 0 indiquera que la présence des valeurs testées augmente de manière conséquente la variation de l'échantillon. Nous comparerons la réalisation du test au quantile à α %.

Exemple 13.4.1.

Reprenons toujours les mêmes données. Les résultats des tests de Dixon nous ont confirmé le fait que $x_{(1)}$ est une valeur non représentative et nous ont amené à envisager que $x_{(2)}$ en était aussi une. Nous cherchons à tester deux valeurs, donc k=2, dans la partie inférieure de l'échantillon et nous calculons ainsi L_2^* .

$$\bar{x}_{8}^{\star} = \frac{1}{8} \sum_{i=3}^{10} x_{(i)} = 0,43892$$

$$L_{2}^{\star} = \frac{\sum_{i=3}^{10} (x_{(i)} - \bar{x}_{8}^{\star})^{2}}{9s^{2}}$$

$$= \frac{13,8826}{87,0345} = 0,15951.$$

Nous comparons ce résultat avec les valeurs critiques (associées aux quantiles inférieurs de la distribution cette fois-ci) pour un niveau de $\alpha=1\%$ et de $\alpha=5\%$. Après lecture dans la table nous trouvons respectivement 0,142 et 0,233. Puisque $L_2^\star=0,160<0,233$ le test est significatif au niveau $\alpha=5\%$. Il ne l'est pas au niveau $\alpha=1\%$ car $L_2^\star=0,160>0,142$. Ainsi avec un risque de première espèce de 5%, nous pouvons conclure que les deux valeurs $x_{(1)}=-7,61567$ et $x_{(2)}=-4,60385$ sont non-représentatives.

.

13.4.2. Test de Grubbs pour deux valeurs non représentatives, une de chaque côté

Nous utilisons la même idée que celle sur laquelle repose les statistiques de test L_k et L_k^* . Nous comparons la variation totale de l'échantillon où nous avons retiré les deux valeurs $x_{(1)}$ et $x_{(n)}$ à celle de l'échantillon complet en faisant le rapport suivant :

$$\frac{S_{1,n}^2}{S^2} = \frac{\sum_{i=2}^{n-1} (x_{(i)} - \bar{x}_{1,n})^2}{(n-1)s^2}$$

où $\bar{x}_{1,n}$ est la moyenne des n-2 valeurs centrales de l'échantillon initial, c'est-à-dire $\bar{x}_{1,n}=\frac{1}{n-2}\sum_{i=2}^{n-1}x_{(i)}$.

Exemple 13.4.2.

Nous continuons avec les mêmes données:

$$\bar{x}_{1,10} = \frac{1}{8} \sum_{i=2}^{9} x_{(i)} = -0,513268$$

$$\frac{S_{1,n}^2}{S^2} = \frac{\sum_{i=2}^{9} (x_{(i)} - \bar{x}_{1,10})^2}{9s^2}$$

$$= \frac{25,4295}{87,0345} = 0,292177.$$

La valeur critique pour $\alpha=10$ % est de 0,246. Le test n'est donc pas significatif à ce niveau. Le minimum et le maximum de l'échantillon ne sont pas tous les deux des valeurs non représentatives.

• • • • • • • •

Il est bien entendu possible de généraliser cette approche au cas où nous considérerions 2k valeurs, k de chaque côté de l'échantillon. Malheureusement vous ne disposez pas des valeurs critiques associées à ces tests.

13.4.3. Test de Tietjen-Moore pour k valeurs non représentatives de l'un ou des deux côtés

Là encore nous reprenons l'idée qui a permis de construire L_k . Nous construisons r l'échantillon formé des valeurs absolues des déviations par rapport à la moyenne :

$$r_i = |x_i - \bar{x}|.$$

Puis nous classons cet échantillon : $r_{(1)}, \ldots, r_{(n)}$. En conservant l'ordre ainsi obtenu nous multiplions chaque $r_{(i)}$ par le signe de $x_{(i)} - \bar{x}$ et nous notons $z_{(i)}$ les valeurs ainsi construites. Les statistiques E_k sont alors :

$$E_k = \frac{\sum_{i=1}^{n-k} (z_{(i)} - \bar{z}_{n-k})^2}{\sum_{i=1}^{n} (z_{(i)} - \bar{z})^2},$$

où \bar{z} est la moyenne de $z_{(1)}, \ldots, z_{(n)}$ et \bar{z}_{n-k} est la moyenne de $z_{(1)}, \ldots, z_{(n-k)}$. Les $z_{(i)}$ sont simplement les déviations par rapport à la moyenne \bar{z} ordonnées par valeur absolue croissante.

Exemple 13.4.3.

Toujours avec le même exemple :

x_i	$x_{(i)}$	r_i	$r_{(i)}$	$z_{(i)}$
0,26787	-7,61567	1,13868	0,05009	0,05009
3,01367	-4,60385	3,88448	0,23979	-0,23979
-0,27047	-1,11060	0,60034	0,60034	0,60034
-7,61567	-0,82072	6,74486	0,76260	0,76260
-4,60385	-0,27047	3,73304	1,13868	1,13868
0,54445	-0,10821	1,41526	1,41526	1,41526
-0,10821	0,26787	0,76260	2,86620	2,86620
1,99539	0,54445	2,86620	3,73304	-3,73304
-1,11060	1,99539	0,23979	3,88448	3,88448
-0,82072	3,01367	0,05009	6,74486	-6,74486

$$\bar{z}_{9} = 0,749428,
E_{1} = \frac{\sum_{i=1}^{9} (z_{(i)} - \bar{z}_{9})^{2}}{\sum_{i=1}^{10} (z_{(i)} - \bar{z})^{2}}
= \frac{36,4867}{87,0345} = 0,41922.
\bar{z}_{8} = 0,357546,
E_{2} = \frac{\sum_{i=1}^{8} (z_{(i)} - \bar{z}_{8})^{2}}{\sum_{i=1}^{10} (z_{(i)} - \bar{z})^{2}}
= \frac{25,4295}{87,0345} = 0,29218.
\bar{z}_{7} = 0,941915,
E_{3} = \frac{\sum_{i=1}^{7} (z_{(i)} - \bar{z}_{7})^{2}}{\sum_{i=1}^{10} (z_{(i)} - \bar{z})^{2}}
= \frac{6,30625}{87,0345} = 0,072457.$$

pour $\alpha=1$ % et dans l'ordre k=1,2,3, les valeurs critiques sont, 0,235, 0,101, 0,048. Ainsi aucun des tests n'est significatif. Au seuil $\alpha=5$ %, nous avons, toujours dans le même ordre, les valeurs critiques 0,356, 0,172, 0,083.

Les choses se compliquent puisque maintenant seul le test basé sur E_3 est significatif. Ceci est assez cohérent avec ce qui précède puisque les deux valeurs les plus faibles de l'échantillon sont associées à la première et à la troisième déviation par rapport à la moyenne les plus fortes en valeurs absolues. En d'autres termes $z_{(10)}$ est associé à $x_{(1)}$ et $z_{(8)}$ à $x_{(2)}$. Or si nous avions vu que $x_{(1)}$ et $x_{(2)}$ étaient non représentatives, aucun test jusqu'alors n'avait permis de conclure à la non représentativité de $x_{(10)}$ qui est associé à $z_{(9)}$.

• • • • • • • •

13.5. Détection d'un nombre de valeurs non représentatives non fixé à l'avance

13.5.1. La boîte à moustaches

Nous basons une mesure de la dispersion de l'échantillon sur la longueur de l'intervalle interquartile. En procédant ainsi, nous construisons un indicateur qui ne dépend que des valeurs centrales de l'échantillon, la moitié du nombre totale d'entre elles pour être précis. De ce fait, l'étendue interquartile est un indicateur robuste de la dispersion de l'échantillon.

Notons Q_1 le premier quartile de l'échantillon et Q_3 le troisième quartile, $IQR = Q_3 - Q_1$ est alors l'étendue interquartile. Nous disons qu'une valeur x de l'échantillon est une valeur extrême si $x \notin [Q_1 - 3/2IQR, Q_3 + 3/2IQR]$ et qu'il s'agit d'un type particulier de valeur extrême, une valeur très extrême, si $x \notin [Q_1 - 3IQR, Q_3 + 3IQR]$.

Nous avons montré que si l'effectif n de l'échantillon est compris entre 20 et 75 nous devons nous attendre à ce que 1 à 2 % des observations soient des valeurs extrêmes. Si l'effectif n est supérieur à 100, alors nous devons nous attendre à ce que moins de 1 % des observations soient des valeurs extrêmes, la valeur limite, lorsque n tend vers l'infini convergeant vers 0,7 %.

En ce qui concerne les valeurs très extrêmes, leur proportion est de moins de 1 % si $6 \le n \le 19$ et de moins de 0,1 % si $n \ge 20$, la valeur limite lorsque n tend vers l'infini convergeant vers une proportion de 0,00023 %.

L'intérêt de la boîte à moustaches est de proposer un outil visuel d'exploration des données, résistant aux effets d'écrantage car basé sur les valeurs centrales de l'échantillon et pour lequel nous n'avons pas à faire d'hypothèses sur la localisation ou le nombre de valeurs non représentatives présentes dans l'échantillon. Son principal défaut est qu'il ne permet pas de faire de test et donc de quantifier les risques associés aux décisions qui découlent de son utilisation. En tant que technique exploratoire, la boîte à moustaches permet de choisir des valeurs plausibles pour k et d'utiliser alors la panoplie de tests présentés dans les sections 13.3 et 13.4 précédentes et dans la section 13.6 à venir.

Exemple 13.5.1.

Nous continuons avec les mêmes données.

Nous constatons la présence d'une valeur extrême sur le graphique 13.3. Minitab[©] ne distinguant pas les valeurs extrêmes des valeurs très extrêmes nous allons faire le calcul nous-mêmes.

$$\begin{array}{rcl} Q_1 & = & -1,98391 \\ Q_3 & = & 0,90719 \\ IQR & = & 2,89110 \\ Q_1 - 3/2IQR & = & -6,32056 \geq x_{(1)} \end{array}$$

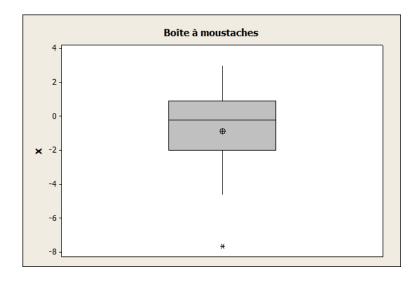


Fig. 13.3 - Graphique : Boîte à moustaches des données.

$$Q_1 - 3IQR = -10,6572 \leqslant x_{(1)}.$$

Ainsi $x_{(1)}$ n'est pas une valeur très extrême mais seulement une valeur extrême. De cette représentation graphique nous tirerions l'information k = 1. Or nous avons vu qu'il ne s'agit pas de la seule situation qui soit envisageable.

.

13.5.2. Test basé sur le coefficient d'asymétrie

La statistique du test est égale au coefficient d'asymétrie de Pearson, $\sqrt{b_1}$:

$$\sqrt{b_1} = \frac{m_3}{m_2^{\frac{3}{2}}}.$$

Nous remarquons que b_1 est égal au coefficient d'asymétrie de Pearson. Si $\sqrt{b_1} > 0$ les données sont plus localisées au delà de la moyenne. Si $\sqrt{b_1} < 0$ les données sont plus localisées en deçà de la moyenne.

Nous utilisons généralement un test bilatéral sauf si nous savons que les valeurs non représentatives ne sont présentent que d'un côté de l'échantillon.

Exemple 13.5.2.

$$\sqrt{b_1} = -1,25505.$$

Nous concluons à l'aide des valeurs de la table.

.

13.5.3. Test basé sur le coefficient d'aplatissement

La statistique b_2 du test basé sur le coefficient d'aplatissement de Pearson est :

$$b_2 = \frac{m_4}{m_2^2}.$$

Nous utilisons un test unilatéral dont la zone de rejet est située au voisinage de $+\infty$.

Exemple 13.5.3.

$$b_2 = 1,64728.$$

Nous concluons à l'aide des valeurs de la table.

.

13.6. Procédures séquentielles de détections de valeurs non représentatives

Comme le montre l'exemple 13.4.3, il est difficile de déterminer a priori le nombre de valeurs non représentatives ainsi que leur répartition de chaque côté. Nous nous tournons alors vers des algorithmes itératifs pour détecter lesquelles parmi celles que nous soupçonnons sont des valeurs non représentatives. L'utilisation d'une boîte à moustaches, détaillée à la section 13.5, ou d'une droite de Henry, il s'agit du type de graphique qui apparaît dans l'exemple 13.3.1, permet généralement d'avoir une idée du nombre potentiel, donc maximal, de valeurs non représentatives présentes dans l'échantillon étudié.

13.6.1. Procédure séquentielle de Prescott

L'idée ici est de calculer sucessivement les rapports de sommes de carrés ce qui ressemble à ce que nous avons déjà utilisé pour les tests de Grubbs en retirant les valeurs potentiellement non représentatives l'une après l'autre. Nous spécifions le nombre maximal de valeurs non représentatives k à détecter ce qui permet de trouver les valeurs $\lambda_j(\beta)$ en utilisant une table. Nous nous en servons de la manière suivante. Nous commençons par calculer les D_j :

$$D_j = \frac{S_{(j)}^2}{S_{(j-1)}^2}$$
 pour $1, \dots, k$,

où $S_{(j)}^2$ est la somme des carrés de l'échantillon privé des j observations les plus éloignées de la moyenne, c'est-à-dire, en concervant les notations du 13.4.3, privé de $z_{(n)},\ldots,z_{(n-j+1)}$. Le nombre de valeurs non représentatives m est alors le plus grand entier $m \leq k$ tel que :

$$D_j < \lambda_j(\beta).$$

Exemple 13.6.1.

Attention, nous calculons ici la somme des carrés et non la variation.

$$S_{(0)}^2 = S^2 = 94,61771$$

 $S_{(1)}^2 = 36,61928$
 $S_{(2)}^2 = 27,53707$
 $S_{(3)}^2 = 6,34164$
 $D_1 = 0,38702$
 $D_2 = 0,75198$
 $D_3 = 0,23029$.

Les tables à notre disposition ne contiennent les valeurs que pour un effectif de 10 que si k=2. Alors même au niveau $\alpha=10$ %, il n'y a pas de valeurs non représentatives, $\lambda_1(\beta)=0,360$ et $\lambda_2(\beta)=0,385$.

Par contre, en étudiant les tables pour k=2 et k=3 nous nous rendons compte que même si les valeurs critiques pour k=2 sont plus élévées que pour k=3, elles restent semblables. Ainsi il est fort probable que $D_3 < \lambda_3(\beta)$ au seuil $\alpha=2,5$ % et assurément au seuil $\alpha=5$ %. De ce fait nous détectons trois valeurs non représentatives sur le maximum de trois que nous avions fixé (k=3).

.

13.6.2. Procédure RST de Rosner

À nouveau, nous utilisons une procédure séquentielle basée sur des statistiques R_i de Grubbs. Nous choisissons à nouveau un nombre k, le nombre maximal de valeurs non repésentatives présentes dans l'échantillon. La différence avec la procédure de Prescott exposée au 13.6.1 est que nous allons utiliser une moyenne et une variance tronquée basée sur l'échantillon dans lequel nous avons supprimé les k valeurs les plus fortes et les k valeurs les plus faibles.

$$a = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} x_{(i)},$$

$$b^{2} = \frac{1}{n-2k-1} \sum_{i=k+1}^{n-k} (x_{(i)} - a)^{2}.$$

Maintenant si nous notons E_0 l'échantillon complet nous appelons x^0 l'élément tel que :

$$R_1 = \max_{E_0} \left| \frac{x_i - a}{b} \right| = \left| \frac{x^0 - a}{b} \right|.$$

Puis nous considérons $E_1 = E_0 - \{x^0\}$ et nous cherchons x^1 tel que :

$$R_2 = \max_{E_1} \left| \frac{x_i - a}{b} \right| = \left| \frac{x^1 - a}{b} \right|.$$

et ainsi de suite... Nous remarquons que les R_i sont les déviations par rapport à la moyenne tronquée a et normalisées par b classées dans l'ordre décroissant.

Nous comparons alors les valeurs de R_i avec les valeurs critiques qui dépendent de α , n et k, i observations étant non représentatives si R_i est supérieur à la valeur critique.

Exemple 13.6.2.

$$a = -0,23288$$

$$b = 0,45213$$

$$R_1 = \frac{|-7,61567 - (-0,23288)|}{0,45213} = 16,32894$$

$$R_2 = \frac{|-4,60385 - (-0,23288)|}{0,45213} = 9,66752$$

$$R_3 = \frac{|3,01367 - (-0,23288)|}{0,45213} = 7,18059.$$

Les tables à notre disposition ne sont utilisables que si $n \geq 20$.

• • • • • • • •

13.7. Conclusion

Avant tout il s'agit de réaliser les deux représentations graphiques des données que sont la boîte à moustaches et la droite de Henry. Ceci fait, nous aurons une idée de la situation dans laquelle nous nous trouvons.

Même alors, les procédures proposées restent variées. Il serait intéressant de disposer d'études de puissance afin de comparer les différents choix qui s'offrent au praticien au sein d'une même problématique.

Lorsque nous nous demandons si une valeur et une seule (k=1) est une valeur non représentative, le test T de Grubbs se comporte toujours le mieux. Si k>1, le mieux est de confronter les résultats des différentes procédures. Si nous souhaitons seulement savoir s'il y a des valeurs non représentatives dans une direction donnée, nous utiliserons un test sur le coefficient d'asymétrie. Si au contraire nous suspectons la présence de valeurs non représentatives dans chacune des directions, nous utiliserons un test basé sur le coefficient d'aplatissement. Si nous cherchons à déterminer le nombre de valeurs non représentatives nous utiliserons une procédure séquentielle.

D'autre part, il est conseillé, par Grubbs, de toujours procéder au test des valeurs non représentatives à un niveau α plus conservatif que le niveau communément utilisé de 5 %, c'est-à-dire avec $\alpha < 0.05$, par exemple $\alpha = 0.01$.

13.8. Exercices

Exercice 9. Vitesse du vent

Les 31 données suivantes représentent la vitesse quotidienne moyenne, en mph, du vent au large de l'aéroport MacArthur de Long Island au mois de juillet 1985. (NOAA, 1985).

7,7	11,1	7,8	9,5	5,9
8,5	8,8	11,5	5,6	10,7
6,9	8,9	10,2	6,2	7,7
11,1	9,0	8,7	10,4	5,2
17,1	11,2	10,7	12,5	3,8
13,3	6,2	8,8	8,1	7,4
8,9				

- 1. Représenter graphiquement l'échantillon afin de détecter de potentielles valeurs non représentatives. Une hypothèse de normalité est-elle vraisemblable?
- 2. Réaliser un test de Grubbs basé sur la statistique T.
- 3. Utiliser la statistique de Tietjen Moore. Justifier le choix de k=2.
- 4. Utiliser la procédure RST de Rosner. Justifier le choix de k=2.
- 5. Les résultats obtenus aux questions 2. et 4. sont-ils différents? Comment expliquezvous cette situation?

Exercice 10. Hauteurs de plantes

L'échantillon suivant, dont l'effectif est 15, représente les différences de hauteur, en huitième de pouce, entre des plants de « Zea May » qui ont été soit fertilisés par eux-mêmes, soit entre eux. (Fisher, 1971)

50	-67	8
16	6	23
28	41	14
29	56	24
75	60	-48

- 1. Représenter graphiquement l'échantillon afin de détecter de potentielles valeurs non représentatives. Une hypothèse de normalité est-elle vraisemblable?
- 2. Utiliser la statistique $r'_{1,0}$ de Dixon pour tester la non représentativité de $x_{(1)}$.
- 3. Utiliser la statistique $r_{2,0}^{'}$ de Dixon pour tester la non représentativité de $x_{(1)}$.
- 4. D'après Dixon, quelle est la statistique $r'_{j,k}$ de Dixon qu'il faudrait utiliser pour tester la non représentativité de $x_{(1)}$? Faire ce test.
- 5. Les résultats obtenus aux questions 2., 3. et 4. sont-ils différents? Comment expliquezvous cette situation?

Exercice 11. Leucémie

La période de latence de leucémie aigüe, en mois, suite à une chimiothérapie, a été reportée dans le tableau ci-dessous pour 20 patients. (Kapadia, Krause, Ellis, Pan & Wald, American Cancer Society, 1980)

16	72	54	52
62	12	21	44
56	32	60	60
168	66	50	11
132	48	120	72

- 1. Représenter graphiquement l'échantillon afin de détecter de potentielles valeurs non représentatives. Une hypothèse de normalité est-elle vraisemblable?
- 2. Faire un test de Grubbs pour la valeur non représentative $x_{(n)}$.
- 3. D'après Dixon, quelle est la statistique $r_{j,k}$ de Dixon qu'il faudrait utiliser pour tester la non représentativité de $x_{(n)}$? Faire ce test.
- 4. Utiliser un test de Grubbs pour k=3 valeurs non représentatives dans une direction donnée. Justifier le choix de ce test et la valeur de k.
- 5. Utiliser une procédure séquentielle de Prescott avec k = 3.
- 6. Les résultats obtenus aux questions 2., 3., 4. et 5. sont-ils différents? Comment expliquez-vous cette situation?

13.9. Corrigé des exercices

Exercice 9. Vitesse du vent

- 1. Pour représenter graphiquement ces 31 données, nous pouvons envisager deux types de graphique :
 - Diagramme à points pour les 31 données
 - Boîte à moustaches pour les 31 données.

Sur le diagramme à points, nous observons deux points en sens opposé qui pourraient être des valeurs non représentatives.

Sur la boîte à moustaches, nous observons une valeur non représentative représentée par une étoile.

Lorsque nous procèdons à un test de normalité (Test de Ryan Joiner), nous observons une valeur de P (approximatif) > 0, 1000 > 0, $0500 = \alpha$. Donc, l'hypothèse \mathcal{H}_0 est acceptée. Nous en déduisons donc la normalité.

Remarque: Mais si nous regardons de près le graphique 13.6 (la droite de Henry) que nous donne Minitab[©], nous nous apercevons qu'il y a un point qui se distincte du groupe.

Diagramme à points pour l'exercice 1

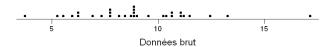


Fig. 13.4 - Graphique : Diagramme à points des données.

Boite à moustaches pour l'exercice 1

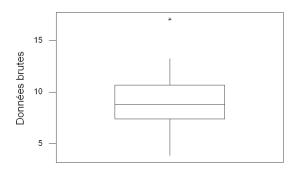


Fig. 13.5 - Graphique : Boîte à moustaches des données.

2. • À partir de la boîte à moustaches, il semble qu'il y ait qu'une valeur non représentative. Par conséquent, nous appliquons un test de Grubbs pour une seule valeur non représentative. Nous avons

	Variable	N	Moyenne	Mediane	Moyenne TR	EcarType
	C1	31	9,013	8,800	8,889	2,690
Ī	Variable	Er-T moy	Minimum	Maximum	Q1	Q3
	C1	0,483	3,800	17,100	7,400	10,700

La moyenne notée est égale à :9,013. La plus petite valeur est égale à 3,800. La plus grande valeur est égale à 17,100.

Calculons T_1 :

$$T_1 = (9,013 - 3,800)/2,690 = 1,93792.$$

Calculons T_{31} :

$$T_{31} = (17, 100 - 9, 013)/2, 690 = 3,00632.$$

Test de Normalité pour l'exercice 1

Fig. 13.6 - Graphique : Test de normalité des données.

Calculons T:

$$T = \max(T_1, T_{31}) = 3,00632.$$

Maintenant nous comparons cette valeur à la valeur de référence correspondante de la table adéquate (Table de Grubbs) qui a été distribuée en cours. Nous lisons dans la colonne à 97,5% et pour $n=31:T_c=2,924$. Donc $T>T_c$. Donc la donnée qui a pour valeur 17,100 est une valeur non représentative. Ce test donne uniquement une valeur non représentative. En aucun cas, il faut maintenant recommencer à analyser ces 30 données et refaire un test de Grubbs.

3. Sur le diagramme à points, nous observons deux points en sens opposé qui pourraient être deux valeurs non représentatives.

Nous allons avoir besoin des statistiques descriptives sur les z_i .

Variable	N	Moyenne	Mediane	Moyenne TR	EcarType
z_i	31	-0,000	-0,213	-0,124	2,690
Variable	Er-T moy	Minimum	Maximum	Q1	Q3
z_i	0,483	-5,213	8,087	-1,613	1,687

Donc la moyenne dont nous avons besoin pour calculer la statistique E_2 est égale à -0,000.

Tandis que l'autre moyenne se trouve dans le tableau suivant :

Variable	N	Moyenne	Mediane	Moyenne TR	EcarType
z_i	29	-0,099	-0,213	-0,124	2,106
Variable	Er-T moy	Minimum	Maximum	Q1	Q3
z_i	0,391	-3,813	4,287	-1,463	1,687

Après quelques calculs, nous trouvons que

$$E_2 = \frac{124,194}{217,055} = 0,572180.$$

4. Sur le diagramme à points, nous observons deux points en sens opposé qui pourraient être deux valeurs non représentatives.

Dans la procédure RST de Rosner, nous travaillons sur 27 données car nous avons retiré les deux (k=2) plus fortes et les deux (k=2) plus faibles valeurs. Nous allons calculer a et b. Pour cela, nous lisons directement ces deux valeurs dans le tableau ci-dessous

Variable	N	Moyenne	Mediane	Moyenne TR	EcarType
DonnéesTR	27	8,889	8,800	8,876	1,872
Variable	Er-T moy	Minimum	Maximum	Q1	Q3
DonnéesTR	0,360	5,600	12,500	7,700	10,700

Donc

$$a = 8,889$$
 et $b = 1,872$.

Maintenant que nous connaissons a et b, nous procédons aux calculs pour obtenir R_1 Nous trouvons après les quelques calculs

$$R_1 = 4,38622,$$

ce qui correspond à un

$$x^0 = 17, 1.$$

Nous cherchons R_2 et nous trouvons en reprenant les calculs précédemment

$$R_2 = 2,71848$$

ce qui correspond à un

$$x^1 = 3, 8.$$

Au passage, ce que nous venons de trouver n'est pas incohérent puisque ces deux valeurs correspondent au minimum et au maximum sur les 31 données initiales.

À partir de la table des valeurs critiques pour un échantillon de taille 31, en utilisant $\alpha = 5\%$ et k = 2 (Table B25), les valeurs critiques pour comparer R_1 et R_2 sont égales à 4,60 et 3,55, respectivement. Ce qui implique que ni l'une ni l'autre ne sont des valeurs non représentatives.

5. Les résultats aux questions 2. et 4. sont différents. En effet, le test de Grubbs nous indique que 17,1 est une valeur non représentative tandis que la procédure RST de Rosner nous mentionne qu'aucune des deux valeurs sélectionnées est une valeur non représentative.

Il faut noter que le test de Grubbs n'est conçu que pour la détection d'une seule valeur non représentative dans le cas où il n'y en aurait qu'une seule. La procédure RST de Rosner, quant à elle, est adaptée au cas où il y aurait k valeurs non représentatives dans l'échantillon.

Exercice 10. Hauteurs de plantes

Boite à moustaches pour l'exercice 2

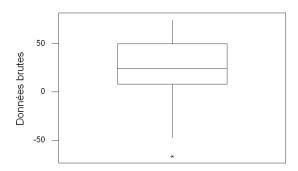


Fig. 13.7 - Graphique : Boîte à moustaches des données.

Diagramme à points pour l'exercice 2

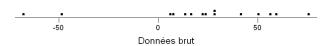


Fig. 13.8 – Graphique : Diagramme à points des données.

- 1. La boite à moustaches montre une valeur non représentative localisée vers les valeurs basses. Elle est représentée par une étoile.
 - Le diagramme à points montre deux valeurs non représentatives, localisées vers les valeurs basses.

Lorsque nous procédons à un test de normalité (ici le Test de Ryan Joiner), nous observons sur le graphique 13.9 une valeur de P (approximatif) égale à $0,0792>0,0500=\alpha$. Donc nous concluons que l'hypothèse \mathcal{H}_0 est acceptée. Nous en déduisons donc qu'il y a normalité.

2. Calculons $r'_{1,0}$. Nous avons par définition

$$r'_{1,0} = \frac{x_{(2)} - x_{(1)}}{x_{(n)} - x_{(1)}}.$$

Test de Normalité pour l'exercice 2

Fig. 13.9 - Graphique : Test de normalité des données.

D'autre part, les valeurs numériques sont

$$x_{(1)} = -67, \quad x_{(2)} = -48, \quad x_{(15)} = 75.$$

Donc, nous trouvons

$$r'_{1,0} = \frac{-48 + 67}{75 + 67} = \frac{19}{142} = 0,133803.$$

La valeur critique lue dans une table est égale à 0,339 pour $\alpha = 5\%$. L'hypothèse \mathcal{H}_0 est acceptée. Ainsi, pour le test de Dixon, $x_{(1)}$ n'est pas une valeur non représentative.

3. Calculons $r'_{2,0}$. Nous avons par définition

$$r'_{2,0} = \frac{x_{(3)} - x_{(1)}}{x_{(n)} - x_{(1)}}.$$

D'autre part, les valeurs numériques sont

$$n = 15$$
, $x_{(1)} = -67$, $x_{(3)} = 6$, $x_{(15)} = 75$.

Donc, nous trouvons

$$r'_{2,0} = \frac{6+67}{75+67} = \frac{73}{142} = 0,514084.$$

La valeur critique lue dans une table est égale à 0,432 pour $\alpha = 5\%$. Nous décidons alors de ne pas accepter l'hypothèse nulle \mathcal{H}_0 . Par conséquent nous acceptons l'hypothèse alternative \mathcal{H}_1 Ainsi, pour le test de Dixon, $x_{(1)}$ est une valeur non représentative.

Liste des figures de la deuxième partie

3.1 Graphique : Inégalité de Bienaymé-Tchebychev	0
3.2 Graphique : Test de normalité	3
3.3 Graphique : Boîte à moustaches des données	1
3.4 Graphique : Diagramme à points des données	7
3.5 Graphique : Boîte à moustaches des données	7
3.6 Graphique : Test de normalité des données	8
3.7 Graphique : Boîte à moustaches des données	0
3.8 Graphique : Diagramme à points des données	0
3.9 Graphique : Test de normalité des données	1

Liste des tableaux de la deuxième partie

12.3	Test de Friedman échantillons appariés : données	277
12.3	Test de Friedman échantillons appariés : rangs	277
12.4	Test de Friedman échantillons indépendants : données	279
12.4	Test de Friedman échantillons indépendants : rangs $\ \ldots \ \ldots \ \ldots \ \ldots$	279
12.4	Test de Friedman échantillons indépendants : données	280
12.4	Test de Friedman échantillons indépendants : rangs $\ \ldots \ \ldots \ \ldots \ \ldots$	280
12.5	Données de l'exercice 1	282
12.5	Données de l'exercice 2	282
12.5	Données de l'exercice 3	283
12.5	Données de l'exercice 4	283
12.5	Données de l'exercice 5	284
12.5	Données de l'exercice 6	284
12.5	Données de l'exercice 7	285
12.5	Données de l'exercice 8	287
13.3	Données de l'exemple	292
13.8	Données de l'exercice 9	305
13.8	Données de l'exercice 10	305
13.8	Données de l'exercice 11	306

LISTE DES	${f S}$ TABLEAUX	DE LA	DEUXIEME	PARTIF

Bibliographie de la deuxième partie

- [Fal05] B. Falissard. Comprendre et utiliser les statistiques dans les sciences de la vie. Abrégés. Masson, Paris, 3ème edition, 2005.
- [KRB96] S. Kotz, C.B. Read, and N. Balakrishnan, editors. *Encyclopædia Of Statistical Sciences*. Wiley-Interscience, 2nd edition, 1996.
- [Par74] G. Parreins. Techniques Statistiques: moyens rationnels de choix et de décision. Dunod technique, Paris, 1974.
- [PP98] G. Pupion and P.-C. Pupion. *Tests non paramétriques*. Statistique mathématique et probabilité. Economica, Paris, 1998.
- [Tho02] H.C. Thode. *Testing for Normality*. Number 164 in Statistics : textbooks and monographs. Marcel Dekker, New-York, 2002.

Troisième partie Compléments

Table des Matières

Ta	ble o	les ma	tières des compléments	321
14	Mo	dèles s	statistiques	323
	14.1	Introd	uction	. 323
	14.2	Modèle	e statistique	. 323
		14.2.1	Relations	. 323
		14.2.2	Le cas de l'erreur	. 324
		14.2.3	Choix d'une fonction	. 324
		14.2.4	Synthèse	. 325
	14.3	Un cas	s concret l'analyse de la variance à 1 facteur contrôlé	. 325
		14.3.1	Introduction	. 325
		14.3.2	Modèle statistique	. 326
		14.3.3	Les hypothèses	. 326
15	Est	imatio	n	331
	15.1	Définit	tions et notations	. 331
		15.1.1	Population, individu, échantillon	. 331
		15.1.2	Caractères quantitatif et qualitatif	. 331
		15.1.3	Caractères discret et continu	. 332
	15.2	Param	ètres de position	. 332
		15.2.1	Le mode	. 332
		15.2.2	La moyenne	. 333
	15.3	Param	ètres de dispersion	. 333
		15.3.1	L'étendue	. 333
		15.3.2	La variance	. 333
		15.3.3	L'écart-type	. 334
	15.4	La thé	eorie de l'estimation	. 334
		15.4.1	Introduction	. 334
		15.4.2	Quelques définitions	. 335
		15.4.3	Simplification de notation	. 335
		15.4.4	Propriétés d'un estimateur	. 336
		15.4.5	Précision : Cas d'un estimateur sans biais	. 336
		15.4.6	Précision : Cas d'un estimateur quelconque	. 337
	15.5	Des ex	temples d'estimation	. 337
		15.5.1	Estimation de la moyenne d'une population	. 337
		15.5.2	Estimation de la variance d'une population	. 338
		15.5.3	Estimation d'une proportion d'une population	. 339

340

Chapitre 14

Modèles statistiques

14.1. Introduction

Ce chapitre a pour but de faire un rapide exposé de ce qui est appelé un modèle statistique tout en permettant de revoir, ou de découvrir, certaines des notions que vous avez apprises auparavant.

Nous allons évoquer ensemble :

- L'analyse de la variance à 1 facteur contrôlé.
- Le test non-paramétrique de Kruskal-Wallis.
- La régression linéaire simple.

14.2. Modèle statistique

14.2.1. Relations

Pourquoi avons-nous besoin des statistiques pour analyser des résultats expérimentaux?

Il existe plusieurs types de relations entre des grandeurs physiques comme la masse, la taille, la température...

Nous en distinguons principalement deux:

- les relations déterministes comme celle qui lie l'expression d'une température en degré Celsius et l'expression de cette même température en Kelvin. Ici rien de plus mystérieux qu'une addition à faire et étant donné une même température de départ le résultat sera toujours le même.
- les relations stochastiques comme celle qui lie la masse d'un individu à sa taille. Nous ne pouvons pourtant pas nier qu'il y a une association entre la taille et la masse d'une personne mais celle-ci n'est pas aussi simple que celle ci-dessus. En effet si vous comparez la masse de deux personnes qui ont la même taille il est fort probable que celles-ci diffèrent.

Pourtant une telle relation existe. Comment pouvons-nous alors la mettre en évidence?

Pour mettre en équation la relation du transparent précédent entre le poids et la masse nous écrivons :

$$Masse(Individu) = Fonction(Taille_{Individu}) + Erreur(Individu).$$

Ce que nous appelons *Erreur* représente la variabilité inter-individu, c'est-à-dire ce qui permet d'expliquer pourquoi deux personnes de même taille n'auront pas la même masse.

Problème:

Comment trouver Fonction et Erreur?

Nous ne connaîtrions vraiment Fonction et Erreur que si nous réalisions une infinité d'expériences!

C'est pourquoi en statistique nous adoptons la démarche opposée :

Réponse

Nous allons **proposer** des candidats pour *Fonction* et *Erreur* puis évaluer l'adéquation du modèle proposé avec la réalité.

14.2.2. Le cas de l'erreur

Jusqu'à présent nous vous avons sans doute dit d'utiliser des erreurs qui suivent des lois normales, mais savez-vous pourquoi?

Dans beaucoup de problèmes expérimentaux l'erreur qui vient perturber le résultat d'une expérience est la somme de plus petites erreurs du même ordre et indépendantes.

Un théorème de probabilité, le **théorème central limite**, que vous avez dû rencontrer en L2, nous dit qu'alors une bonne approximation de la loi de la variable aléatoire d'**erreur** peut être réalisée en utilisant une **loi normale**.

Bien entendu ceci ne fonctionne pas à tous les coups et il existe alors des alternatives :

- changer la loi de l'erreur;
- utiliser des tests comme celui de Kruskal-Wallis qui ne fait quasiment pas d'hypothèse sur la loi des erreurs.

14.2.3. Choix d'une fonction

Quelles sont les fonctions que nous pouvons utiliser?

Appelons Y la réponse observée, ou facteur expliqué, et X le facteur explicatif.

$$Y = f(X) + \epsilon$$
.

La réponse à cette question dépend avant tout de la nature de la variable X.

- Si X est une variable continue comme le poids ou la taille nous pourrons utiliser f(X) = a * X + b.
- Si X est une variable discrète nous utiliserons plutôt, en notant X_i les différentes valeurs possibles pour X, $f(X_i) = \mu + \alpha_i$.

14.2.4. Synthèse

Nous résumons ce que nous venons de voir à propos des modèles statistiques.

- Si X est continue nous nous intéresserons à une relation du type

$$Y = a * X + b + \epsilon$$
,

où les variables d'erreurs ϵ suivent toute une loi normale. Cette situation est celle de l'analyse de régression simple.

- Si X est discrète nous nous intéresserons à une relation du type

$$Y = \mu + X_i + \epsilon$$
,

où les variables d'erreurs ϵ suivent toute une loi normale. Cette situation est celle de l'analyse de la variance à un facteur contrôlé.

14.3. Un cas concret l'analyse de la variance à 1 facteur contrôlé

14.3.1. Introduction

Supposons que nous mesurions plusieurs fois une même grandeur nous trouverions en général des résultats différents. De très nombreux facteurs peuvent influencer les résultats et il n'est pas possible de tous les étudier. Nous en sélectionnons un certain nombre : nous retiendrons ainsi ceux qui a priori peuvent justifier une grande part de la dispersion des mesures.

Ces facteurs sur lesquels nous fixons notre attention seront dits facteurs contrôlés. Ceci implique qu'avant d'effectuer les mesures nous aurons pris des dispositions pour qu'ils soient maintenus constants et mesurés.

Pour l'instant nous ne nous intéressons qu'au cas où il y a un seul facteur contrôlé.

L'expérimentateur peut se poser alors différentes questions :

- Le phénomène étudié est-il ou non influencé par le facteur contrôlé?
- Si la réponse est affirmative, quelle est alors la modalité la plus intéressante?

14.3.2. Modèle statistique

Nous introduisons le modèle :

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \quad i = 1 \dots I, \ j = 1 \dots J,$$
 avec la contrainte supplémentaire $\sum_{i=1}^{I} \alpha_i = 0,$

où $Y_{i,j}$ est la valeur prise par la réponse Y dans la condition A_i lors de la j—ème répétition. Nous postulons les hypothèses classiques suivantes pour les erreurs :

$$\forall (i,j), 1 \leqslant i \leqslant I, \ 1 \leqslant j \leqslant J, \ \mathcal{L}(\epsilon_{i,j}) = \mathcal{N}(0,\sigma^2),$$
$$Cov(\epsilon_{i,j}, \epsilon_{k,l}) = 0 \text{ si } (i,j) \neq (k,l) \text{ avec } 1 \leqslant i,k \leqslant I, \text{ et } 1 \leqslant j,l \leqslant J.$$

Notez qu'ici le plan de l'analyse de la variance est dit **équilibré** car il y a le même nombre de répétitions pour tous les niveaux du facteur. Vous verrez en exercice, un cas de plan déséquilibré.

Remarquons que $y_{i,j}$ n'est pas égal à $Y_{i,j}$. Dans le premier cas $y_{i,j}$ est une valeur mesurée dans le second cas $Y_{i,j}$ est une variable aléatoire.

Nous voyons ainsi que nous faisons plusieurs hypothèses très **importantes**. Dans chaque cas où vous essayerez d'utiliser cette outil statistique vous **devrez** vérifier que les hypothèses que nous faisons sont compatibles avec les données expérimentales dont vous disposez.

Si vous utilisez un outil statistique alors qu'il n'est pas adapté vous obtiendrez des résultats qui peuvent être trompeurs voire complètement **faux**.

Votre logiciel de calcul statistique ne s'occupera pas de cette partie du travail. Elle vous incombe exclusivement et est primordiale.

14.3.3. Les hypothèses

Le détail des hypothèses est le suivant :

- Indépendance des erreurs.
- Homoscédasticité (égalité des variances des erreurs).
- Normalité des erreurs.

L'indépendance des erreurs

Il n'existe pas de test permettant de déterminer si les erreurs sont indépendantes ou non.

Un test que vous pourrez rencontrer est le test de Durbin-Watson qui détermine s'il y a une corrélation temporelle entre les résidus. Une telle corrélation peut découler, par exemple, de l'utilisation d'un appareil de mesure qui se dérèglerait progressivement. Généralement une représentation graphique des résidus permet de « voir » si l'hypothèse est réaliste.

Attention aux données appariées!

Afin de tester la normalité des erreurs et l'égalité des variances nous devons calculer ce que nous appelons les résidus du modèle. En termes statistiques, il s'agit des réalisations des variables d'erreur $\epsilon_{i,j}$.

Nous devons donc commencer par calculer une estimation des coefficients $\mu, \alpha_1, \dots, \alpha_I$ du modèle.

Nous noterons toujours une estimation d'un coefficient c du modèle statistique par \hat{c} .

Estimation

Il s'agit d'une valeur que nous calculons à partir des observations de telle sorte que nous jugeons qu'elle est une représentation de la valeur du paramètre c.

Par exemple vous connaissez une estimation de la moyenne μ d'une population par un échantillon d'effectif K:

$$\widehat{\mu} = \frac{1}{|K|} \sum_{k} x_k.$$

En vous référant au chapitre 2, nous sommes capable de calculer les estimations $\widehat{\mu}, \widehat{\alpha_1}, \dots, \widehat{\alpha_I}$.

Les résidus

$$e_{i,j} = y_{i,j} - \mu - \alpha_i.$$

Un résidu $e_{i,j}$ n'est rien d'autre que le défaut d'ajustement du modèle statistique pour la jème répétition du ième niveau du facteur.

L'égalité des variances

Cette hypothèse est **primordiale**. En effet à la fois le test de Kruskal-Wallis (équivalent non-paramétrique de l'analyse de la variance) et l'ANOVA requièrent qu'elle soit vérifiée.

Il convient ainsi de la tester avant l'hypothèse de normalité de l'erreur. Puisque nous ne connaissons alors pas encore la loi des erreurs il faut utiliser un test **non-paramétrique**.

Il s'agit du test de Levene qui est utilisable dès que le nombre de répétitions pour chaque niveau du facteur est supérieur ou égal à trois.

Si l'hypothèse d'homoscédasticité est vérifiée nous pouvons passer à la vérification de l'hypothèse de normalité des erreurs.

Dans le cas contraire, Minitab[©] ne propose pas de test prenant en compte ce défaut. Si par contre vous avez accès à d'autres logiciels comme R, qui est gratuit et disponible sur internet mais assez difficile d'accès, SPSS, payant mais intuitif, ou SAS, pour les utilisateurs expérimentés uniquement, vous aurez à votre disposition des tests pouvant prendre en compte l'inégalité des variances.

La normalité des erreurs

Nous devons alors tester la normalité des variables d'erreur. Or les effectifs ne permettent généralement pas de séparer les différents niveaux du facteur explicatif et de tester la normalité des résidus pour chacun des niveaux.

Pour obtenir une puissance convenable cela exigerait plus d'une cinquantaine de répétitions par niveaux!

Nous décidons alors de regrouper tous les résidus ensemble et de procéder à **un** test de normalité sur tous les résidus.

Le nombre de tests de normalité existants est très important, il y a même des livres entiers sur le sujet... Lequel devons-nous utiliser?

Les logiciels de calcul statistique mettent à la disposition de l'utilisateur plusieurs tests de normalité. Bien entendu ils ont tous leurs qualités mais dans le contexte qui est le notre, c'est-à-dire celui de petits échantillons, effectif entre 10 et 100, c'est le test de Shapiro-Wilk qui est recommandé.

Tous les logiciels mentionnés plus haut permettent de réaliser ce test et en particulier Minitab[©], attention il a été renommé en test de Ryan-Joiner.

Si le test de normalité des résidus est significatif, vous n'avez pas le droit d'utiliser les résultats de l'analyse de la variance.

Il vous faut alors opter pour une alternative non paramétrique, le test de Kruskal-Wallis.

Ce test est disponible dans le logiciel Minitab[©].

Si la normalité n'est pas rejetée, nous testons à nouveau l'hypothèse d'égalité des variances en utilisant cette fois-ci le test de Bartlett.

Ce test est plus puissant que le test de Levene car il repose sur une hypothèse de normalité des variables. C'est donc un test paramétrique.

Si l'hypothèse d'homoscédasticité n'est toujours pas rejetée, les conditions d'utilisation du modèle statistique sont alors vérifiées et nous pouvons examiner les résultats de l'analyse de la variance.

Chapitre 15

Estimation¹

15.1. Définitions et notations

15.1.1. Population, individu, échantillon

Définition 15.1.1. La population est l'ensemble de tous les éléments qui constituent cet ensemble.

Exemples 15.1.1. Un ensemble d'êtres humains, un ensemble d'objets ou de faits.

Définition 15.1.2. Chacun des membres de cette population est appelé individu.

Définition 15.1.3. Un sous-ensemble de la population est appelé échantillon.

Définition 15.1.4. La propriété qui fait l'objet de l'étude statistique doit être également précisée. Nous l'appelons variable statistique.

15.1.2. Caractères quantitatif et qualitatif

Définition 15.1.5. Un caractère est quantitatif s'il est mesurable et la liste des nombres exprimant ces mesures est appelée série statistique.

Exemples 15.1.2. La taille des habitants d'un pays, le poids des habitants d'un pays, les températures d'une capitale d'un pays.

Définition 15.1.6. Un caractère est qualitatif si les modalités échappent à la mesure.

¹Ce chapitre s'appuie principalement sur les livres de G. Demengel, P. Bénichou, N. Boy et J.-P. Pouget, [DBBP97], et de J.J. Droesbeke, [Dro01].

Exemples 15.1.3. Les goûts pour un film, les goûts pour un aliment, l'appréciation d'un livre.

Dans ce dernier cas, la nature du **caractère qualitatif** suggère souvent une répartition de la population en classes que nous pouvons numéroter.

Nous attachons alors à chaque individu le numéro de la classe à laquelle il appartient.

Nous sommes ainsi ramenés à traiter une liste de nombres, c'est-à-dire **une série statis**tique.

15.1.3. Caractères discret et continu

Une autre distinction peut être faite sur la nature des nombres d'une série statistique.

Définition 15.1.7. Un caractère est dit **discret** si les valeurs qu'il prend sont des nombres isolés, par exemple entières mais pas nécessairement.

Exemples 15.1.4. Le caractère « nombre de pièces dans un appartement » , le caractère « nombre d'étudiants en Master Ethologie-Ecophysiologie Deuxième Année » , les températures en dixième degrés sont tous des nombres isolés.

Définition 15.1.8. Un caractère est dit **continu** si entre deux de ces valeurs nous pouvons toujours trouver une troisième.

Exemples 15.1.5. La taille des habitants d'un pays, exprimée en cm par exemple, se traduit par des nombres réels, le poids des habitants d'un pays, exprimé en kg, s'exprime par des nombres réels.

C'est la nature de l'instrument de mesure qui permet seulement d'en obtenir une valeur approchée. Il est logique alors de considérer que les valeurs du caractère appartiennent à des intervalles appelés **classes**.

15.2. Paramètres de position

15.2.1. Le mode

Dans ce paragraphe, nous énoncerons les définitions de deux paramètres de position. Nous ne sommes pas exhaustifs. Simplement nous rappelons les définitions de ceux qui seront les plus utilisés dans ce cours.

Définition 15.2.1. Le mode ou les valeurs modales d'une série statistique d'une variable discrète est la (ou les) valeur(s) de la variable dont l'effectif est maximum.

Introduisons maintenant les notations dont nous aurons besoin pour définir le paramètre de position suivant : la moyenne.

15.2.2. La moyenne

Le tableau des effectifs fournit les effectifs partiels n_j . Nous disposons donc des couples $(x_j; n_j)$ où j varie de 1 à p.

Dans le cas d'une variable continue, le nombre des classes est encore noté p. Nous avons convenu d'attribuer globalement l'effectif d'une classe au centre c_j de cette classe.

Définition 15.2.2. Dans le cas d'une variable continue, la moyenne de la série statistique composée des couples (c_i, n_i) est définie par :

$$\overline{x} = \frac{1}{N} \sum_{j=1}^{p} (c_j \times n_j),$$
 (15.2.1)

où N représente l'effectif total de la série statistique et p le nombre de classes de la série statistique.

Définition 15.2.3. Dans le cas d'une variable discrète, la moyenne de la série statistique composée des couples (x_j, n_j) est définie par :

$$\overline{x} = \frac{1}{N} \sum_{j=1}^{p} (x_j \times n_j), \qquad (15.2.2)$$

où N représente l'effectif total de la série statistique et p le nombre de classes de la série statistique.

15.3. Paramètres de dispersion

15.3.1. L'étendue

Dans ce paragraphe, nous énoncerons les définitions de trois paramètres de dispersion. Nous ne sommes pas exhaustifs. Simplement nous rappelons les définitions de ceux qui seront les plus utilisés dans ce cours.

Définition 15.3.1. L'étendue d'une série statistique est la différence entre la plus petite et la plus grande des valeurs du caractère.

15.3.2. La variance

Définition 15.3.2. La variance d'une série statistique est la moyenne des carrés des écarts des valeurs du caractère x à la moyenne de la série statistique :

$$\sigma^2 = Var(x) = \frac{1}{N} \sum_{j=1}^p n_j (x_j - \overline{x})^2,$$
 (15.3.1)

 x_j étant remplacé par c_j dans le cas d'une variable continue, N l'effectif total de la série statistique et p le nombre de classes de la série statistique.

15.3.3. L'écart-type

Définition 15.3.3. L'écart-type d'une série statistique est la racine carrée de la variance de cette série statistique :

$$\sigma = \sqrt{Var(x)}. (15.3.2)$$

Remarque : Ce paramètre de dispersion est beaucoup plus intéressant que la variance car il a l'intérêt de s'exprimer dans la même unité de mesure que la moyenne. Ainsi nous pouvons comparer des échantillons entre eux.

15.4. La théorie de l'estimation

15.4.1. Introduction

Une fois ces quelques définitions rappelées, nous pouvons aborder une des questions majeures en statistique :

l'estimation.

Le problème de l'estimation est l'impossibilité de connaître exactement la valeur d'un **paramètre inconnu** noté θ . Ce problème est très général et a des aspects distincts. Les observations permettent de construire une estimation de θ .

Ainsi chaque observation est la valeur d'une variable aléatoire (v.a.) X dont la loi dépend de θ .

Cela revient à doter l'état de la nature inconnu d'un modèle probabiliste.

Ce dernier est complété par un **modèle d'échantillonnage** décrivant la manière dont les observations sont recueillies.

Nous nous plaçons dans le cas le plus simple : les n observations constituent un **échantillon aléatoire simple** (EAS) composé de n variables aléatoires indépendantes et identiquement distribuées (i.i.d.) $\{X_1, \dots, X_n\}$.

Signalons qu'un modèle probabiliste complété par un modèle d'échantillonnage est appelé un **modèle statistique**.

Le problème s'énonce ainsi :

comment pouvons-nous estimer θ à partir de n observations $\{X_1, \ldots, X_n\}$ formant un échantillon aléatoire simple dont les valeurs sont notées $\{x_1, \ldots, x_n\}$?

Cette question recouvre deux problèmes:

- définir un estimateur possédant de bonnes qualités ou encore de bonnes propriétés statistiques
- trouver la manière adéquate de le choisir.

15.4.2. Quelques définitions

Soient:

- $-\theta$ un paramètre réel inconnu défini au sein d'une population U
- $-\Theta$ l'ensemble des valeurs possibles de θ .

Définition 15.4.1. Si $\{X_1, \ldots, X_n\}$ est un échantillon aléatoire simple d'effectif n prélevé dans U, alors nous appelons **estimateur** de θ toute fonction des observations, notée $\widehat{\theta}$:

$$\widehat{\theta} = h(X_1, \dots, X_n). \tag{15.4.1}$$

Nous nous restreignons à des valeurs $\widehat{\theta} \in \Theta$. $\widehat{\theta}$ est une variable aléatoire de loi de probabilité qui dépend du paramètre inconnu θ .

Définition 15.4.2. Nous appelons **estimation** de θ une valeur $h(x_1, \ldots, x_n)$ d'un estimateur $\widehat{\theta}$ calculée à partir de n valeurs observées x_1, \ldots, x_n dans un échantillon prélevé dans la population U.

Il est souhaitable de ne pas utiliser uniquement le bon sens ou l'intuition pour choisir entre deux estimateurs.

Pour pouvoir effectuer le bon choix, nous devons pouvoir les comparer en recourant à des objectifs choisis a priori.

Nous allons établir une liste de plusieurs propriétés que nous souhaitons retrouver dans un bon estimateur, permettant ainsi de mettre en évidence ceux qui en possèdent sinon le plus grand nombre, du moins les plus importantes.

15.4.3. Simplification de notation

Toute fonction des observations d'un échantillon aléatoire simple, définie par (15.4.1), peut permettre d'estimer la valeur de θ . Nous avons appelé **estimation** la valeur observée $h(x_1, \ldots, x_n)$ de l'**estimateur** $h(X_1, \ldots, X_n)$.

La notation utilisée « majuscule pour une variable aléatoire et minuscule pour sa valeur » est en contradiction avec (15.4.1) et veut que nous distinguions aussi la variable aléatoire $\hat{\theta}$ de sa valeur observée.

Pour ne pas alourdir la notation, et vu la correspondance entre variable aléatoire et valeur observée de cette dernière, nous utilisons la simplification suivante selon laquelle l'échantillon de taille n est désormais désigné par $\{x_1, \ldots, x_n\}$ sans distinguer explicitement les variables aléatoires X_i , avant observation, de la valeur x_i , après observation.

Attention: toujours vérifier d'après le contexte, si nous sommes dans le premier cas ou dans le second cas.

15.4.4. Propriétés d'un estimateur

Le choix d'un estimateur va reposer sur ses qualités. Comme nous l'avons souligné, il est habituel de comparer des estimateurs entre eux sur la base de propriétés plus ou moins intéressantes qu'ils possèdent ou non.

La première concerne la possibilité de comporter un biais. Il est souvent judicieux que la distribution d'un estimateur soit centrée sur le paramètre inconnu, c'est-à-dire qu'il possède la propriété suivante.

Propriété 15.4.1. $\hat{\theta}$ est un estimateur sans biais (ou non biaisé) du paramètre θ si

$$\mathbb{E}\left[\widehat{\theta}\right] = \theta. \tag{15.4.2}$$

Définition 15.4.3. Si la relation (15.4.2) n'est pas satisfaite, le biais de $\widehat{\theta}$ est alors défini par

$$B\left(\widehat{\theta}\right) = \mathbb{E}\left[\widehat{\theta}\right] - \theta. \tag{15.4.3}$$

Remarque 15.4.1. Pour aborder le caractère biaisé ou non d'un estimateur il faudra utiliser des propriétés de l'espérance mathématique étudiée dans les années précédentes.

15.4.5. Précision : Cas d'un estimateur sans biais

Comme nous l'avons vu auparavant, la variance d'un estimateur joue un rôle important dans la mesure de précision.

Propriété 15.4.2. $Si \widehat{\theta}$ est un estimateur sans biais du paramètre θ , nous utilisons comme mesure de précision sa variance $Var \left[\widehat{\theta} \right]$.

Plus $Var\left[\widehat{\theta}\right]$ est petite, plus l'estimateur $\widehat{\theta}$ est précis. Entre deux estimateurs non biaisés, nous choisirons le plus précis des deux, c'est-à-dire celui de plus petite variance.

Exemple 15.4.1. Soit un échantillon aléatoire simple de taille relativement élevée, prélevé dans une population normale $\mathcal{N}(\mu; \sigma^2)$. Si \overline{x} (moyenne de l'échantillon) et $x_{1/2}$ (médiane de l'échantillon) alors, nous avons

$$\mathbb{E}\left[\overline{x}\right] = \mu, \quad Var\left[\overline{x}\right] = \frac{\sigma^2}{n} \tag{15.4.4}$$

et

$$\mathbb{E}[x_{1/2}] = \mu, \quad Var[x_{1/2}] = 1.57 \frac{\sigma^2}{n}.$$
 (15.4.5)

Nous avons donc $Var[\overline{x}] < Var[x_{1/2}]$. Donc \overline{x} est un estimateur plus précis que $x_{1/2}$ dans ce cas présent.

15.4.6. Précision : Cas d'un estimateur quelconque

Propriété 15.4.3. $Si \hat{\theta}$ est un estimateur du paramètre θ , nous mesurons la précision de l'estimateur $\hat{\theta}$ par l'écart quadratique moyen (EQM):

$$EQM\left(\widehat{\theta}\right) = Var\left[\widehat{\theta}\right] + B\left(\widehat{\theta}\right)^{2}.$$
 (15.4.6)

 $Si \ \widehat{\theta} \ est \ un \ estimateur \ sans \ biais \ du \ paramètre \ heta, \ ce \ qui \ se \ traduit \ par$

$$B\left(\widehat{\theta}\right) = 0,\tag{15.4.7}$$

alors nous retrouvons la propriété précédente.

Entre deux estimateurs de θ , nous choisissons celui dont l'écart quadratique moyen est le plus faible.

15.5. Des exemples d'estimation

15.5.1. Estimation de la moyenne d'une population

Pour estimer la moyenne μ d'une population de taille N nous utilisons la moyenne \overline{X} d'un échantillon de taille n (n < N) du type PEAR (probabilités égales avec remise).

Rappel : En tant que variable aléatoire, \overline{X} constitue un estimateur de la moyenne μ .

Définition 15.5.1. Toute valeur observée de \overline{X} à partir d'un échantillon est appelée une estimation de la moyenne μ .

Le mode de prélèvement retenu est tel que : Les X_i sont des variables aléatoires indépendantes et identiquement distribuées et sont telles que, pour tout $i=1,\ldots,n$:

$$\mathbb{E}[X_i] = \mu \tag{15.5.1}$$

et

$$Var[X_i] = \sigma^2. (15.5.2)$$

Soit \overline{X} définie par

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$
 (15.5.3)

la moyenne d'un échantillon aléatoire simple prélevé dans une population de moyenne μ .

Calculons l'espérance de \overline{X} :

$$\mathbb{E}\left[\overline{X}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\mathbb{E}\left[\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right]$$
$$= \frac{1}{n} \times \mu \times n = \mu.$$

Nous trouvons ainsi le résultat suivant :

Théorème 15.5.1. En moyenne, l'estimateur \overline{X} est égal à la moyenne μ , ou encore \overline{X} est un estimateur sans biais de la moyenne μ .

En général en statistique, nous calculons l'espérance et la variance d'une variable aléatoire. Donc nous allons calculer maintenant la variance.

Calculons la variance de \overline{x} :

$$Var[\overline{x}] = Var\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right]$$

$$= \frac{1}{n^2}\sum_{i=1}^{n}Var[X_i], \text{ car les v.a. sont indépendantes}$$

$$= \frac{1}{n^2}\sum_{i=1}^{n}\sigma^2, \text{ car les v.a. sont de même variance}$$

$$= \frac{1}{n^2}\times n\times \sigma^2 = \frac{\sigma^2}{n}.$$

La question : Que signifie statistiquement ce dernier résultat ? Comment le statisticien l'interprète-t-il ?

La réponse : Ce paramètre, destiné à connaître la dispersion des valeurs de \overline{x} autour de la moyenne μ , permet de mesurer l'erreur d'échantillonnage. Plus $Var[\overline{x}]$ est faible, plus il est probable que l'erreur sera petite et l'estimateur précis. $Var[\overline{x}]$ est faible si la variance σ^2 de la population est petite, ce qui correspond à une population homogène, et/ou si n est grand, c'est-à-dire si la taille de l'échantillon est grande.

Remarque 15.5.1. Cette erreur ne dépend pas de la taille N de la population, ce qui n'est pas intuitif!

15.5.2. Estimation de la variance d'une population

Soit s_{nc}^2 définie par

$$s_{nc}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \qquad (15.5.4)$$

la variance d'un échantillon aléatoire simple prélevé dans une population U de variance σ^2 .

Calculons l'espérance afin de savoir si s_{nc}^2 est un estimateur sans biais de σ^2 .

$$\mathbb{E}[s_{nc}^2] = \mathbb{E}\left[\frac{1}{n}\left(\sum_{i=1}^n (x_i - \overline{x})^2\right)\right]$$

$$= \mathbb{E}\left[\frac{1}{n}\sum_i x_i^2 - \overline{x}^2\right]$$

$$= \frac{1}{n}\mathbb{E}\left[\sum_i x_i^2\right] - \mathbb{E}\left[\overline{x}^2\right]$$

$$= \frac{1}{n}\sum_i \left(Var[x_i] + \mu^2\right) - \left(Var[\overline{x}] + \mu^2\right)$$

$$= \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2$$

$$= \sigma^2\left(\frac{n-1}{n}\right).$$

Nous constatons ainsi que

$$\mathbb{E}[s_{nc}^2] \neq \sigma^2. \tag{15.5.5}$$

Théorème : s_{nc}^2 est un estimateur biaisé de la variance σ^2 dont le biais vaut :

$$B(s_{nc}^2) = \sigma^2 \left(\frac{n-1}{n}\right) - \sigma^2 = -\frac{\sigma^2}{n}.$$
 (15.5.6)

Remarque: $B(s_{nc}^2)$ tend vers 0 quand n tend vers l'infini. Nous disons dans ce cas que s_{nc}^2 est un **estimateur asymptotiquement sans biais**.

A partir de cette remarque, nous construisons un autre estimateur de la variance σ^2 , que nous appelons la **variance corrigée** de l'échantillon aléatoire simple défini par :

Définition 15.5.2.

$$s_c^2 = \frac{n}{n-1} s_{nc}^2 = \frac{1}{n-1} \sum_i (x_i - \overline{x})^2.$$
 (15.5.7)

Nous vérifions aisément que

$$\mathbb{E}[s_c^2] = \sigma^2. \tag{15.5.8}$$

Donc nous pouvons établir le résultat suivant :

Théorème 15.5.2. La variance corrigée s_c^2 est un estimateur sans biais de la variance σ^2 .

15.5.3. Estimation d'une proportion d'une population

Si π_A est une proportion d'individus qui possèdent une caractéristique A dans une population U, nous pouvons estimer ce paramètre par la proportion observée dans un échantillon aléatoire simple de taille n prélevé dans cette population U:

$$\widehat{\pi_A} = \frac{n_A}{n} \tag{15.5.9}$$

où n_A est le nombre d'individus de l'échantillon qui possèdent une caractéristique A. π_A peut-être considérée comme la moyenne d'une loi de Bernoulli en dotant tous les individus de la population d'une valeur 1 ou 0 selon qu'ils possèdent ou non la caractéristique A:

$$\mu = \frac{\text{Somme des valeurs } 1 + \text{Somme des valeurs } 0}{\text{Taille de la population}}$$

$$= \frac{\text{Nombre de } 1}{\text{Taille de la population}}$$

$$= \text{Proportion de } 1$$

$$= \pi_A.$$

Si nous considérons la moyenne \overline{x} de l'échantillon composé de 1 et de 0 :

$$\overline{x} = \frac{\text{Somme des 1 observés} + \text{Somme des 0 observés}}{\text{Taille de l'échantillon}}$$

$$= \frac{\text{Nombre de 1 observés}}{\text{Taille de l'échantillon}}$$

$$= \frac{n_A}{n}.$$

Comme $\mathbb{E}[\overline{x}] = \mu$, nous en déduisons que

$$\mathbb{E}\left[\overline{x}\right] = \mathbb{E}\left[\frac{n_A}{n}\right] = \mathbb{E}\left[\widehat{\pi}_A\right] = \mu = \pi_A. \tag{15.5.10}$$

Par conséquent, $\hat{\pi}_A$ est un estimateur sans biais de de π_A .

Bibliographie des compléments

[DBBP97] G. Demengel, P. Bénichou, N. Boy, and J.-P. Pouget. *Probabilités, Statistique inférentielle, Fiabilité, Outils pour l'ingénieur*. Ellipses, 1997.

[Dro01] J.J. Droesbeke. Éléments de Statistique. Université de Bruxelles, Bruxelles, 4ème édition edition, 2001.

Quatrième partie Annexes

Table des Matières

Γable des matières des annexes	
A Table de Kruskal-Wallis	345
Liste des tableaux des annexes	347

Annexe A

Valeurs critiques de la statistique de Kruskal-Wallis pour 3 échantillons.

Si tous les effectifs des k groupes sont supérieurs ou égaux à 5, nous utiliserons l'approximation $KW \sim \chi^2_{k-1}$.

Remarque : Si votre logiciel le permet, préférez toujours le calcul de p-valeurs « exactes » même par la méthode de Monte Carlo.

Effectifs			Risq	ue de j	premiè	re espè	$ece \alpha$
n_1	n_2	n_3	.10	.05	.01	.005	.001
2	2	2	4.25				
3	2	1	4.29				
3	2	2	4.71	4.71			
3	3	1	4.57	5.14			
3	3	2	4.56	5.36			
3	3	3	4.62	5.60	7.20	7.20	
4	2	1	4.50				
$\parallel 4$	2	2	4.46	5.33			
$\parallel 4$	3	1	4.06	5.22			
$\parallel 4$	3	2	4.51	5.44	6.44	7.00	
$\parallel 4$	3	3	4.71	5.73	6.75	7.32	8.02
4	4	1	4.17	4.97	6.67		
$\parallel 4$	4	2	4.55	5.60	7.14	7.59	8.32
4	4	3	4.65	5.69	7.66	8.00	8.65
$\parallel 4$	4	4	4.20	5.00			
5	2	1	4.20	5.00			
5	2	$\mid 2 \mid$	4.36	5.16	6.53		
5	3	1	4.02	4.96			
5	3	2	4.65	5.25	6.82	7.18	
5	3	3	4.53	5.65	7.08	7.51	8.24
5	4	1	3.99	4.99	6.95	7.36	
5	4	2	4.54	5.27	7.12	7.57	8.11
5	4	3	4.55	5.63	7.44	7.91	8.50
5	4	$\mid 4 \mid$	4.62	5.62	7.76	8.14	9.00
5	5	1	4.11	5.13	7.31	7.75	
5	5	2	4.62	5.34	7.27	8.13	8.68
5	5	3	4.54	5.71	7.54	8.24	9.06
5	5	4	4.53	5.64	7.77	8.37	9.32
5	5	5	4.56	5.78	7.98	8.72	9.68

Tab. A.1 – Valeurs critiques de la statistique de Kruskal-Wallis pour 3 échantillons.

Liste des tableaux des annexes

 $\rm A.1~$ Valeurs critiques de la statistique de Kruskal-Wallis pour 3 échantillons $\,$. $\,$. 346

Liste complète des figures

11.1 Graphique : Boite à moustaches des données)2
11.2 Graphique : Boite à moustaches des données	
11.3 Graphique : Estimation des effets du facteur Carburateur	13
11.4 Graphique : Estimation des effets du facteur <i>Essai</i>	14
11.5 Graphique : Effets principaux	
11.6 Graphique : Effets principaux	
11.7 Graphique : Diagramme d'interaction	
11.8 Graphique : Test de l'égalité des variances	
11.9 Graphique : Test de normalité	28
11.10Graphique : Effets principaux	30
11.11Graphique : Diagramme d'interaction	30
11.12Graphique : Test de normalité	
11.13Graphique : Test de l'égalité des variances	36
11.14Graphique : Effets principaux	
11.15 Graphique : Test de normalité	40
11.16Graphique : Test de l'égalité des variances	40
11.17Graphique : Test de l'égalité des variances	41
11.18Graphique : Test de l'égalité des variances	
11.19 Graphique : Effets principaux	44
11.20Graphique : Diagramme des interactions	44
11.21Graphique : Test de normalité	
11.22Graphique : Test de l'égalité des variances	
11.23Graphique : Effets principaux	52
11.24Graphique : Diagramme des interactions	53
12.1 Craphique : Inágalitá de Bianaymá Tahahyahay	വ
13.1 Graphique : Inégalité de Bienaymé-Tchebychev	ปร กร
13.3 Graphique : Boîte à moustaches des données	
13.4 Graphique : Diagramme à points des données	
13.5 Graphique : Boîte à moustaches des données	
13.6 Graphique : Test de normalité des données	
13.7 Graphique : Boîte à moustaches des données	
13.8 Graphique : Diagramme à points des données	
13.9 Graphique : Test de normalité des données	

Liste complète des tableaux

2.12.12.12.2	Représentation de la réponse en fonction des niveaux du facteur A Liste de données expérimentales en fonction des niveaux du facteur A Tableau d'ANOVA : un facteur à effets fixes	13 14 15 17
3.1 3.1 3.1 3.1	Représentation de la réponse en fonction des niveaux des facteurs A et B . Liste de données expérimentales et niveaux des facteurs A et B . Degrés de liberté : deux facteurs à effets fixes sans interaction Tableau d'ANOVA : deux facteurs à effets fixes sans interaction	20 20 21 22
3.1 3.1 3.1	Représentation de la réponse en fonction des niveaux des facteurs A et B . Liste de données expérimentales et niveaux des facteurs A et B Degrés de liberté : deux facteurs à effets fixes avec interaction	24 24 25
3.1 3.2	Tableau d'ANOVA : deux facteurs à effets fixes avec interaction Degrés de liberté : deux facteurs à effets aléatoires sans interaction	26 28
3.2 3.2 3.2	Tableau d'ANOVA : deux facteurs à effets aléatoires sans interaction Degrés de liberté : deux facteurs à effets aléatoires avec interaction Tableau d'ANOVA : deux facteurs à effets aléatoires avec interaction	29 31 32
3.3	Degrés de liberté : deux facteurs à effets mixtes sans interaction Tableau d'ANOVA : deux facteurs à effets mixtes sans interaction	34 35
3.3	Degrés de liberté : deux facteurs à effets mixtes avec interaction Tableau d'ANOVA : deux facteurs à effets mixtes avec interaction	37 38
4.1 4.1 4.1	Réponse et niveaux des deux facteurs d'un plan complètement emboîté Données et niveaux des deux facteurs d'un plan complètement emboîté Degrés de liberté : deux facteurs emboîtés et à effets fixes	42 43 44
4.1 4.2 4.2	Tableau d'ANOVA : deux facteurs emboîtés et à effets fixes	44 47 47
4.2 4.3 4.3	Degrés de liberté : deux facteurs emboîtés et à effets mixtes	49 50
5.1	Représentation de la réponse en fonction des niveaux des trois facteurs	54
5.1 5.1	Liste de données expérimentales et niveaux des trois facteurs	55 57
5.1	Tableau d'ANOVA : trois facteurs à effets fixes sans interaction	57
5.1	Représentation de la réponse en fonction des niveaux des trois facteurs	62
5.1 5.1	Liste de données expérimentales et niveaux des trois facteurs	63 65

LISTE COMPLÈTE DES TABLEAUX

5.1	Tableau d'ANOVA: trois facteurs à effets fixes avec interaction	. 66
5.2	Degrés de liberté : trois facteurs à effets aléatoires sans interaction	. 71
5.2	Tableau d'ANOVA : trois facteurs à effets aléatoires sans interaction	. 72
5.2	Degrés de liberté : trois facteurs à effets aléatoires avec interaction	. 76
5.2	Tableau d'ANOVA : trois facteurs à effets aléatoires avec interaction	. 77
5.3	Degrés de liberté : trois facteurs à effets mixtes (2F,1A) sans interaction .	. 82
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (2F,1A) sans interaction	83
5.3	Degrés de liberté : trois facteurs à effets mixtes (1F,2A) sans interaction .	. 87
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (1F,2A) sans interaction	88
5.3	Degrés de liberté : trois facteurs à effets mixtes (2F,1A) avec interaction .	. 92
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (2F,1A) avec interaction	93
5.3	Degrés de liberté : trois facteurs à effets mixtes (1F,2A) avec interaction .	. 98
5.3	Tableau d'ANOVA : trois facteurs à effets mixtes (1F,2A) avec interaction	99
6.1	Réponse et niveaux des trois facteurs d'un plan complètement emboîté .	. 105
6.2	Données et niveaux des trois facteurs d'un plan complètement emboîté .	
6.1	Degrés de liberté : trois facteurs emboîtés et à effets fixes	107
6.1	Tableau d'ANOVA : trois facteurs emboîtés et à effets fixes	107
6.2	Degrés de liberté : trois facteurs emboîtés et à aléatoires	
6.2	Tableau d'ANOVA : trois facteurs emboîtés et à effets aléatoires	
6.3	Degrés de liberté : trois facteurs emboîtés et à effets mixtes (2F,1A)	
6.3	Tableau d'ANOVA : trois facteurs emboîtés et à effets mixtes (2F,1A) .	
6.3	Degrés de liberté : trois facteurs emboîtés et à effets mixtes $(1F,2A)$	
6.3	Tableau d'ANOVA : trois facteurs emboîtés et à effets mixtes $(1F,2A)$. 117
12.3	Test de Friedman échantillons appariés : données	. 277
12.3	Test de Friedman échantillons appariés : rangs	. 277
12.4	Test de Friedman échantillons indépendants : données	279
12.4	Test de Friedman échantillons indépendants : rangs	279
12.4	Test de Friedman échantillons indépendants : données	280
12.4	Test de Friedman échantillons indépendants : rangs	280
12.5	Données de l'exercice 1	282
12.5	Données de l'exercice 2	282
12.5	Données de l'exercice 3	283
12.5	Données de l'exercice 4	
12.5	Données de l'exercice 5	284
	Données de l'exercice 6	
	Données de l'exercice 7	
12.5	Données de l'exercice 8	287
13.3	Données de l'exemple	
13.8		
13.8	Données de l'exercice 10	305
13.8	Données de l'exercice 11	306
A 1	Valeurs critiques de la statistique de Kruskal-Wallis pour 3 échantillons	346

Bibliographie complète

- [Agr92] A. Agresti. A survey of exact inference for contingency tables. *Statistical Science*, 7(1):131–152, 1992.
- [Boo77] A. Boomsma. Comparing approximations of confidence intervals for the product-moment correlation coefficient. *Statistica Neerlandica*, 31:179–186, 1977.
- [Bou96] J. Bouyer. Méthodes Statistiques. Editions INSERM, 1996.
- [Bou02] R. Bourbonnais. Économétrie. Dunod, Paris, 4ème edition, 2002.
- [Cha73] P. Chapouille. Planification et analyse des expériences. Masson, Paris, 1973.
- [Chr91] R. Christensen. Linear Models for Multivariate, Time Series, and Spatial Data. Springer Texts in Statistics. Springer-Verlag, 1991.
- [Dag98a] P. Dagnélie. Statistique Théorique et Appliquée, volume 1. De Boeck & Larcier, Bruxelles, 1998.
- [Dag98b] P. Dagnélie. Statistique Théorique et Appliquée, volume 2. De Boeck & Larcier, Bruxelles, 1998.
- [DBBP97] G. Demengel, P. Bénichou, N. Boy, and J.-P. Pouget. *Probabilités, Statistique inférentielle, Fiabilité, Outils pour l'ingénieur*. Ellipses, 1997.
- [DG79] M.N. Das and N.C. Giri. *Design and Analysis of Experiments*. Wiley Eastern Limited, New Delhi, 1979.
- [Dro01] J.J. Droesbeke. Éléments de Statistique. Université de Bruxelles, Bruxelles, 4ème édition edition, 2001.
- [Fal05] B. Falissard. Comprendre et utiliser les statistiques dans les sciences de la vie. Abrégés. Masson, Paris, 3^{ème} edition, 2005.
- [FH52] G.H. Freeman and J.H. Halton. Note on an exact treatment of contingency, goodness of fit and other problems of significance. *Biometrika*, 38:141–149, 1952.
- [Fle86] J.L. Fleiss. The Design and Analysis of Clinical Experiments. John Wiley, New-York, 1986.
- [HPer] F. Husson and J. Pagès. Statistiques générales pour utilisateurs. PUR, Rennes, a trouver.
- [KRB96] S. Kotz, C.B. Read, and N. Balakrishnan, editors. *Encyclopædia Of Statistical Sciences*. Wiley-Interscience, 2nd edition, 1996.
- [Ouv00a] J.-Y. Ouvrard. *Probabilités*, volume 1. Cassini, Paris, 2000.
- [Ouv00b] J.-Y. Ouvrard. *Probabilités*, volume 2. Cassini, Paris, 2000.
- [Par74] G. Parreins. Techniques Statistiques: moyens rationnels de choix et de décision. Dunod technique, Paris, 1974.
- [Phi82] G. Philippeau. Théorie des plans d'expérience. ICTF, Paris, 1982.
- [PP98] G. Pupion and P.-C. Pupion. *Tests non paramétriques*. Statistique mathématique et probabilité. Economica, Paris, 1998.
- [Ric89] W.R. Rice. Analysing tables of statistical tests. *Evolution*, 43(1):223–225, 1989.

- [SA00] H. Sahai and M.I. Ageel. *The Analysis of Variance : Fixed, Random and Mixed Models.* Birkhäuser, Boston, 2000.
- [Tho02] H.C. Thode. *Testing for Normality*. Number 164 in Statistics : textbooks and monographs. Marcel Dekker, New-York, 2002.
- [Wei] E. Weisstein. Correlation coefficient-bivariate normal distribution from mathworld—a wolfram web resource. Lien internet: http://mathworld.wolfram.com/CorrelationCoefficientBivariate—NormalDistribution.html.