Returns the position of edges in the network

# S4 method for network
position(net, nv = 0)

Arguments

net

a network object

nv

the level of cutoff at which the analysis should be done

Methods

list("signature(net = \"network\")")

Returns a matrix with the position of the node. This matrix can then be used as an argument in the plot function.

Examples

data(Net) position(Net)
#> nom #> [1,] 1 78.85484 152.7683 #> [2,] 2 80.73265 140.3326 #> [3,] 3 76.57021 147.8938 #> [4,] 4 77.30162 141.0465 #> [5,] 5 71.00997 147.0415 #> [6,] 6 78.20188 150.8659 #> [7,] 7 78.42931 149.5879 #> [8,] 8 77.16807 151.5203 #> [9,] 9 81.75499 152.7064 #> [10,] 10 77.48446 144.2810 #> [11,] 11 79.35835 144.5039 #> [12,] 12 77.06034 147.8797 #> [13,] 14 73.26918 151.5965 #> [14,] 16 80.48012 143.9473 #> [15,] 17 77.19330 149.4140 #> [16,] 18 71.89331 149.6357 #> [17,] 20 78.25099 153.8567 #> [18,] 21 79.26495 153.8774 #> [19,] 22 76.84748 138.4932 #> [20,] 23 72.35936 146.3824 #> [21,] 24 79.93850 147.4140 #> [22,] 25 71.58754 153.9699 #> [23,] 26 82.32988 145.5563 #> [24,] 27 80.09718 152.8794 #> [25,] 28 78.56182 151.4335 #> [26,] 29 77.59028 153.1586 #> [27,] 30 80.00614 150.6119 #> [28,] 31 80.72523 142.0140 #> [29,] 32 76.52055 145.8798 #> [30,] 33 77.83139 142.1685 #> [31,] 34 79.15973 140.0066 #> [32,] 35 79.11818 142.8366 #> [33,] 36 79.95207 148.2620 #> [34,] 37 74.97872 149.7272 #> [35,] 38 81.22257 150.4959 #> [36,] 39 73.98454 148.5653 #> [37,] 40 69.48633 146.5341 #> [38,] 41 76.24484 151.7853 #> [39,] 42 77.76353 149.8644 #> [40,] 43 74.82341 152.7588 #> [41,] 44 76.73467 139.5315 #> [42,] 45 76.14032 144.3769 #> [43,] 46 81.63763 148.3505 #> [44,] 47 79.24698 147.9431 #> [45,] 48 74.83840 151.3479 #> [46,] 49 77.23896 153.7782 #> [47,] 50 72.89956 149.2259 #> [48,] 51 74.07417 144.5736 #> [49,] 52 74.80053 147.9126 #> [50,] 53 78.35582 147.7615 #> [51,] 54 82.39085 148.9637 #> [52,] 55 75.46003 144.8044 #> [53,] 56 81.90065 147.7694 #> [54,] 57 78.17523 145.4298 #> [55,] 58 74.75948 149.1277 #> [56,] 59 73.89493 145.9768 #> [57,] 60 77.66456 143.5201 #> [58,] 61 83.11713 150.3445 #> [59,] 62 80.60282 152.1739 #> [60,] 63 73.37547 143.6575 #> [61,] 64 75.65534 148.7750 #> [62,] 65 79.66686 146.0697 #> [63,] 66 75.47854 143.4149 #> [64,] 67 79.00442 146.3063 #> [65,] 68 81.55500 149.3232 #> [66,] 69 81.08489 145.7259 #> [67,] 70 73.59143 147.3852 #> [68,] 71 74.16051 146.8806 #> [69,] 72 78.02293 147.1075 #> [70,] 73 79.37085 149.7686 #> [71,] 74 74.77069 144.0244 #> [72,] 75 84.26284 148.0404 #> [73,] 76 83.97207 149.5187 #> [74,] 77 84.07898 148.7472 #> [75,] 78 76.70146 145.0884 #> [76,] 79 80.23954 145.9696 #> [77,] 80 78.74175 144.8752 #> [78,] 81 83.99918 147.3008 #> [79,] 82 79.62773 148.8688 #> [80,] 83 74.81738 141.4505 #> [81,] 84 71.97613 142.2116 #> [82,] 85 80.09548 146.8718 #> [83,] 86 82.28782 146.5345 #> [84,] 87 76.05275 149.6222 #> [85,] 88 81.39892 146.8329 #> [86,] 89 82.05737 144.4835 #> [87,] 90 76.80720 143.0073 #> [88,] 91 79.96052 145.1206 #> [89,] 92 73.90196 142.7808 #> [90,] 93 75.03531 146.1846 #> [91,] 94 72.28061 148.2045 #> [92,] 95 81.86576 151.0836 #> [93,] 96 69.48840 147.7425 #> [94,] 97 71.45098 143.1290 #> [95,] 98 70.89808 153.2679 #> [96,] 99 77.86785 138.2195 #> [97,] 100 75.68637 150.1935