Returns the position of edges in the network
Methods
- list("signature(net = \"network\")")
Returns a matrix with the position of the node. This matrix can then be used as an argument in the plot function.
Examples
data(Net)
position(Net)
#> nom
#> [1,] 1 77.62579 157.0584
#> [2,] 2 75.86162 145.5901
#> [3,] 3 77.29868 153.1147
#> [4,] 4 74.31050 147.6802
#> [5,] 5 83.89926 146.1839
#> [6,] 6 80.05434 155.1712
#> [7,] 7 76.45764 155.5151
#> [8,] 8 82.02396 155.7621
#> [9,] 9 75.57764 156.6670
#> [10,] 10 78.35228 149.7702
#> [11,] 11 79.85832 148.8184
#> [12,] 12 80.89050 148.5299
#> [13,] 14 81.44963 157.3230
#> [14,] 16 77.57833 149.8369
#> [15,] 17 83.20596 153.8566
#> [16,] 18 81.16200 155.9456
#> [17,] 20 77.76132 158.0188
#> [18,] 21 76.00897 157.7624
#> [19,] 22 74.01613 144.5360
#> [20,] 23 75.62523 154.4312
#> [21,] 24 76.64469 152.2593
#> [22,] 25 79.10569 142.6129
#> [23,] 26 74.73178 151.1691
#> [24,] 27 77.97744 156.6956
#> [25,] 28 77.21315 155.6830
#> [26,] 29 79.24969 157.6255
#> [27,] 30 76.38985 154.9049
#> [28,] 31 77.84272 146.4079
#> [29,] 32 80.27481 151.3799
#> [30,] 33 77.92357 147.9329
#> [31,] 34 74.26854 146.2650
#> [32,] 35 76.61424 148.4267
#> [33,] 36 81.39357 151.9091
#> [34,] 37 81.55097 146.1946
#> [35,] 38 74.74029 154.6516
#> [36,] 39 82.31326 153.8545
#> [37,] 40 85.20149 145.5326
#> [38,] 41 83.91929 155.6658
#> [39,] 42 80.93662 153.9012
#> [40,] 43 82.58841 157.7389
#> [41,] 44 73.44880 145.9081
#> [42,] 45 80.09926 148.0367
#> [43,] 46 84.03046 150.8273
#> [44,] 47 81.15431 152.2193
#> [45,] 48 83.24490 156.3656
#> [46,] 49 80.13362 157.5086
#> [47,] 50 79.06117 155.9157
#> [48,] 51 79.89945 145.6803
#> [49,] 52 83.28830 153.1798
#> [50,] 53 81.82004 151.8780
#> [51,] 54 83.65226 150.5278
#> [52,] 55 76.96182 150.6762
#> [53,] 56 83.83091 152.0310
#> [54,] 57 78.82390 148.4193
#> [55,] 58 77.52936 154.7118
#> [56,] 59 81.65878 150.7512
#> [57,] 60 78.86766 149.5199
#> [58,] 61 84.79111 152.5720
#> [59,] 62 74.79204 156.1215
#> [60,] 63 73.36673 152.0233
#> [61,] 64 79.87701 154.1460
#> [62,] 65 79.16445 150.5090
#> [63,] 66 82.67888 150.8210
#> [64,] 67 79.98753 151.0154
#> [65,] 68 74.30660 153.1945
#> [66,] 69 81.17450 149.4634
#> [67,] 70 75.02532 153.7643
#> [68,] 71 82.19025 148.3039
#> [69,] 72 77.84696 153.4190
#> [70,] 73 79.47406 152.5963
#> [71,] 74 82.67573 151.8654
#> [72,] 75 86.32603 150.7217
#> [73,] 76 86.19493 149.9689
#> [74,] 77 86.24802 151.5261
#> [75,] 78 75.55672 151.0400
#> [76,] 79 75.94398 153.1528
#> [77,] 80 78.12836 151.0402
#> [78,] 81 85.75086 149.3029
#> [79,] 82 83.50015 148.6658
#> [80,] 83 72.89340 149.5794
#> [81,] 84 71.64668 151.5817
#> [82,] 85 81.85064 149.5437
#> [83,] 86 82.20630 150.0122
#> [84,] 87 78.76255 154.4276
#> [85,] 88 80.58430 150.3077
#> [86,] 89 76.19552 150.2142
#> [87,] 90 76.11220 148.2913
#> [88,] 91 76.75863 149.6426
#> [89,] 92 74.65087 149.6649
#> [90,] 93 80.68069 146.1115
#> [91,] 94 85.41577 154.2702
#> [92,] 95 82.44209 153.1057
#> [93,] 96 84.19332 144.7133
#> [94,] 97 71.70009 152.6738
#> [95,] 98 80.07012 142.6054
#> [96,] 99 74.93735 143.7101
#> [97,] 100 82.25926 146.5941