Skip to contents

Performs a classical factor analysis and returns the results as an object of class "FaClassic" (a.k.a. constructor).

Usage

FaClassic(x, ...)
# S3 method for class 'formula'
FaClassic(formula, data = NULL, factors = 2, cor = FALSE, method = "mle", 
scoresMethod = "none", ...)
# Default S3 method
FaClassic(x, factors = 2, cor = FALSE, method = c("mle", "pca", "pfa"), 
scoresMethod = c("none", "regression", "Bartlett"), ...)

Arguments

x

A formula or a numeric matrix or an object that can be coerced to a numeric matrix.

...

Arguments passed to or from other methods.

formula

A formula with no response variable, referring only to numeric variables.

data

An optional data frame (or similar: see model.frame) containing the variables in the formula.

factors

The number of factors to be fitted.

cor

A logical value indicating whether the calculation should use the covariance matrix (cor = FALSE) or the correlation matrix (cor = TRUE).

method

The method of factor analysis, one of "mle" (the default), "pca", and "pfa".

scoresMethod

Type of scores to produce, if any. The default is "none", "regression" gives Thompson's scores, "Bartlett" gives Bartlett's weighted least-squares scores.

Value

An S4 object of class FaClassic-class which is a subclass of the virtual class Fa-class.

References

Zhang, Y. Y. (2013), An Object Oriented Solution for Robust Factor Analysis.

Author

Ying-Ying Zhang (Robert) robertzhangyying@qq.com

Examples


data("hbk")
hbk.x = hbk[,1:3] 

## faClassicPcaReg uses the default method
faClassicPcaReg = FaClassic(x = hbk.x, factors = 2, method = "pca",
scoresMethod = "regression"); faClassicPcaReg
#> An object of class "FaClassic"
#> Slot "call":
#> FaClassic(x = hbk.x, factors = 2, method = "pca", scoresMethod = "regression")
#> 
#> Slot "converged":
#> NULL
#> 
#> Slot "loadings":
#>      Factor1  Factor2
#> X1  3.411036 0.936662
#> X2  7.278529 3.860723
#> X3 11.270812 3.273734
#> 
#> Slot "communality":
#>        X1        X2        X3 
#>  12.51250  67.88217 137.74853 
#> 
#> Slot "uniquenesses":
#>           X1           X2           X3 
#> 0.8292095832 0.0007959085 0.0863235416 
#> 
#> Slot "cor":
#> [1] FALSE
#> 
#> Slot "covariance":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "correlation":
#>           X1        X2        X3
#> X1 1.0000000 0.9459958 0.9617790
#> X2 0.9459958 1.0000000 0.9786612
#> X3 0.9617790 0.9786612 1.0000000
#> 
#> Slot "usedMatrix":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "reducedCorrelation":
#> NULL
#> 
#> Slot "criteria":
#> NULL
#> 
#> Slot "factors":
#> [1] 2
#> 
#> Slot "dof":
#> NULL
#> 
#> Slot "method":
#> [1] "pca"
#> 
#> Slot "scores":
#>            Factor1      Factor2
#>  [1,]  1.836216178  0.161337548
#>  [2,]  1.756800683  0.549735006
#>  [3,]  2.250318962 -0.462115084
#>  [4,]  2.110379324  0.145591275
#>  [5,]  2.095218367  0.066345803
#>  [6,]  1.906582805  0.232737572
#>  [7,]  1.788199906  0.587263155
#>  [8,]  1.911901278  0.021274118
#>  [9,]  2.106202931 -0.053757894
#> [10,]  2.122518267 -0.342046036
#> [11,]  2.348800415  0.342830312
#> [12,]  2.927387983 -1.009336488
#> [13,]  1.905818664  1.685956006
#> [14,]  0.528829255  6.359573459
#> [15,] -0.448347445  0.133780216
#> [16,] -0.668908585  0.366404244
#> [17,] -0.779858578  0.442576537
#> [18,] -0.320380311 -0.436151460
#> [19,] -0.697421067  0.621061863
#> [20,] -0.531502346  0.422359906
#> [21,] -0.418046839 -0.099159644
#> [22,] -0.718663795  0.742356037
#> [23,] -0.665393822  0.394816805
#> [24,] -0.761582949  0.580540198
#> [25,] -0.419693120 -0.657298051
#> [26,] -0.598455877  0.539385243
#> [27,] -0.247874654 -0.345083251
#> [28,] -0.219836054 -0.829109302
#> [29,] -0.484797036 -0.302159906
#> [30,]  0.006043560 -1.273196784
#> [31,] -0.414104099 -0.319367475
#> [32,] -0.862788836  0.802561432
#> [33,] -0.704564559  0.680970529
#> [34,] -0.404005807 -0.681812987
#> [35,] -0.226207238 -0.410125033
#> [36,] -0.370021556 -0.176933456
#> [37,] -0.581066520  0.435007090
#> [38,] -0.621218623  0.029086231
#> [39,] -0.210664210 -1.057488778
#> [40,] -0.638509599  0.278324368
#> [41,] -0.093737402 -0.869315133
#> [42,] -0.222301393 -0.760169894
#> [43,] -0.929819437  1.166157588
#> [44,]  0.040846868 -1.395395068
#> [45,] -0.345171409 -0.777979662
#> [46,]  0.005618871 -1.329449176
#> [47,] -0.241826492 -0.980332711
#> [48,] -0.094700744 -0.865086128
#> [49,] -0.436399538  0.009447513
#> [50,] -0.371498956 -0.025665034
#> [51,] -0.585765982  0.034545544
#> [52,] -0.234984713 -0.865075764
#> [53,] -0.017987529 -1.299228393
#> [54,] -0.924264023  1.069378350
#> [55,] -0.757104843  0.604723754
#> [56,] -0.808109523  0.898476392
#> [57,] -0.432379728 -0.457331137
#> [58,] -0.698147469  0.739975084
#> [59,] -0.269779011 -0.394725685
#> [60,] -0.198808958 -0.673656887
#> [61,] -0.557786430  0.493393901
#> [62,] -0.459937878 -0.555054318
#> [63,] -0.892563087  0.931740886
#> [64,] -0.361028449  0.001270686
#> [65,] -0.067714855 -1.141591364
#> [66,] -0.694666313  0.333677831
#> [67,] -0.570392680  0.141917212
#> [68,] -0.352127153 -0.776502820
#> [69,] -0.474012517 -0.407110790
#> [70,] -0.340986005 -0.230478698
#> [71,] -0.421675567 -0.010838417
#> [72,] -0.579475155  0.167004879
#> [73,] -0.425439569 -0.197214204
#> [74,] -0.631892463  0.322176109
#> [75,] -0.141285522 -1.068417769
#> 
#> Slot "scoresMethod":
#> [1] "regression"
#> 
#> Slot "scoringCoef":
#>                  X1         X2         X3
#> Factor1  0.06192447 -0.1643831  0.1761400
#> Factor2 -0.12400651  0.5687014 -0.3297295
#> 
#> Slot "meanF":
#>       Factor1       Factor2 
#>  1.473636e-15 -2.560914e-15 
#> 
#> Slot "corF":
#>              Factor1      Factor2
#> Factor1 1.000000e+00 5.144533e-15
#> Factor2 5.144533e-15 1.000000e+00
#> 
#> Slot "STATISTIC":
#> NULL
#> 
#> Slot "PVAL":
#> NULL
#> 
#> Slot "n.obs":
#> [1] 75
#> 
#> Slot "center":
#>       X1       X2       X3 
#> 3.206667 5.597333 7.230667 
#> 
#> Slot "eigenvalues":
#> [1] 216.162129   1.981077   0.916329
#> 
#> Slot "cov.control":
#> NULL
#> 
summary(faClassicPcaReg)
#> An object of class "SummaryFa"
#> Slot "faobj":
#> An object of class "FaClassic"
#> Slot "call":
#> FaClassic(x = hbk.x, factors = 2, method = "pca", scoresMethod = "regression")
#> 
#> Slot "converged":
#> NULL
#> 
#> Slot "loadings":
#>      Factor1  Factor2
#> X1  3.411036 0.936662
#> X2  7.278529 3.860723
#> X3 11.270812 3.273734
#> 
#> Slot "communality":
#>        X1        X2        X3 
#>  12.51250  67.88217 137.74853 
#> 
#> Slot "uniquenesses":
#>           X1           X2           X3 
#> 0.8292095832 0.0007959085 0.0863235416 
#> 
#> Slot "cor":
#> [1] FALSE
#> 
#> Slot "covariance":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "correlation":
#>           X1        X2        X3
#> X1 1.0000000 0.9459958 0.9617790
#> X2 0.9459958 1.0000000 0.9786612
#> X3 0.9617790 0.9786612 1.0000000
#> 
#> Slot "usedMatrix":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "reducedCorrelation":
#> NULL
#> 
#> Slot "criteria":
#> NULL
#> 
#> Slot "factors":
#> [1] 2
#> 
#> Slot "dof":
#> NULL
#> 
#> Slot "method":
#> [1] "pca"
#> 
#> Slot "scores":
#>            Factor1      Factor2
#>  [1,]  1.836216178  0.161337548
#>  [2,]  1.756800683  0.549735006
#>  [3,]  2.250318962 -0.462115084
#>  [4,]  2.110379324  0.145591275
#>  [5,]  2.095218367  0.066345803
#>  [6,]  1.906582805  0.232737572
#>  [7,]  1.788199906  0.587263155
#>  [8,]  1.911901278  0.021274118
#>  [9,]  2.106202931 -0.053757894
#> [10,]  2.122518267 -0.342046036
#> [11,]  2.348800415  0.342830312
#> [12,]  2.927387983 -1.009336488
#> [13,]  1.905818664  1.685956006
#> [14,]  0.528829255  6.359573459
#> [15,] -0.448347445  0.133780216
#> [16,] -0.668908585  0.366404244
#> [17,] -0.779858578  0.442576537
#> [18,] -0.320380311 -0.436151460
#> [19,] -0.697421067  0.621061863
#> [20,] -0.531502346  0.422359906
#> [21,] -0.418046839 -0.099159644
#> [22,] -0.718663795  0.742356037
#> [23,] -0.665393822  0.394816805
#> [24,] -0.761582949  0.580540198
#> [25,] -0.419693120 -0.657298051
#> [26,] -0.598455877  0.539385243
#> [27,] -0.247874654 -0.345083251
#> [28,] -0.219836054 -0.829109302
#> [29,] -0.484797036 -0.302159906
#> [30,]  0.006043560 -1.273196784
#> [31,] -0.414104099 -0.319367475
#> [32,] -0.862788836  0.802561432
#> [33,] -0.704564559  0.680970529
#> [34,] -0.404005807 -0.681812987
#> [35,] -0.226207238 -0.410125033
#> [36,] -0.370021556 -0.176933456
#> [37,] -0.581066520  0.435007090
#> [38,] -0.621218623  0.029086231
#> [39,] -0.210664210 -1.057488778
#> [40,] -0.638509599  0.278324368
#> [41,] -0.093737402 -0.869315133
#> [42,] -0.222301393 -0.760169894
#> [43,] -0.929819437  1.166157588
#> [44,]  0.040846868 -1.395395068
#> [45,] -0.345171409 -0.777979662
#> [46,]  0.005618871 -1.329449176
#> [47,] -0.241826492 -0.980332711
#> [48,] -0.094700744 -0.865086128
#> [49,] -0.436399538  0.009447513
#> [50,] -0.371498956 -0.025665034
#> [51,] -0.585765982  0.034545544
#> [52,] -0.234984713 -0.865075764
#> [53,] -0.017987529 -1.299228393
#> [54,] -0.924264023  1.069378350
#> [55,] -0.757104843  0.604723754
#> [56,] -0.808109523  0.898476392
#> [57,] -0.432379728 -0.457331137
#> [58,] -0.698147469  0.739975084
#> [59,] -0.269779011 -0.394725685
#> [60,] -0.198808958 -0.673656887
#> [61,] -0.557786430  0.493393901
#> [62,] -0.459937878 -0.555054318
#> [63,] -0.892563087  0.931740886
#> [64,] -0.361028449  0.001270686
#> [65,] -0.067714855 -1.141591364
#> [66,] -0.694666313  0.333677831
#> [67,] -0.570392680  0.141917212
#> [68,] -0.352127153 -0.776502820
#> [69,] -0.474012517 -0.407110790
#> [70,] -0.340986005 -0.230478698
#> [71,] -0.421675567 -0.010838417
#> [72,] -0.579475155  0.167004879
#> [73,] -0.425439569 -0.197214204
#> [74,] -0.631892463  0.322176109
#> [75,] -0.141285522 -1.068417769
#> 
#> Slot "scoresMethod":
#> [1] "regression"
#> 
#> Slot "scoringCoef":
#>                  X1         X2         X3
#> Factor1  0.06192447 -0.1643831  0.1761400
#> Factor2 -0.12400651  0.5687014 -0.3297295
#> 
#> Slot "meanF":
#>       Factor1       Factor2 
#>  1.473636e-15 -2.560914e-15 
#> 
#> Slot "corF":
#>              Factor1      Factor2
#> Factor1 1.000000e+00 5.144533e-15
#> Factor2 5.144533e-15 1.000000e+00
#> 
#> Slot "STATISTIC":
#> NULL
#> 
#> Slot "PVAL":
#> NULL
#> 
#> Slot "n.obs":
#> [1] 75
#> 
#> Slot "center":
#>       X1       X2       X3 
#> 3.206667 5.597333 7.230667 
#> 
#> Slot "eigenvalues":
#> [1] 216.162129   1.981077   0.916329
#> 
#> Slot "cov.control":
#> NULL
#> 
#> 
#> Slot "importance":
#>                Factor1 Factor2
#> SS loadings    191.643  26.500
#> Proportion Var   0.875   0.121
#> Cumulative Var   0.875   0.996
#> 

## faClassicForPcaReg uses the formula interface
## faClassicForPcaReg = faClassicPcaReg
faClassicForPcaReg = FaClassic(~., data=as.data.frame(hbk.x), factors = 2, 
method = "pca", scoresMethod = "regression"); faClassicForPcaReg
#> An object of class "FaClassic"
#> Slot "call":
#> FaClassic(formula = ~., data = as.data.frame(hbk.x), factors = 2, 
#>     method = "pca", scoresMethod = "regression")
#> 
#> Slot "converged":
#> NULL
#> 
#> Slot "loadings":
#>      Factor1  Factor2
#> X1  3.411036 0.936662
#> X2  7.278529 3.860723
#> X3 11.270812 3.273734
#> 
#> Slot "communality":
#>        X1        X2        X3 
#>  12.51250  67.88217 137.74853 
#> 
#> Slot "uniquenesses":
#>           X1           X2           X3 
#> 0.8292095832 0.0007959085 0.0863235416 
#> 
#> Slot "cor":
#> [1] FALSE
#> 
#> Slot "covariance":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "correlation":
#>           X1        X2        X3
#> X1 1.0000000 0.9459958 0.9617790
#> X2 0.9459958 1.0000000 0.9786612
#> X3 0.9617790 0.9786612 1.0000000
#> 
#> Slot "usedMatrix":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "reducedCorrelation":
#> NULL
#> 
#> Slot "criteria":
#> NULL
#> 
#> Slot "factors":
#> [1] 2
#> 
#> Slot "dof":
#> NULL
#> 
#> Slot "method":
#> [1] "pca"
#> 
#> Slot "scores":
#>         Factor1      Factor2
#> 1   1.836216178  0.161337548
#> 2   1.756800683  0.549735006
#> 3   2.250318962 -0.462115084
#> 4   2.110379324  0.145591275
#> 5   2.095218367  0.066345803
#> 6   1.906582805  0.232737572
#> 7   1.788199906  0.587263155
#> 8   1.911901278  0.021274118
#> 9   2.106202931 -0.053757894
#> 10  2.122518267 -0.342046036
#> 11  2.348800415  0.342830312
#> 12  2.927387983 -1.009336488
#> 13  1.905818664  1.685956006
#> 14  0.528829255  6.359573459
#> 15 -0.448347445  0.133780216
#> 16 -0.668908585  0.366404244
#> 17 -0.779858578  0.442576537
#> 18 -0.320380311 -0.436151460
#> 19 -0.697421067  0.621061863
#> 20 -0.531502346  0.422359906
#> 21 -0.418046839 -0.099159644
#> 22 -0.718663795  0.742356037
#> 23 -0.665393822  0.394816805
#> 24 -0.761582949  0.580540198
#> 25 -0.419693120 -0.657298051
#> 26 -0.598455877  0.539385243
#> 27 -0.247874654 -0.345083251
#> 28 -0.219836054 -0.829109302
#> 29 -0.484797036 -0.302159906
#> 30  0.006043560 -1.273196784
#> 31 -0.414104099 -0.319367475
#> 32 -0.862788836  0.802561432
#> 33 -0.704564559  0.680970529
#> 34 -0.404005807 -0.681812987
#> 35 -0.226207238 -0.410125033
#> 36 -0.370021556 -0.176933456
#> 37 -0.581066520  0.435007090
#> 38 -0.621218623  0.029086231
#> 39 -0.210664210 -1.057488778
#> 40 -0.638509599  0.278324368
#> 41 -0.093737402 -0.869315133
#> 42 -0.222301393 -0.760169894
#> 43 -0.929819437  1.166157588
#> 44  0.040846868 -1.395395068
#> 45 -0.345171409 -0.777979662
#> 46  0.005618871 -1.329449176
#> 47 -0.241826492 -0.980332711
#> 48 -0.094700744 -0.865086128
#> 49 -0.436399538  0.009447513
#> 50 -0.371498956 -0.025665034
#> 51 -0.585765982  0.034545544
#> 52 -0.234984713 -0.865075764
#> 53 -0.017987529 -1.299228393
#> 54 -0.924264023  1.069378350
#> 55 -0.757104843  0.604723754
#> 56 -0.808109523  0.898476392
#> 57 -0.432379728 -0.457331137
#> 58 -0.698147469  0.739975084
#> 59 -0.269779011 -0.394725685
#> 60 -0.198808958 -0.673656887
#> 61 -0.557786430  0.493393901
#> 62 -0.459937878 -0.555054318
#> 63 -0.892563087  0.931740886
#> 64 -0.361028449  0.001270686
#> 65 -0.067714855 -1.141591364
#> 66 -0.694666313  0.333677831
#> 67 -0.570392680  0.141917212
#> 68 -0.352127153 -0.776502820
#> 69 -0.474012517 -0.407110790
#> 70 -0.340986005 -0.230478698
#> 71 -0.421675567 -0.010838417
#> 72 -0.579475155  0.167004879
#> 73 -0.425439569 -0.197214204
#> 74 -0.631892463  0.322176109
#> 75 -0.141285522 -1.068417769
#> 
#> Slot "scoresMethod":
#> [1] "regression"
#> 
#> Slot "scoringCoef":
#>                  X1         X2         X3
#> Factor1  0.06192447 -0.1643831  0.1761400
#> Factor2 -0.12400651  0.5687014 -0.3297295
#> 
#> Slot "meanF":
#>       Factor1       Factor2 
#>  1.473636e-15 -2.560914e-15 
#> 
#> Slot "corF":
#>              Factor1      Factor2
#> Factor1 1.000000e+00 5.144533e-15
#> Factor2 5.144533e-15 1.000000e+00
#> 
#> Slot "STATISTIC":
#> NULL
#> 
#> Slot "PVAL":
#> NULL
#> 
#> Slot "n.obs":
#> [1] 75
#> 
#> Slot "center":
#>       X1       X2       X3 
#> 3.206667 5.597333 7.230667 
#> 
#> Slot "eigenvalues":
#> [1] 216.162129   1.981077   0.916329
#> 
#> Slot "cov.control":
#> NULL
#> 
summary(faClassicForPcaReg)
#> An object of class "SummaryFa"
#> Slot "faobj":
#> An object of class "FaClassic"
#> Slot "call":
#> FaClassic(formula = ~., data = as.data.frame(hbk.x), factors = 2, 
#>     method = "pca", scoresMethod = "regression")
#> 
#> Slot "converged":
#> NULL
#> 
#> Slot "loadings":
#>      Factor1  Factor2
#> X1  3.411036 0.936662
#> X2  7.278529 3.860723
#> X3 11.270812 3.273734
#> 
#> Slot "communality":
#>        X1        X2        X3 
#>  12.51250  67.88217 137.74853 
#> 
#> Slot "uniquenesses":
#>           X1           X2           X3 
#> 0.8292095832 0.0007959085 0.0863235416 
#> 
#> Slot "cor":
#> [1] FALSE
#> 
#> Slot "covariance":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "correlation":
#>           X1        X2        X3
#> X1 1.0000000 0.9459958 0.9617790
#> X2 0.9459958 1.0000000 0.9786612
#> X3 0.9617790 0.9786612 1.0000000
#> 
#> Slot "usedMatrix":
#>          X1       X2        X3
#> X1 13.34171 28.46921  41.24398
#> X2 28.46921 67.88297  94.66562
#> X3 41.24398 94.66562 137.83486
#> 
#> Slot "reducedCorrelation":
#> NULL
#> 
#> Slot "criteria":
#> NULL
#> 
#> Slot "factors":
#> [1] 2
#> 
#> Slot "dof":
#> NULL
#> 
#> Slot "method":
#> [1] "pca"
#> 
#> Slot "scores":
#>         Factor1      Factor2
#> 1   1.836216178  0.161337548
#> 2   1.756800683  0.549735006
#> 3   2.250318962 -0.462115084
#> 4   2.110379324  0.145591275
#> 5   2.095218367  0.066345803
#> 6   1.906582805  0.232737572
#> 7   1.788199906  0.587263155
#> 8   1.911901278  0.021274118
#> 9   2.106202931 -0.053757894
#> 10  2.122518267 -0.342046036
#> 11  2.348800415  0.342830312
#> 12  2.927387983 -1.009336488
#> 13  1.905818664  1.685956006
#> 14  0.528829255  6.359573459
#> 15 -0.448347445  0.133780216
#> 16 -0.668908585  0.366404244
#> 17 -0.779858578  0.442576537
#> 18 -0.320380311 -0.436151460
#> 19 -0.697421067  0.621061863
#> 20 -0.531502346  0.422359906
#> 21 -0.418046839 -0.099159644
#> 22 -0.718663795  0.742356037
#> 23 -0.665393822  0.394816805
#> 24 -0.761582949  0.580540198
#> 25 -0.419693120 -0.657298051
#> 26 -0.598455877  0.539385243
#> 27 -0.247874654 -0.345083251
#> 28 -0.219836054 -0.829109302
#> 29 -0.484797036 -0.302159906
#> 30  0.006043560 -1.273196784
#> 31 -0.414104099 -0.319367475
#> 32 -0.862788836  0.802561432
#> 33 -0.704564559  0.680970529
#> 34 -0.404005807 -0.681812987
#> 35 -0.226207238 -0.410125033
#> 36 -0.370021556 -0.176933456
#> 37 -0.581066520  0.435007090
#> 38 -0.621218623  0.029086231
#> 39 -0.210664210 -1.057488778
#> 40 -0.638509599  0.278324368
#> 41 -0.093737402 -0.869315133
#> 42 -0.222301393 -0.760169894
#> 43 -0.929819437  1.166157588
#> 44  0.040846868 -1.395395068
#> 45 -0.345171409 -0.777979662
#> 46  0.005618871 -1.329449176
#> 47 -0.241826492 -0.980332711
#> 48 -0.094700744 -0.865086128
#> 49 -0.436399538  0.009447513
#> 50 -0.371498956 -0.025665034
#> 51 -0.585765982  0.034545544
#> 52 -0.234984713 -0.865075764
#> 53 -0.017987529 -1.299228393
#> 54 -0.924264023  1.069378350
#> 55 -0.757104843  0.604723754
#> 56 -0.808109523  0.898476392
#> 57 -0.432379728 -0.457331137
#> 58 -0.698147469  0.739975084
#> 59 -0.269779011 -0.394725685
#> 60 -0.198808958 -0.673656887
#> 61 -0.557786430  0.493393901
#> 62 -0.459937878 -0.555054318
#> 63 -0.892563087  0.931740886
#> 64 -0.361028449  0.001270686
#> 65 -0.067714855 -1.141591364
#> 66 -0.694666313  0.333677831
#> 67 -0.570392680  0.141917212
#> 68 -0.352127153 -0.776502820
#> 69 -0.474012517 -0.407110790
#> 70 -0.340986005 -0.230478698
#> 71 -0.421675567 -0.010838417
#> 72 -0.579475155  0.167004879
#> 73 -0.425439569 -0.197214204
#> 74 -0.631892463  0.322176109
#> 75 -0.141285522 -1.068417769
#> 
#> Slot "scoresMethod":
#> [1] "regression"
#> 
#> Slot "scoringCoef":
#>                  X1         X2         X3
#> Factor1  0.06192447 -0.1643831  0.1761400
#> Factor2 -0.12400651  0.5687014 -0.3297295
#> 
#> Slot "meanF":
#>       Factor1       Factor2 
#>  1.473636e-15 -2.560914e-15 
#> 
#> Slot "corF":
#>              Factor1      Factor2
#> Factor1 1.000000e+00 5.144533e-15
#> Factor2 5.144533e-15 1.000000e+00
#> 
#> Slot "STATISTIC":
#> NULL
#> 
#> Slot "PVAL":
#> NULL
#> 
#> Slot "n.obs":
#> [1] 75
#> 
#> Slot "center":
#>       X1       X2       X3 
#> 3.206667 5.597333 7.230667 
#> 
#> Slot "eigenvalues":
#> [1] 216.162129   1.981077   0.916329
#> 
#> Slot "cov.control":
#> NULL
#> 
#> 
#> Slot "importance":
#>                Factor1 Factor2
#> SS loadings    191.643  26.500
#> Proportion Var   0.875   0.121
#> Cumulative Var   0.875   0.996
#>