Print Function for FS SVM
print.Rd
Print Function for FS SVM
Usage
# S3 method for class 'penSVM'
print(x,...)
Examples
seed<- 123
train<-sim.data(n = 20, ng = 100, nsg = 10, corr=FALSE, seed=seed )
print(str(train))
#> List of 3
#> $ x : num [1:100, 1:20] 0.249 -1.428 1.301 -2.336 1.537 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:100] "pos1" "pos2" "pos3" "pos4" ...
#> .. ..$ : chr [1:20] "1" "2" "3" "4" ...
#> $ y : Named num [1:20] 1 1 -1 -1 -1 -1 1 1 -1 1 ...
#> ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ...
#> $ seed: num 123
#> NULL
# for presentation don't check all lambdas : time consuming!
model <- scadsvc(as.matrix(t(train$x)), y=train$y, lambda=0.05)
#> [1] "start iterations:"
#> [1] "scad converged in 76 iterations"
print(str(model))
#> List of 9
#> $ w : Named num [1:8] 0.302 -0.733 0.252 0.811 -0.377 ...
#> ..- attr(*, "names")= chr [1:8] "pos2" "bal3" "bal22" "bal27" ...
#> $ b : num -0.21
#> $ xind : int [1:8] 2 13 32 37 44 70 88 99
#> $ index : int [1:20] 1 2 7 8 10 11 13 14 20 3 ...
#> $ xqx : num [1:20, 1:20] 2.512 0.63 2.024 0.423 1.109 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:20] "1" "2" "3" "4" ...
#> .. ..$ : chr [1:20] "1" "2" "3" "4" ...
#> $ fitted : num [1:20] 1.26 2.21 -1.72 -1.14 -1.29 ...
#> $ type : num 0
#> $ lambda1: num 0.05
#> $ iter : num 76
#> - attr(*, "class")= chr [1:2] "scadsvm" "penSVM"
#> NULL
print(model)
#>
#> Bias = -0.209625
#> Selected Variables= pos2 bal3 bal22 bal27 bal34 bal60 bal78 bal89
#> Coefficients:
#> pos2 bal3 bal22 bal27 bal34 bal60 bal78
#> 0.3021244 -0.7332790 0.2519414 0.8106146 -0.3768072 0.2973532 -0.5557443
#> bal89
#> 0.2109735
#>