
Simulates microarray data based on a given network.
Source:R/micro_array-network.R
gene_expr_simulation-network-method.Rd
Simulates microarray data based on a given network.
Usage
# S4 method for class 'network'
gene_expr_simulation(network, time_label = 1:4, subject = 5, level_peak = 100)
References
Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705.
Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464.
Examples
data(Net)
set.seed(1)
#We simulate gene expression according to the network Net
Msim<-gene_expr_simulation(
network=Net,
time_label=rep(1:4,each=25),
subject=5,
level_peak=200)
#> Loading required package: VGAM
#> Loading required package: stats4
#> Loading required package: splines
#> Loading required package: magic
#> Loading required package: abind
head(Msim)
#> The matrix :
#>
#> log(S/US) : P1T1 log(S/US) : P1T2 log(S/US) : P1T3
#> gene 1 86.06709 44.533656 -57.361320
#> gene 2 -146.83138 120.514233 -39.892240
#> gene 3 228.34653 -3.625970 -60.889866
#> gene 4 505.11452 13.929252 -2.786049
#> gene 5 -36.57508 -1.828829 46.784308
#> gene 6 -486.82335 -91.502323 -173.402124
#> ...
#>
#> Vector of names :
#> [1] "gene 1" "gene 2" "gene 3" "gene 4" "gene 5" "gene 6"
#> ...
#> Vector of group :
#> [1] 1 1 1 1 1 1
#> ...
#> Vector of starting time :
#> [1] 0
#> ...
#> Vector of time :
#> [1] 1 2 3 4
#>
#> Number of subject :
#> [1] 5