Interface function for fitting a penalized regression model with glmnet
Source: R/peperr_glmnet.R
fit.glmnet.Rd
Interface for fitting penalized regression models for binary of survival
endpoint using glmnet
, conforming to the requirements for argument
fit.fun
in peperr
call.
Details
Function is basically a wrapper for glmnet
of package glmnet.
Note that only penalized Cox PH (family="cox"
) and logistic
regression models (family="binomial"
) are sensible for prediction
error evaluation with package peperr
.
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, https://web.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
https://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie,
T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional
Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol.
39(5) 1-13
https://www.jstatsoft.org/v39/i05/
Porzelius, C.,
Binder, H., and Schumacher, M. (2009) Parallelized prediction error
estimation for evaluation of high-dimensional models, Bioinformatics, Vol.
25(6), 827-829.
Sill M., Hielscher T., Becker N. and Zucknick M. (2014),
c060: Extended Inference with Lasso and Elastic-Net Regularized Cox
and Generalized Linear Models, Journal of Statistical Software, Volume
62(5), pages 1–22. https://doi.org/10.18637/jss.v062.i05.
Author
Thomas Hielscher t.hielscher@dkfz.de