
Integrated prediction error curve
ipec.Rd
Summary measures of prediction error curves
Usage
ipec(pe, eval.times, type=c("Riemann", "Lebesgue", "relativeLebesgue"), response=NULL)
Arguments
- pe
prediction error at different time points. Vector of length of
eval.times
or matrix (columns correspond to evaluation time points, rows to different prediction error estimates)- eval.times
evalutation time points
- type
type of integration. 'Riemann' estimates Riemann integral, 'Lebesgue' uses the probability density as weights, while 'relativeLebesgue' delivers the difference to the null model (using the same weights as for 'Lebesgue').
- response
survival object (
Surv(time, status)
), required only iftype
is 'Lebesgue' or 'relativeLebesgue'
Value
- ipec
Value of integrated prediction error curve. Integer or vector, if
pe
is vector or matrix, respectively, i.e. one entry per row of the passed matrix.
Details
For survival data, prediction error at each evaluation time point can be extracted of a peperr
object by function perr
. A summary measure can then be obtained via intgrating over time. Note that the time points used for evaluation are stored in list element attribute
of the peperr
object.
Examples
if (FALSE) { # \dontrun{
n <- 200
p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
time <- ifelse(real.time <= cens.time,real.time,cens.time)
# Example:
# Obtain prediction error estimate fitting a Cox proportional hazards model
# using CoxBoost
# through 10 bootstrap samples
# with fixed complexity 50 and 75
# and aggregate using prediction error curves
peperr.object <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, complexity=c(50, 75),
indices=resample.indices(n=length(time), method="sub632", sample.n=10))
# 632+ estimate for both complexity values at each time point
prederr <- perr(peperr.object)
# Integrated prediction error curve for both complexity values
ipec(prederr, eval.times=peperr.object$attribute, response=Surv(time, status))
} # }