Plot.peperr.curves.Rd
Plots individual and aggregated prediction error estimates based on bootstrap samples.
Plot.peperr.curves(x, at.risk=TRUE, allErrors=FALSE, bootRuns=FALSE, bootQuants=TRUE, bootQuants.level=0.95, leg.cex=0.7,...)
x |
|
---|---|
at.risk | number at risk to be display. default is TRUE. |
allErrors | Display .632, no information and average out-of-bag error in addition. default is FALSE. |
bootRuns | Display individual out-of-bag bootstrap samples. default is FALSE. |
bootQuants | Display pointwise out-of-bag bootstrap quantiles as shaded area. default is TRUE. |
bootQuants.level | Quantile probabilities for pointwise out-of-bag bootstrap quantiles. default is 0.95, i.e. 2.5% and 97.5% quantiles. |
leg.cex | size of legend text |
... | additional arguments, not used. |
This function is literally taken from plot.peperr
in the peperr
package.
The display of prediction error curves is adapted to allow for numbers at risk and pointwise bootstrap quantiles.
Thomas Hielscher t.hielscher@dkfz.de
Sill M., Hielscher T., Becker N. and Zucknick M. (2014), c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, Volume 62(5), pages 1--22. doi: 10.18637/jss.v062.i05
if (FALSE) { # example from glmnet package set.seed(10101) library(glmnet) library(survival) library(peperr) N=1000;p=30 nzc=p/3 x=matrix(rnorm(N*p),N,p) beta=rnorm(nzc) fx=x[,seq(nzc)] hx=exp(fx) ty=rexp(N,hx) tcens=rbinom(n=N,prob=.3,size=1)# censoring indicator y=Surv(ty,1-tcens) peperr.object <- peperr(response=y, x=x, fit.fun=fit.glmnet, args.fit=list(family="cox"), complexity=complexity.glmnet, args.complexity=list(family="cox",nfolds=10), indices=resample.indices(n=N, method="sub632", sample.n=10)) # pointwise bootstrap quantiles and all error types Plot.peperr.curves(peperr.object, allErrors=TRUE) # individual bootstrap runs and selected error types Plot.peperr.curves(peperr.object, allErrors=FALSE, bootRuns=TRUE) }