Skip to contents
-
M
- Simulated M data for examples.
-
Net
- Simulated network data for examples.
-
Net_inf
- Reverse-engineered network of the simulated data.
-
Selection
- Selection of genes.
-
analyze_network(<network>)
- Analysing the network
-
as.micro_array()
- Coerce a matrix into a micro_array object.
-
compare(<network>,<network>,<numeric>)
- Some basic criteria of comparison between actual and inferred network.
-
cutoff(<network>)
- Choose the best cutoff
-
dim(<micro_array>)
- Dimension of the data
-
evolution(<network>)
- See the evolution of the network with change of cutoff
-
geneNeighborhood(<network>)
- Find the neighborhood of a set of nodes.
-
geneSelection(<micro_array>,<micro_array>,<numeric>)
geneSelection(<list>,<list>,<numeric>)
genePeakSelection(<micro_array>,<numeric>)
- Methods for selecting genes
-
gene_expr_simulation(<network>)
- Simulates microarray data based on a given network.
-
head(<micro_array>)
- Overview of a micro_array object
-
inference(<micro_array>)
- Reverse-engineer the network
-
micro_array-class
- Class
"micro_array"
-
micropredict-class
- Class
"micropredict"
-
network-class
- Class
"network"
-
network
- A network object data.
-
network_random()
- Generates a network.
-
plot(<micro_array>,<ANY>)
plot(<network>,<ANY>)
plot(<micropredict>,<ANY>)
- Plot
-
position(<network>)
- Returns the position of edges in the network
-
predict(<micro_array>)
- Prediction of the gene expressions after a knock-out experience
predict
-
print(<micro_array>)
print(<network>)
- Methods for Function
print
-
summary(<micro_array>)
- Methods for Function
summary
-
unionMicro(<micro_array>,<micro_array>)
- Makes the union between two micro_array objects.