# Examen de Statistique Approfondie II

Le cours, les exercices de travaux dirigés, leurs corrigés ainsi que les notes de cours sont autorisés. Les livres sont interdits

Durée de l'épreuve 2 heures

### Exercice 1. Mise en culture de bactéries

On veut déterminer la loi de reproduction de certaines bactéries. On a donc mis en culture une bactérie et relevé le nombre de bactéries en fonction du temps.

| t=Temps               | 1  | 2  | 3   | 4    | 5    |
|-----------------------|----|----|-----|------|------|
| X=nombre de bactéries | 10 | 49 | 252 | 1249 | 6253 |

- 1. Compte tenu des données observées, un ajustement linéaire est-il approprié?
- 2. On se propose alors d'effectuer un ajustement par une fonction exponentielle (on posera alors le modèle :  $X = c \times d^t \times \epsilon$ , et on utilisera une transformation adaptée). Vérifier que cet ajustement est approprié puis estimer c et d).

# Exercice 2. Régression - Intérêt de prédicteurs non corrélés

Les tableaux ci-dessous donnent, pour deux ensembles de données différents, les résultats des trois régressions linéaires suivantes :

- celle de la variable Y sur la variable  $X_1$  (modèle 1),
- celle de la variable Y sur la variable  $X_2$  (modèle 2),
- celle de la variable Y sur les variables  $X_1$  et  $X_2$  (modèle 3).
- 1. Ecrire le modèle 3 avec les hypothèses nécessaires pour construire des tests.
- 2. A l'aide du tableau suivant donner l'augmentation (en moyenne) prédite de Y: Les résultats de la régression ont été recopiés dans le tableau ci-dessous.
  - Par le modèle 3 si  $X_1$  augmente d'une unité, la variable  $X_2$  restant constante,
  - Par le modèle 1 si  $X_1$  augmente d'une unité.

Il y a-t-il une différence? SI oui, comment l'expliquez-vous?

W-test pour la normalité de X\_1

0,9995 Valeur de P (approximatif) : > 0,1000

W-test pour la normalité de X\_2

1,0000 R: Valeur de P (approximatif) : > 0,1000

Corrélations : X\_1; X\_2; Y

 $X_1$ X\_2 X\_2 -0,3270,591

Y 0,704 0,215 0,184 0,728

Contenu de la cellule : corrélation de Pearson Valeur de p

Analyse de régression : Y en fonction de X\_1

L'équation de régression est  $Y = -1,21 + 1,79 X_1$ 

Er-T coef Régresseur Coef Τ Ρ Constante -1,214 2,026 -0,60 0,591 1,039  $X_1$ 1,786 1,72 0,184

S = 1,739R-carré = 49,6% R-carré (ajust) = 32,8%

Analyse de variance

Source DLSC CMΡ F Régression 1 8,929 8,929 2,95 0,184 Erreur résid 3 9,071 3,024 Total 4 18,000

Analyse de régression : Y en fonction de X\_2

L'équation de régression est

 $Y = 0.83 + 0.83 X_2$ 

Er-T coef Régresseur Coef Τ Ρ Constante 0,833 3,239 0,26 0,814  $X_2$ 0,833 2,184 0,38 0,728

R-carré = 4,6% R-carré (ajust) = 0,0% S = 2,392

Analyse de variance

| Source       | DL | SC     | CM    | F    | P     |
|--------------|----|--------|-------|------|-------|
| Régression   | 1  | 0,833  | 0,833 | 0,15 | 0,728 |
| Erreur résid | 3  | 17,167 | 5,722 |      |       |
| Total        | 4  | 18,000 |       |      |       |

Analyse de régression : Y en fonction de X\_1; X\_2

L'équation de régression est  $Y = -4,67 + 2,20 x_1 + 1,93 x_2$ 

| Régresseur | Coef   | Er-T coef | T     | P     |
|------------|--------|-----------|-------|-------|
| Constante  | -4,667 | 3,313     | -1,41 | 0,294 |
| x_1        | 2,200  | 1,007     | 2,19  | 0,160 |
| x_2        | 1,933  | 1,538     | 1,26  | 0,336 |

## Analyse de variance

| Source       | DL | SC     | CM    | F    | Р     |
|--------------|----|--------|-------|------|-------|
| Régression   | 2  | 12,933 | 6,467 | 2,55 | 0,281 |
| Erreur résid | 2  | 5,067  | 2,533 |      |       |
| Total        | 4  | 18,000 |       |      |       |
|              |    |        |       |      |       |

| Source | DL | SC séq |
|--------|----|--------|
| x_1    | 1  | 8,929  |
| x_2    | 1  | 4,005  |

- 3. A l'aide du tableau suivant donner l'augmentation (en moyenne) prédite de Y: Les résultats de la régression ont été recopiés dans le tableau ci-dessous.
  - Par le modèle 3 si  $X_1$  augmente d'une unité, la variable  $X_2$  restant constante,
  - Par le modèle 1 si  $X_1$  augmente d'une unité.

Il y a-t-il une différence? SI oui, comment l'expliquez-vous?

W-test pour la normalité de  $X_1$ 

R: 1,0000 Valeur de P (approximatif) : > 0,1000

W-test pour la normalité de X\_2

R: 1,0000 Valeur de P (approximatif) : > 0,1000

Corrélations : X\_1; X\_2; Y

 X\_2 0,000 1,000

Y 0,804 0,438 0,054 0,386

Contenu de la cellule : corrélation de Pearson Valeur de p

Analyse de régression : Y en fonction de X\_1

L'équation de régression est  $Y = -1,83 + 2,25 X_1$ 

Régresseur Coef Er-T coef T P
Constante -1,833 1,798 -1,02 0,366
X\_1 2,2500 0,8323 2,70 0,054

S = 1,665 R-carré = 64,6% R-carré (ajust) = 55,8%

Analyse de variance

Source DLSCCMF Régression 20,250 20,250 7,31 0,054 1 Erreur résid 4 11,083 2,771 Total 5 31,333

Analyse de régression : Y en fonction de  $X_2$ 

L'équation de régression est  $Y = -0.33 + 2.00 X_2$ 

Régresseur Coef Er-T coef T P
Constante -0,333 3,249 -0,10 0,923
X\_2 2,000 2,055 0,97 0,386

S = 2,517 R-carré = 19,1% R-carré (ajust) = 0,0%

Analyse de variance

DLSCF Source CM6,000 Régression 1 6,000 0,95 0,386 Erreur résid 4 25,333 6,333 31,333 Total 5

Analyse de régression : Y en fonction de X\_1; X\_2

L'équation de régression est  $Y = -4,83 + 2,25 X_1 + 2,00 X_2$ 

| Régresseur | Coef   | Er-T coef | T     | P     |
|------------|--------|-----------|-------|-------|
| Constante  | -4,833 | 2,126     | -2,27 | 0,108 |
| X_1        | 2,2500 | 0,6509    | 3,46  | 0,041 |
| X_2        | 2,000  | 1,063     | 1,88  | 0,156 |

S = 1,302 R-carré = 83,8% R-carré (ajust) = 73,0%

### Analyse de variance

| Source      |    | DL | SC     | CM     | F    | Р     |
|-------------|----|----|--------|--------|------|-------|
| Régression  |    | 2  | 26,250 | 13,125 | 7,75 | 0,065 |
| Erreur rési | id | 3  | 5,083  | 1,694  |      |       |
| Total       |    | 5  | 31,333 |        |      |       |
|             |    |    |        |        |      |       |
| Source      | DL | SC | C séq  |        |      |       |
| X 1         | 1  | 20 | 250    |        |      |       |

X\_1 1 20,250 X\_2 1 6,000

A partir des résultats des tableaux précédents, on veut tester la nullité simultanée des paramètres du modèle 3.

W-test pour la normalité des résidus du modèle 3 dans le premier cas R: 0,9814 Valeur de P (approximatif) : > 0,1000

W-test pour la normalité des résidus du modèle 3 dans le second cas R: 0,9832 Valeur de P (approximatif) : > 0,1000

4. Dans chaque cas, construire le test en définissant : l'hypothèse nulle  $H_0$  et l'hypothèse alternative; la statistique du test utilisée et la loi suivie par cette statistique sous l'hypothèse  $H_0$ . Finalement, quelles sont les décisions prises?

A partir des résultats des tableaux précédents, on veut tester la nullité de chacun des paramètres du modèle 3 dans chacun des cas.

5. Proposer une stratégie pour réaliser ces tests. Finalement, quelle décision prenez-vous? Quelle(s) variable(s) choisissez-vous de conserver dans le modèle

### Exercice 3. Analyse des performances au décathlon

Les épreuves du décathlon couronnent des athlètes complets. Toutefois, chaque athlète possède ses points forts et ses points faibles. C'est à cette variabilité que nous nous intéressons ici. Pour cela, on a regroupé les résultats de 2 décathlons de très haut niveau qui ont eu lieu à un mois d'intervalle : les Jeux Olympiques d'Athènes dont les épreuves ont eu lieu les 23 et 24 août 2004 et le Décastar 2004 dont les

épreuves ont eu lieu les 25 et 26 septembre 2004. Pour ces deux compétitions on dispose pour chaque athlète présent, de ses performances à chacune des dix épreuves, de son nombre de points (à chaque épreuve, un athlète gagne un nombre de points en fonction de sa performance) et de son classement final (voir la tableau ci-dessous). Les épreuves se déroulent dans l'ordre suivant : 100m, longueur, poids, hauteur, 400m le premier jour et 110m haies, disque, saut à la perche, javelot, 1500m le deuxième jour. Quelques athlètes ont participé à un des deux décathlons mais n'ont pas effectué les dix épreuves; ils n'ont pas été pris en compte dans l'analyse. Neuf athlètes ont participé aux deux décathlons : ils apparaissent donc deux fois dans le tableau (ce qui montre que, dans ce tableau l'individu statistique n'est pas un athlète, mais l'ensemble de ses performances lors d'une manifestation). Le second tableau fournit les données centrées-réduites. Une ACP "normée" a été réalisée sur ces données avec comme variables les résultats aux 10 épreuves. Ainsi l'ACP ne porte par sur les variables Classement et Nombredepoints. On a néanmoins

- 1. Commenter le tableau des pourcentages d'inertie expliquée par chacun des axes. Selon quel point de vue peut-il être considéré comme préférable que les 2 premiers axess n'expliquent pas trop l'inertie totale.
- 2. Pourquoi les variables "100m" et "longueur" ne sont-elles pas corrélées positivement?
- 3. Dans quelles épreuves les vainqueurs des décathlons excellent-ils? Certaines épreuves influent-elles peu sur la performance (nombre de points) au décathlon?
- 4. Les épreuves du décathlon sont-elles bien choisies pour permettre de déterminer un athlète complet ?
- 5. Commenter les quatre premiers axes de l'ACP.

calculé les corrélations de toutes les variables entre elles.

6. Comparer les performances réalisées aux deux manifestations. : "J.O. 2004" et "Décastar 2004".

| Longueur                                       | Poids | E     | 400m  | 110m haies | Disque | Perche   | Javelot | 1500m  | Classement | Nb points | Epreuve |
|------------------------------------------------|-------|-------|-------|------------|--------|----------|---------|--------|------------|-----------|---------|
| 7,84 16,36 2,12                                | 2,12  | 48,36 |       | 14,05      | 48,72  | 9        | 70,52   | 280,01 |            | 8893      | JO2004  |
| 10,44 $7,96$ $15,23$ $2,06$ $49,19$            | 2,06  | 49,19 |       | 14,13      | 50,11  | 4,9      | 69,71   | 282    | 2          | 8820      | JO2004  |
| 10,5 7,81 15,93 2,09 46,81                     | 2,09  | 46,81 |       | 13,97      | 51,65  | 4,6      | 55,54   | 278,11 | က          | 8725      | JO2004  |
| 10,89 7,47 15,73 2,15 48,97                    | 2,15  | 48,97 |       | 14,56      | 48,34  | 4,4      | 58,46   | 265,42 | 4          | 8414      | JO2004  |
| 10,62 7,74 14,48 1,97 47,97                    | 1,97  | 47,97 | _     | 14,01      | 43,73  | 4,9      | 55,39   | 278,05 | ಬ          | 8343      | JO2004  |
| 10.91 $7.14$ $15.31$ $2.12$ $49.4$             | 2,12  | 49,   | 4     | 14,95      | 45,62  | 4,7      | 63,45   | 269,54 | 9          | 8287      | JO2004  |
| 10,97 $7,19$ $14,65$ $2,03$ $48$               | 2,03  | 48    | 48,73 | 14,25      | 44,72  | 4,8      | 57,76   | 264,35 | 2          | 8237      | JO2004  |
| 1,88                                           | 1,88  | 48    | 48,81 | 14,8       | 42,05  | $^{5,4}$ | 61,33   | 276,33 | 8          | 8235      | JO2004  |
| 10,69 $7,48$ $14,8$ $2,12$ $49$                |       | 45    | 49,13 | 14,17      | 44,75  | 4,4      | 55,27   | 276,31 | 6          | 8225      | JO2004  |
| $10,98 \mid 7,49 \mid 14,01 \mid 1,94 \mid 49$ |       | 49    | 49,76 | 14,25      | 42,43  | 5,1      | 56,32   | 273,56 | 10         | 8102      | JO2004  |
| 10,95 $7,31$ $15,1$ $2,06$ $50$                |       | 20    | 50,79 | 14,21      | 44,6   | 5        | 53,45   | 287,63 | 11         | 8084      | JO2004  |
| 10.9 $7.3$ $14.77$ $1.88$ $50$                 | 1,88  | 5(    | 50,3  | 14,34      | 44,41  | 5        | 68,09   | 278,82 | 12         | 8077      | JO2004  |
| 11,14 $6,99$ $14,91$ $1,94$ $49$               | 1,94  | 46    | 49,41 | 14,37      | 44,83  | 4,6      | 64,55   | 267,09 | 13         | 2908      | JO2004  |
| 6,81   15,24   1,91                            | 1,91  | 46    | 49,27 | 14,01      | 49,02  | $^{4.2}$ | 61,52   | 272,74 | 14         | 8023      | JO2004  |
| 10,55 $7,34$ $14,44$ $1,94$ $49$               | 1,94  | 46    | 49,72 | 14,39      | 39,88  | 4,8      | 54,51   | 271,02 | 15         | 8021      | JO2004  |
| 14,97 1,94                                     | 1,94  | 49    | 49,12 | 15,01      | 40,35  | 4,6      | 59,26   | 275,71 | 16         | 8006      | JO2004  |
| 1,94                                           | 1,94  | 49    | 49,11 | 14,77      | 42,47  | 4,7      | 88'09   | 263,31 | 17         | 7993      | JO2004  |
| 1,97                                           | 1,97  | 4     | 49,65 | 14,78      | 45,13  | $^{4.5}$ | 60,79   | 272,63 | 18         | 7934      | JO2004  |
| 1,88                                           | 1,88  | 48    | 48,51 | 14,01      | 40,11  | 9        | 51,53   | 274,21 | 19         | 7926      | JO2004  |
| 2,03                                           | 2,03  | 5.    | 51,04 | 14,88      | 41,9   | 4,8      | 65,82   | 277,94 | 20         | 7918      | JO2004  |
| 1,94                                           | 1,94  | 4     | 49,56 | 15,12      | 45,62  | 5,3      | 50,62   | 290,36 | 21         | 7893      | JO2004  |
| 1,85                                           | 1,85  | 4     | 48,61 | 14,41      | 40,95  | 4,4      | 60,71   | 269,7  | 22         | 7865      | JO2004  |
| 11,08 $6,91$ $13,62$ $2,03$ $51$               | 2,03  | 25    | 51,67 | 14,26      | 39,83  | 4,8      | 59,34   | 290,01 | 23         | 2022      | JO2004  |
| $11,1 \mid 7,03 \mid 13,22 \mid 1,85 \mid 49$  | 1,85  | 46    | 49,34 | 15,38      | 40,22  | $^{4.5}$ | 58,36   | 263,08 | 24         | 7592      | JO2004  |
| 11,33 $7,26$ $13,3$ $1,97$ $50$                |       | 20    | 50,54 | 14,98      | 43,34  | $^{4.5}$ | 52,92   | 278,67 | 25         | 7583      | JO2004  |
| 10,86 $7,07$ $14,81$ $1,94$ $51$               |       | 51    | 51,16 | 14,96      | 46,07  | 4,7      | 53,05   | 317    | 26         | 7573      | JO2004  |
| 11,23 $6,99$ $13,53$ $1,85$ $50$               | 1,85  | 2(    | 50,95 | 15,09      | 43,01  | 4,5      | 09      | 281,7  | 27         | 7495      | JO2004  |
| $11,36 \mid 6,68 \mid 14,92 \mid 1,94 \mid 53$ | 1,94  | 33    | 53,2  | 15,39      | 48,66  | 4,4      | 58,62   | 296,12 | 28         | 7404      | JO2004  |

| Nom         | 100m  | Longueur | Poids | Hauteur | 400m  | 110m haies | Disque | Perche | Javelot | 1500m  | Classement | Nb points | Epreuve      |
|-------------|-------|----------|-------|---------|-------|------------|--------|--------|---------|--------|------------|-----------|--------------|
| SEBRLE      | 11,04 | 7,58     | 14,83 | 2,07    | 49,81 | 14,69      | 43,75  | 5,05   | 63,19   | 291,7  | П          | 8217      | decastar2004 |
| CLAY        | 10,76 | 7,4      | 14,26 | 1,86    | 49,37 | 14,05      | 50,72  | 4,92   | 60,15   | 301,5  | 2          | 8122      | decastar2004 |
| KARPOV      | 11,02 | 7,3      | 14,77 | 2,04    | 48,37 | 14,09      | 48,95  | 4,92   | 50,31   | 300,5  | 3          | 8099      | decastar2004 |
| BERNARD     | 11,02 | 7,23     | 14,25 | 1,92    | 48,93 | 14,99      | 40,87  | 5,32   | 62,77   | 280,1  | 4          | 2908      | decastar2004 |
| YURKOV      | 11,34 | 7,09     | 15,19 | 2,1     | 50,45 | 15,31      | 46,26  | 4,72   | 63,44   | 276,4  | ಬ          | 8036      | decastar2004 |
| WARNERS     | 11,11 | 7,6      | 14,31 | 1,98    | 48,68 | 14,23      | 41,1   | 4,92   | 51,77   | 278,1  | 9          | 8030      | decastar2004 |
| ZSIVOCZKY   | 11,13 | 7,3      | 13,48 | 2,01    | 48,62 | 14,17      | 45,67  | 4,42   | 55,37   | 368    | 7          | 8004      | decastar2004 |
| McMULLEN    | 10,83 | 7,31     | 13,76 | 2,13    | 49,91 | 14,38      | 44,41  | 4,42   | 56,37   | 285,1  | &          | 7995      | decastar2004 |
| MARTINEAU   | 11,64 | 6,81     | 14,57 | 1,95    | 50,14 | 14,93      | 47,6   | 4,92   | 52,33   | 262,1  | 6          | 7802      | decastar2004 |
| HERNU       | 11,37 | 7,56     | 14,41 | 1,86    | 51,1  | 15,06      | 44,99  | 4,82   | 57,19   | 285,1  | 10         | 7733      | decastar2004 |
| BARRAS      | 11,33 | 6,97     | 14,09 | 1,95    | 49,48 | 14,48      | 42,1   | 4,72   | 55,4    | 282    | 11         | 7708      | decastar2004 |
| NOOL        | 11,33 | 7,27     | 12,68 | 1,98    | 49,5  | 15,29      | 37,92  | 4,62   | 57,44   | 266,6  | 12         | 7651      | decastar2004 |
| BOURGUIGNON | 11,36 | 8,9      | 13,46 | 1,86    | 51,16 | 15,67      | 40,49  | 5,05   | 54,68   | 291,7  | 13         | 7313      | decastar2004 |
| Moyenne     | 11,00 | 7,26     | 14,48 | 1,98    | 49,62 | 14,61      | 44,33  | 4,76   | 58,32   | 279,02 | 12,12      | 8005,37   |              |
| Ecart-type  | 0,26  | 0,32     | 0,82  | 0,09    | 1,15  | 0,47       | 3,38   | 0,28   | 4,83    | 11,67  | 7,92       | 342,39    |              |

| Nom         | 100m  | Longueur | Poids | Hauteur | 400m  | 110m haies | Disque | Perche | Javelot  | 1500m | Classement | Nb points | Epreuve |
|-------------|-------|----------|-------|---------|-------|------------|--------|--------|----------|-------|------------|-----------|---------|
| SEBRLE      | -0,56 | 1,83     | 2,28  | 1,61    | -1,09 | -1,18      | 1,30   | 0,85   | 2,53     | 80,0  | -1,40      | 2,59      | JO2004  |
| CLAY        | -2,12 | 2,21     | 0,91  | 0,94    | -0,37 | -1,01      | 1,71   | 0,49   | 2,36     | 0,25  | -1,28      | 2,38      | JO2004  |
| KARPOV      | -1,89 | 1,74     | 1,76  | 1,27    | -2,43 | -1,35      | 2,17   | -0,58  | -0,58    | -0,08 | -1,15      | 2,10      | JO2004  |
| MACEY       | -0,41 | 99'0     | 1,52  | 1,95    | -0,56 | -0,10      | 1,19   | -1,30  | 0,03     | -1,17 | -1,03      | 1,19      | JO2004  |
| WARNERS     | -1,44 | 1,52     | 0,00  | -0,08   | -1,43 | -1,26      | -0,18  | 0,49   | -0,61    | -0,08 | -0,90      | 0,99      | JO2004  |
| ZSIVOCZKY   | -0,33 | -0,38    | 1,01  | 1,61    | -0,19 | 0,73       | 0,38   | -0,22  | 1,06     | -0,81 | -0,77      | 0,82      | JO2004  |
| HERNU       | -0,11 | -0,22    | 0,21  | 09,0    | -0,77 | -0,75      | 0,12   | 0,14   | -0,12    | -1,26 | -0,65      | 99'0      | JO2004  |
| NOOL        | -0,75 | 0,85     | -0,26 | -1,09   | -0,70 | 0,41       | -0,67  | 2,29   | 0,62     | -0,23 | -0,52      | 79,0      | JO2004  |
| BERNARD     | -1,17 | 0,70     | 0,39  | 1,61    | -0,42 | -0,92      | 0,13   | -1,30  | -0,63    | -0,23 | -0,39      | 0,64      | JO2004  |
| SCHWARZL    | -0,07 | 0,73     | -0,57 | -0,41   | 0,12  | -0,75      | -0,56  | 1,21   | -0,41    | -0,47 | -0,27      | 0,28      | JO2004  |
| POGORELOV   | -0,18 | 0,16     | 0,76  | 0,94    | 1,02  | -0,84      | 0,08   | 0,85   | -1,01    | 0,74  | -0,14      | 0,23      | JO2004  |
| SCHOENBECK  | -0,37 | 0,13     | 0,36  | -1,09   | 0,59  | -0,56      | 0,02   | 0,85   | 0,53     | -0,02 | -0,02      | 0,21      | JO2004  |
| BARRAS      | 0,54  | -0,85    | 0,53  | -0,41   | -0,18 | -0,50      | 0,15   | -0,58  | 1,29     | -1,02 | 0,11       | 0,18      | JO2004  |
| SMITH       | -0,56 | -1,42    | 0,93  | -0,75   | -0,30 | -1,26      | 1,39   | -2,02  | 99,0     | -0,54 | 0,24       | 0,05      | JO2004  |
| AVERYANOV   | -1,70 | 0,25     | -0,04 | -0,41   | 0,09  | -0,46      | -1,32  | 0,14   | -0,79    | -0,69 | 0,36       | 0,05      | JO2004  |
| OJANIEMI    | -1,21 | 0.76     | 09,0  | -0,41   | -0,43 | 98'0       | -1,18  | -0,58  | 0,20     | -0,28 | 0,49       | 00,00     | JO2004  |
| SMIRNOV     | -0,41 | -0,60    | -0,72 | -0,41   | -0,44 | 0,35       | -0.55  | -0,22  | 0,53     | -1,35 | 0,62       | -0,04     | JO2004  |
| QI          | 0,24  | 0,25     | -1,12 | -0,08   | 0,03  | 0,37       | 0,24   | -0,94  | 0,51     | -0,55 | 0,74       | -0,21     | JO2004  |
| DREWS       | -0,49 | 86,0     | -1,71 | -1,09   | -0,96 | -1,26      | -1,25  | 0,85   | -1,41    | -0,41 | 0,87       | -0,23     | JO2004  |
| PARKHOMENKO | 0.54  | -2,05    | 1,47  | 09,0    | 1,23  | 0,58       | -0,72  | 0,14   | 1,55     | -0,09 | 66,0       | -0,26     | JO2004  |
| TEREK       | -0,30 | -1,01    | 0,82  | -0,41   | -0,05 | 1,09       | 86'0   | 1,93   | -1,59    | 0,97  | 1,12       | -0,33     | JO2004  |
| GOMEZ       | 0,31  | 0,00     | 0,11  | -1,43   | -0,87 | -0,42      | -1,00  | -1,30  | 0,50     | -0,80 | 1,25       | -0,41     | JO2004  |
| TURI        | 0,31  | -1,11    | -1,04 | 09,0    | 1,78  | -0,73      | -1,33  | 0,14   | 0,21     | 0,94  | 1,37       | -0,87     | JO2004  |
| LORENZO     | 0,39  | -0,73    | -1,52 | -1,43   | -0,24 | 1,64       | -1,22  | -0,94  | 0,01     | -1,37 | 1,50       | -1,21     | JO2004  |
| KARLIVANS   | 1,26  | 0,00     | -1,43 | -0,08   | 0,80  | 0,79       | -0,29  | -0,94  | -1,12    | -0,03 | 1,63       | -1,23     | JO2004  |
| KORKIZOGLOU | -0.52 | 09,0-    | 0,40  | -0,41   | 1,34  | 0,75       | 0,52   | -0,22  | -1,09    | 3,25  | 1,75       | -1,26     | JO2004  |
| ULDAL       | 88,0  | -0,85    | -1,15 | -1,43   | 1,16  | 1,03       | -0,39  | -0,94  | $0,\!35$ | 0,23  | 1,88       | -1,49     | JO2004  |
| CASARSA     | 1,38  | -1,83    | 0,54  | -0,41   | 3,11  | 1,66       | 1,28   | -1,30  | 0,06     | 1,46  | 2,01       | -1,76     | JO2004  |

| Nom         | 100m  | Longueur | Poids | Hauteur | 400m  | 110m haies | Disque | Perche | Javelot | 1500m | Classement | Nb points | Epreuve       |
|-------------|-------|----------|-------|---------|-------|------------|--------|--------|---------|-------|------------|-----------|---------------|
| SEBRLE      | 0,16  | 1,01     | 0,43  | 1,05    | 0,17  | 0,18       | -0,17  | 0,93   | 1,01    | 1,09  | -1,40      | 0,62      | decastar2004  |
| CLAY        | -0,91 | 0,44     | -0,26 | -1,31   | -0,21 | -1,18      | 1,89   | 0,57   | 0,38    | 1,93  | -1,28      | 0,34      | decastar2004  |
| KARPOV      | 0,08  | 0,13     | 0,36  | 0,71    | -1,08 | -1,09      | 1,37   | 0,57   | -1,66   | 1,81  | -1,15      | 0,27      | decastar2004  |
| BERNARD     | 0,08  | -0,09    | -0,28 | -0,64   | -0,60 | 0,81       | -1,02  | 2,01   | 0,92    | 60,0  | -1,03      | 0,18      | decastar 2004 |
| YURKOV      | 1,30  | -0,54    | 98,0  | 1,38    | 0,70  | 1,49       | 0,57   | -0,15  | 1,06    | -0,22 | -0,90      | 60,0      | decastar 2004 |
| WARNERS     | 0,43  | 1,07     | -0,20 | 0,04    | -0,81 | -0,80      | -0,95  | 0,57   | -1,36   | -0,08 | -0,77      | 70,0      | decastar2004  |
| ZSIVOCZKY   | 0,50  | 0,13     | -1,21 | 0,37    | -0,86 | -0,92      | 0,40   | -1,23  | -0,61   | -0,94 | -0,65      | -0,00     | decastar 2004 |
| McMULLEN    | -0,64 | 0,16     | -0,87 | 1,72    | 0,25  | -0,48      | 0,02   | -1,23  | -0,40   | 0.52  | -0,52      | -0,03     | decastar2004  |
| MARTINEAU   | 2,44  | -1,42    | 0,11  | -0,30   | 0,45  | 69,0       | 0,97   | 0,57   | -1,24   | -1,45 | -0,39      | -0,59     | decastar2004  |
| HERNU       | 1,41  | 0,95     | -0,08 | -1,31   | 1,29  | 96'0       | 0,20   | 0,21   | -0,23   | 0.52  | -0,27      | -0,80     | decastar2004  |
| BARRAS      | 1,26  | -0,92    | -0,47 | -0,30   | -0,12 | -0,27      | -0,66  | -0,15  | -0,60   | 0.25  | -0,14      | -0,87     | decastar2004  |
| NOOL        | 1,26  | 0,03     | -2,18 | 0,04    | -0,36 | 1,45       | -1,90  | -0,51  | -0,18   | -1,06 | -0,02      | -1,03     | decastar2004  |
| BOURGUIGNON | 1,38  | -1,45    | -1,23 | -1,31   | 1,34  | 2,26       | -1,14  | 0,93   | -0,75   | 1,09  | 0,11       | -2,02     | decastar2004  |
| Moyenne     | -0,00 | 0,00     | 0,00  | 0,00    | -0,00 | -0,00      | 0,00   | -0,00  | -0,00   | -0,00 | 0,00       | 0,00      |               |
| Ecart-type  | 1,00  | 1,00     | 1,00  | 1,00    | 1,00  | 1,00       | 1,00   | 1,00   | 1,00    | 1,00  | 1,00       | 1,00      |               |

| Corrélations | : | 100m: | Longueur: | Poids: | Hauteur: | 400m: | 110m haies | : Disaue: | Perche: |
|--------------|---|-------|-----------|--------|----------|-------|------------|-----------|---------|
|              |   |       |           |        |          |       |            |           |         |

| 100m            | Longueur | Poids     | Hauteur | 400m   | 110m hai | Disque | Perche |
|-----------------|----------|-----------|---------|--------|----------|--------|--------|
| Longueur -0,599 |          |           |         |        |          |        |        |
| Poids -0,356    | 0,183    |           |         |        |          |        |        |
| Hauteur -0,246  | 0,295    | 0,489     |         |        |          |        |        |
| 400m 0,520      | -0,602   | -0,138    | -0,188  |        |          |        |        |
| 110m hai 0,580  | -0,505   | -0,252    | -0,283  | 0,548  |          |        |        |
| Disque -0,222   | 0,194    | 0,616     | 0,369   | -0,118 | -0,326   |        |        |
| Perche -0,083   | 0,204    | 0,061     | -0,156  | -0,079 | -0,003   | -0,150 |        |
| Javelot -0,158  | 0,120    | 0,375     | 0,172   | 0,004  | 0,009    | 0,158  | -0,030 |
| 1500m -0,061    | -0,034   | 0,116     | -0,045  | 0,408  | 0,038    | 0,258  | 0,247  |
| Classeme 0,297  | -0,604   | -0,370    | -0,493  | 0,562  | 0,439    | -0,389 | -0,320 |
| Nb point -0,684 | 0,725    | 0,627     | 0,577   | -0,667 | -0,644   | 0,484  | 0,197  |
|                 | 4500     | <b>47</b> |         |        |          |        |        |
| Javelot         | 1500m    | Classeme  |         |        |          |        |        |
| 1500m -0,180    |          |           |         |        |          |        |        |
| Classeme -0,208 | 0,090    |           |         |        |          |        |        |
| Nb point 0,422  | -0,194   | -0,739    |         |        |          |        |        |

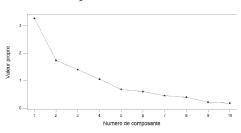
Contenu de la cellule : corrélation de Pearson

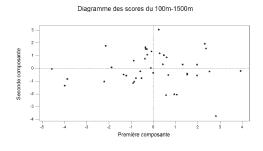
# Analyse des composantes principales : 100m ; Longueur ; Poids ; Hauteur ; 400m ; 110m ;

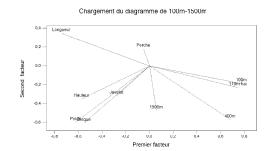
Analyse des valeurs et vecteurs propres de la matrice de corrélation

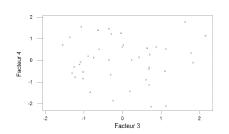
| 3,2719 | 1,7371                            | 1,4049                                                     | 1,0569                                                                              | 0,6848                                                                                                       | 0,5993                                                                                                           |
|--------|-----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 0,327  | 0,174                             | 0,140                                                      | 0,106                                                                               | 0,068                                                                                                        | 0,060                                                                                                            |
| 0,327  | 0,501                             | 0,641                                                      | 0,747                                                                               | 0,816                                                                                                        | 0,875                                                                                                            |
|        |                                   |                                                            |                                                                                     |                                                                                                              |                                                                                                                  |
| 0,4512 | 0,3969                            | 0,2148                                                     | 0,1822                                                                              |                                                                                                              |                                                                                                                  |
| 0,045  | 0,040                             | 0,021                                                      | 0,018                                                                               |                                                                                                              |                                                                                                                  |
| 0,921  | 0,960                             | 0,982                                                      | 1,000                                                                               |                                                                                                              |                                                                                                                  |
|        | 0,327<br>0,327<br>0,4512<br>0,045 | 0,327 0,174<br>0,327 0,501<br>0,4512 0,3969<br>0,045 0,040 | 0,327 0,174 0,140<br>0,327 0,501 0,641<br>0,4512 0,3969 0,2148<br>0,045 0,040 0,021 | 0,327 0,174 0,140 0,106<br>0,327 0,501 0,641 0,747<br>0,4512 0,3969 0,2148 0,1822<br>0,045 0,040 0,021 0,018 | 0,327 0,174 0,140 0,106 0,068 0,327 0,501 0,641 0,747 0,816  0,4512 0,3969 0,2148 0,1822 0,045 0,040 0,021 0,018 |

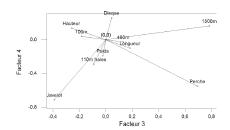
Analyse factorielle : 100m; Longueur; Poids; Hauteur; 400m; 110m haies; Disque;


Analyse factorielle des composantes principales de la matrice de corrélation


Saturations de facteurs et communalités sans rotation


| Variable | Facteur1 | Facteur2 | Facteur3 | Facteur4 | Facteur5 | Communalité |
|----------|----------|----------|----------|----------|----------|-------------|
| 100m     | 0,775    | -0,187   | -0,184   | 0,038    | 0,302    | 0,762       |
| Longueur | -0,742   | 0,345    | 0,182    | -0,102   | 0,037    | 0,715       |
| Poids    | -0,623   | -0,598   | -0,023   | -0,191   | 0,111    | 0,795       |
| Hauteur  | -0,572   | -0,350   | -0,260   | 0,136    | 0,555    | 0,844       |
| 400m     | 0,680    | -0,569   | 0,131    | -0,029   | -0,088   | 0,812       |
| 110m hai | 0,746    | -0,229   | -0,093   | -0,291   | 0,164    | 0,729       |
| Disque   | -0,552   | -0,606   | 0,043    | 0,260    | -0,105   | 0,753       |
| Perche   | -0,050   | 0,180    | 0,692    | -0,552   | 0,330    | 0,927       |
| Javelot  | -0,277   | -0,317   | -0,390   | -0,712   | -0,305   | 0,930       |


| 1500m    | 0,058  | -0,474 | 0,782  | 0,161  | -0,154 | 0,890  |
|----------|--------|--------|--------|--------|--------|--------|
| Variance | 3,2719 | 1,7371 | 1,4049 | 1,0569 | 0,6848 | 8,1556 |
| % Var    | 0,327  | 0,174  | 0,140  | 0,106  | 0,068  | 0,816  |


Diagramme en cone de 100m-1500m









