ipec.Rd
Summary measures of prediction error curves
ipec(pe, eval.times, type=c("Riemann", "Lebesgue", "relativeLebesgue"), response=NULL)
pe | prediction error at different time points. Vector of length of |
---|---|
eval.times | evalutation time points |
type | type of integration. 'Riemann' estimates Riemann integral, 'Lebesgue' uses the probability density as weights, while 'relativeLebesgue' delivers the difference to the null model (using the same weights as for 'Lebesgue'). |
response | survival object ( |
Value of integrated prediction error curve. Integer or vector, if pe
is vector or matrix, respectively, i.e. one entry per row of the passed matrix.
For survival data, prediction error at each evaluation time point can be extracted of a peperr
object by function perr
. A summary measure can then be obtained via intgrating over time. Note that the time points used for evaluation are stored in list element attribute
of the peperr
object.
if (FALSE) { n <- 200 p <- 100 beta <- c(rep(1,10),rep(0,p-10)) x <- matrix(rnorm(n*p),n,p) real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta))) cens.time <- rexp(n,rate=1/10) status <- ifelse(real.time <= cens.time,1,0) time <- ifelse(real.time <= cens.time,real.time,cens.time) # Example: # Obtain prediction error estimate fitting a Cox proportional hazards model # using CoxBoost # through 10 bootstrap samples # with fixed complexity 50 and 75 # and aggregate using prediction error curves peperr.object <- peperr(response=Surv(time, status), x=x, fit.fun=fit.CoxBoost, complexity=c(50, 75), indices=resample.indices(n=length(time), method="sub632", sample.n=10)) # 632+ estimate for both complexity values at each time point prederr <- perr(peperr.object) # Integrated prediction error curve for both complexity values ipec(prederr, eval.times=peperr.object$attribute, response=Surv(time, status)) }