R/plsRcox-package.R
plsRcox-package.Rd
Provides Partial least squares Regression and various regular, sparse or kernel, techniques for fitting Cox models in high dimensional settings <doi:10.1093/bioinformatics/btu660>, Bastien, P., Bertrand, F., Meyer N., Maumy-Bertrand, M. (2015), Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Bioinformatics, 31(3):397-404. Cross validation criteria were studied in <arXiv:1810.02962>, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), Cross validating extensions of kernel, sparse or regular partial least squares regression models to censored data.
Bastien, P., Bertrand, F., Meyer N., Maumy-Bertrand, M. (2015), Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Bioinformatics, 31(3):397-404. <doi:10.1093/bioinformatics/btu660>. Cross validation criteria were studied in <arXiv:1810.02962>, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), Cross validating extensions of kernel, sparse or regular partial least squares regression models to censored data.
# The original allelotyping dataset library(plsRcox) data(micro.censure) Y_train_micro <- micro.censure$survyear[1:80] C_train_micro <- micro.censure$DC[1:80] Y_test_micro <- micro.censure$survyear[81:117] C_test_micro <- micro.censure$DC[81:117] data(Xmicro.censure_compl_imp) X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)), FUN="as.numeric",MARGIN=2)[1:80,] X_train_micro_df <- data.frame(X_train_micro) # coxsplsDR cox_splsDR_fit=coxsplsDR(X_train_micro,Y_train_micro,C_train_micro, ncomp=6,eta=.5) cox_splsDR_fit#> Call: #> coxph(formula = YCsurv ~ ., data = tt_splsDR) #> #> coef exp(coef) se(coef) z p #> dim.1 0.8093 2.2462 0.2029 3.989 6.63e-05 #> dim.2 0.9295 2.5333 0.2939 3.163 0.00156 #> dim.3 0.9968 2.7096 0.4190 2.379 0.01736 #> dim.4 0.9705 2.6391 0.3793 2.558 0.01052 #> dim.5 0.2162 1.2413 0.2811 0.769 0.44192 #> dim.6 0.4380 1.5496 0.3608 1.214 0.22473 #> #> Likelihood ratio test=55.06 on 6 df, p=4.51e-10 #> n= 80, number of events= 17#> Warning: non-list contrasts argument ignored#> The variables that join the set of selected variables at each step: #> - 1th step (K=1): #> X_train_microD20S107 X_train_microD5S346 X_train_microD1S225 X_train_microD3S1282 X_train_microD15S127 X_train_microD1S207 X_train_microD2S138 X_train_microD10S191 X_train_microD14S65 X_train_microD4S414 #> X_train_microD16S408 X_train_microT X_train_microN X_train_microSTADE #> - 2th step (K=2): #> X_train_microD22S928 X_train_microD16S422 X_train_microD3S1283 X_train_microAgediag X_train_microM #> - 3th step (K=3): #> X_train_microD1S305 X_train_microD8S283 X_train_microD10S192 X_train_microsexe X_train_microSiege #> - 4th step (K=4): #> X_train_microD17S794 X_train_microD13S173 X_train_microTP53 X_train_microD6S264 X_train_microD2S159 X_train_microD6S275 #> - 5th step (K=5): #> X_train_microD18S61 X_train_microD9S171 X_train_microD8S264 X_train_microD18S53 X_train_microD4S394 X_train_microD11S916 #> - 6th step (K=6): #> X_train_microD17S790cox_splsDR_fit2#> Call: #> coxph(formula = YCsurv ~ ., data = tt_splsDR) #> #> coef exp(coef) se(coef) z p #> dim.1 0.8093 2.2462 0.2029 3.989 6.63e-05 #> dim.2 0.9295 2.5333 0.2939 3.163 0.00156 #> dim.3 0.9968 2.7096 0.4190 2.379 0.01736 #> dim.4 0.9705 2.6391 0.3793 2.558 0.01052 #> dim.5 0.2162 1.2413 0.2811 0.769 0.44192 #> dim.6 0.4380 1.5496 0.3608 1.214 0.22473 #> #> Likelihood ratio test=55.06 on 6 df, p=4.51e-10 #> n= 80, number of events= 17cox_splsDR_fit3=coxsplsDR(~.,Y_train_micro,C_train_micro,ncomp=6, dataXplan=X_train_micro_df,eta=.5)#> Warning: non-list contrasts argument ignoredcox_splsDR_fit3#> Call: #> coxph(formula = YCsurv ~ ., data = tt_splsDR) #> #> coef exp(coef) se(coef) z p #> dim.1 0.8093 2.2462 0.2029 3.989 6.63e-05 #> dim.2 0.9295 2.5333 0.2939 3.163 0.00156 #> dim.3 0.9968 2.7096 0.4190 2.379 0.01736 #> dim.4 0.9705 2.6391 0.3793 2.558 0.01052 #> dim.5 0.2162 1.2413 0.2811 0.769 0.44192 #> dim.6 0.4380 1.5496 0.3608 1.214 0.22473 #> #> Likelihood ratio test=55.06 on 6 df, p=4.51e-10 #> n= 80, number of events= 17