Extract predicted survival probabilities from a glmnet fit
Source:R/peperr_glmnet.R
predictProb.coxnet.Rd
Extracts predicted survival probabilities from survival model fitted by
glmnet, providing an interface as required by pmpec
.
Usage
# S3 method for class 'coxnet'
predictProb(object, response, x, times, complexity, ...)
Arguments
- object
a fitted model of class
glmnet
- response
a two-column matrix with columns named 'time' and 'status'. The latter is a binary variable, with '1' indicating death, and '0' indicating right censored. The function
Surv()
in package survival produces such a matrix- x
n*p
matrix of covariates.- times
vector of evaluation time points.
- complexity
lambda penalty value.
- ...
additional arguments, currently not used.
Value
Matrix with probabilities for each evaluation time point in
times
(columns) and each new observation (rows).
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, https://web.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
https://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie,
T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional
Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol.
39(5) 1-13
https://www.jstatsoft.org/v39/i05/
Porzelius, C.,
Binder, H., and Schumacher, M. (2009) Parallelized prediction error
estimation for evaluation of high-dimensional models, Bioinformatics, Vol.
25(6), 827-829.
Sill M., Hielscher T., Becker N. and Zucknick M. (2014),
c060: Extended Inference with Lasso and Elastic-Net Regularized Cox
and Generalized Linear Models, Journal of Statistical Software, Volume
62(5), pages 1–22. https://doi.org/10.18637/jss.v062.i05.
Author
Thomas Hielscher t.hielscher@dkfz.de