Introduction Présentation du modèle Méthode des moindes carrés Propriétés des moindres carrés Tests

Régression linéaire multiple

Frédéric et Myriam Bertrand¹

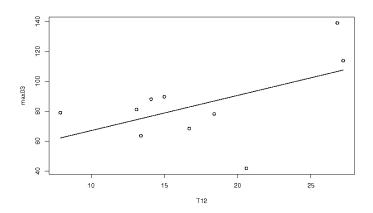
¹IRMA, Université Louis Pasteur Strasbourg, France

Master 2ème Année 9-11-2006

- Problème : Etude de la concentration d'O₃ dans l'air.
- Modèle: La température (v.a. X) et la concentration d'O₃
 (v.a. Y) sont liées de manière linéaire:

$$Y = \beta_0 + \beta_1 X + \varepsilon.$$

- **Observations**: n = 10 mesures de la température et de la concentration d' O_3 .
- **But**: Estimer β_0 et β_1 afin de prédire la concentration d'ozone connaissant la température.



Souvent la régression linéaire est trop simpliste. Il faut alors utiliser d'autres modèles plus réalistes mais parfois plus complexes :

- Utiliser d'autres fonctions que les fonctions affines comme les fonctions polynômiales, exponentielles, logarithmiques...
- Considérer plusieurs variables explicatives.
 Exemple: La température et la vitesse du vent

Le principe de la régression linéaire multiple est simple :

- Déterminer la variable expliquée Y.
 - **Exemple :** La concentration d' O_3 .
- Déterminer (p 1) variables explicatives X₁, ..., X_{p-1}
 Exemple: X₁ température, X₂ vitesse du vent...
- Il ne reste plus qu'à appliquer un modèle linéaire :

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \varepsilon$$

Dans un échantillon de n individus, on mesure $y_i, x_{i,1}, ..., x_{i,p-1}$ pour i = 1 ... n.

Observations	Y	<i>X</i> ₁		X_{p-1}
1	<i>y</i> ₁	<i>X</i> _{1,1}		$x_{1,p-1}$
2	y ₂	<i>X</i> _{2,1}		$x_{2,p-1}$
:	:	:	:	:
n	Уn	<i>X</i> _{<i>n</i>,1}		$X_{n,p-1}$

Remarque : Les variables $x_{i,j}$ sont fixes tandis que les variables y_i sont aléatoires.

But:

estimer les paramètres $\beta_0, \ldots, \beta_{p-1}$ du modèle de régression et ce de manière optimale.

Méthode : La méthode des moindres carrés. Cette méthode revient à minimiser la quantité suivante :

$$\sum_{i=1}^{n} \left(y_i - \left(\hat{\beta}_0 + \hat{\beta}_1 x_{i,1} + \dots + \hat{\beta}_{p-1} x_{i,p-1} \right) \right)^2$$

Le système peut se réécrire :

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,p-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \\ \mathbf{y} = \mathbf{X} \qquad \beta \qquad + \qquad \varepsilon$$

Vecteur des résidus :
$$\varepsilon = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$$

Remarque : Les variables \mathbf{y} et \mathbf{X} sont mesurées tandis que l'estimateur $\hat{\beta}$ est à déterminer

La méthode des moindres carrés consiste à trouver le vecteur $\hat{\beta}$ qui minimise $\|\varepsilon\|^2={}^t\varepsilon\varepsilon$.

$$\begin{aligned} \|\varepsilon\|^2 &= {}^t(\mathbf{y} - \mathbf{X}\hat{\mathbf{\beta}})(\mathbf{y} - \mathbf{X}\hat{\mathbf{\beta}}) \\ &= {}^t\mathbf{y}\mathbf{y} - {}^t\hat{\beta}{}^t\mathbf{X}\mathbf{y} - {}^t\mathbf{y}\mathbf{X}\hat{\beta} + {}^t\hat{\beta}{}^t\mathbf{X}\mathbf{X}\hat{\beta} \\ &= {}^t\mathbf{y}\mathbf{y} - 2{}^t\hat{\beta}{}^t\mathbf{X}\mathbf{y} + {}^t\hat{\beta}{}^t\mathbf{X}\mathbf{X}\hat{\beta} \end{aligned}$$

car ${}^t\hat{\beta}{}^t\mathbf{X}\mathbf{y}$ est un scalaire. Donc il est égal à sa transposée.

La dérivée par rapport à $\hat{\beta}$ est alors égale à :

$$-2^t \mathbf{X} \mathbf{y} + 2^t \mathbf{X} \mathbf{X} \hat{\beta}$$

• **Problème :** On cherche $\hat{\beta}$ qui annule cette dérivée. Donc on doit résoudre l'équation suivante :

$${}^t\mathbf{X}\mathbf{X}\hat{eta}={}^t\mathbf{X}\mathbf{y}$$

Solution: On trouve après avoir inversé la matrice ^tXX (il faut naturellement vérifier que ^tXX est carrée et inversible c'est-à-dire qu'aucune des colonnes qui compose cette matrice ne soit proportionnelle aux autres colonnes)

$$\hat{\beta} = ({}^t\mathbf{X}\mathbf{X})^{-1}{}^t\mathbf{X}\mathbf{y}$$

Retrouvons les résultats de la régression linéaire simple (p = 2)

$${}^{t}\mathbf{XX} = \begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix}; \qquad {}^{t}\mathbf{Xy} = \begin{pmatrix} \sum y_i \\ \sum x_i y_i \end{pmatrix}$$

Donc:

$$({}^{t}\mathbf{XX})^{-1} = \frac{1}{n\sum x_i^2 - (\sum x_i)^2} \begin{pmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{pmatrix}$$
$$= \frac{1}{\sum (x_i - \bar{x})^2} \begin{pmatrix} \sum x_i^2/n & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$

Finalement on retrouve bien:

$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = \begin{pmatrix} \frac{\bar{y} \sum x_i^2 - \bar{x} \sum x_i y_i}{\sum (x_i - \bar{x})^2} \\ \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum (x_i - \bar{x})^2} \end{pmatrix}$$

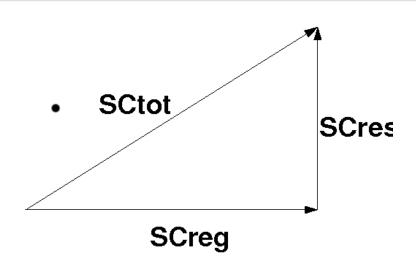
ce qui correspond aux estimateurs de la régression linéaire simple que nous avons déjà rencontrés dans le cours 2.

Résultats préliminaires :

- $\sum \hat{y}_i^2 = \sum \hat{y}_i y_i$ ou (forme matricielle) ${}^t\hat{\mathbf{y}}\hat{\mathbf{y}} = {}^t\mathbf{y}\hat{\mathbf{y}}$
- $\sum \hat{y}_i = \sum y_i$

Propriété des moindres carrés :

$$\begin{array}{cccc} \sum (y_i - \bar{y})^2 & = & \sum (\hat{y}_i - \bar{y})^2 & + & \sum (y_i - \hat{y}_i)^2 \\ \mathrm{SC}_{tot} & = & \mathrm{SC}_{reg} & + & \mathrm{SC}_{res} \end{array}$$



Le coefficient de détermination est défini par :

$$R^2 = \frac{SC_{reg}}{SC_{tot}}$$

Intuitivement ce coefficient quantifie la capacité du modèle à expliquer les variations de *Y*.

- Si R² est proche de 1 alors le modèle est proche de la réalité.
- Si R^2 est proche de 0 alors le modèle explique très mal la réalité. Il faut alors trouver un meilleur modèle.

On fait les hypothèses suivantes :

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

où le vecteur aléatoire ε suit une loi *multinormale* qui vérifie les hypothèses suivantes :

- $\mathbb{E}[\varepsilon] = \mathbf{0}$
- $Var[\varepsilon] = \sigma^2 \mathbf{I}_n$,

où σ^2 est la variance de la population et \mathbf{I}_n est la matrice identité de taille n.

Ceci implique que :

- $\mathbb{E}[\mathbf{y}] = \mathbf{X}\beta$
- $Var[\mathbf{y}] = \sigma^2 \mathbf{I}_n$

On peut alors démontrer, sous ces hypothèses :

- $\mathbb{E}[\hat{\beta}] = \beta$. Ce qui signifie que $\hat{\beta}$ est un estimateur sans biais
- $Var[\hat{\beta}] = \sigma^2({}^t\mathbf{XX})^{-1}$

Il reste un **problème :** Estimer la variance σ^2 qui est a priori une quantité inconnue.

Un estimateur sans biais de la variance σ^2 est défini par :

$$s^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n - p} = \frac{SC_{res}}{n - p} = \frac{SC_{tot} - SC_{reg}}{n - p},$$

où

- *n* est le nombre d'individus/d'observations,
- p est le nombre de variables explicatives.

On appelle la quantité (n-p) le nombre de degrés de liberté.

But: Tester l'hypothèse

$$H_0: \beta_j = b_j$$

contre l'hypothèse alternative

$$H_1: \beta_j \neq b_j.$$

Méthode:

• Calculer la statistique

$$t_{obs} = rac{\hat{eta}_j - b_j}{s(\hat{eta}_j)}$$

où $s^2(\hat{\beta}_j)$ est l'élément diagonal d'indice j de $s^2({}^t\mathbf{XX})^{-1}$.

• Si l'hypothèse H_0 est vraie, alors t_{obs} suit une loi de Student avec (n-p) degrés de liberté.

- Valeur critique : $t_{(\alpha/2,n-p)}$ le $(1-\alpha/2)$ -quantile d'une loi de Student avec (n-p) degrés de liberté (cf table de Student).
- On rejette H_0 si $|t_{obs}| > t_{(\alpha/2, n-p)}$.

Cas particulier: tester si $\beta_j = 0$ pour un certain j. Si l'hypothèse $\beta_j = 0$ est acceptable alors la variable X_j n'est pas significative au sein du modèle. On peut simplifier le modèle, . . . et recommencer!