Skip to contents

All functions

M
Simulated M data for examples.
Net
Simulated network data for examples.
Net_inf
Reverse-engineered network of the simulated data.
Selection
Selection of genes.
analyze_network(<network>)
Analysing the network
as.micro_array()
Coerce a matrix into a micro_array object.
compare(<network>,<network>,<numeric>)
Some basic criteria of comparison between actual and inferred network.
cutoff(<network>)
Choose the best cutoff
dim(<micro_array>)
Dimension of the data
evolution(<network>)
See the evolution of the network with change of cutoff
geneNeighborhood(<network>)
Find the neighborhood of a set of nodes.
geneSelection(<micro_array>,<micro_array>,<numeric>) geneSelection(<list>,<list>,<numeric>) genePeakSelection(<micro_array>,<numeric>)
Methods for selecting genes
gene_expr_simulation(<network>)
Simulates microarray data based on a given network.
head(<micro_array>)
Overview of a micro_array object
inference(<micro_array>)
Reverse-engineer the network
micro_array-class
Class "micro_array"
micropredict-class
Class "micropredict"
network-class
Class "network"
network
A network object data.
network_random()
Generates a network.
plot(<micro_array>,<ANY>) plot(<network>,<ANY>) plot(<micropredict>,<ANY>)
Plot
position(<network>)
Returns the position of edges in the network
predict(<micro_array>)
Prediction of the gene expressions after a knock-out experience predict
print(<micro_array>) print(<network>)
Methods for Function print
summary(<micro_array>)
Methods for Function summary
unionMicro(<micro_array>,<micro_array>)
Makes the union between two micro_array objects.