Simulates microarray data based on a given network.

# S4 method for network
gene_expr_simulation(network, time_label = 1:4, subject = 5, level_peak = 100)

Arguments

network

A network object.

time_label

a vector containing the time labels.

subject

the number of subjects

level_peak

the mean level of peaks.

Value

A micro_array object.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464.

Author

Nicolas Jung, Frédéric Bertrand , Myriam Maumy-Bertrand.

Examples

data(Net) set.seed(1) #We simulate gene expression according to the network Net Msim<-gene_expr_simulation( network=Net, time_label=rep(1:4,each=25), subject=5, level_peak=200)
#> Le chargement a nécessité le package : VGAM
#> Le chargement a nécessité le package : stats4
#> Le chargement a nécessité le package : splines
#> Le chargement a nécessité le package : magic
#> Le chargement a nécessité le package : abind
head(Msim)
#> The matrix : #> #> log(S/US) : P1T1 log(S/US) : P1T2 log(S/US) : P1T3 #> gene 1 86.06709 44.533656 -57.361320 #> gene 2 -146.83138 120.514233 -39.892240 #> gene 3 228.34653 -3.625970 -60.889866 #> gene 4 505.11452 13.929252 -2.786049 #> gene 5 -36.57508 -1.828829 46.784308 #> gene 6 -486.82335 -91.502323 -173.402124 #> ... #> #> Vector of names : #> [1] "gene 1" "gene 2" "gene 3" "gene 4" "gene 5" "gene 6" #> ... #> Vector of group : #> [1] 1 1 1 1 1 1 #> ... #> Vector of starting time : #> [1] 0 #> ... #> Vector of time : #> [1] 1 2 3 4 #> #> Number of subject : #> [1] 5