R/coefs.plsRbetanp.R
coefs.plsRbetanp.Rd
A function passed to boot
to perform bootstrap.
coefs.plsRbetanp(
dataRepYtt,
ind,
nt,
modele,
family = NULL,
method = "logistic",
link = NULL,
link.phi = NULL,
type = "ML",
verbose = TRUE,
maxcoefvalues,
wwetoile,
ifbootfail
)
components' coordinates to bootstrap
indices for resampling
number of components to use
type of modele to use, see plsRbeta
glm family to use, see plsRbeta
method for beta regression
link for beta regression
link.phi for beta regression
type of estimates
should info messages be displayed ?
maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
values of the Wstar matrix in the original fit
value to return if the estimation fails on a bootstrap sample
estimates on a bootstrap sample or ifbootfail
value if the
bootstrap computation fails.
~~some notes~~
See also bootplsbeta
# \donttest{
data("GasolineYield",package="betareg")
bootplsbeta(plsRbeta(yield~.,data=GasolineYield,nt=3, modele="pls-beta"), typeboot="fmodel_np",
R=250, statistic=coefs.plsRbetanp)
#> ____************************************************____
#>
#> Model: pls-beta
#>
#> Link: logit
#>
#> Link.phi:
#>
#> Type: ML
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X or Y____
#> ****________________________________________________****
#>
#>
#> ORDINARY NONPARAMETRIC BOOTSTRAP
#>
#>
#> Call:
#> boot(data = dataRepYtt, statistic = statistic, R = 250, sim = sim,
#> stype = stype, nt = nt, modele = modele, family = family,
#> maxcoefvalues = maxcoefvalues[-(1:(length(object$Coeffs) -
#> ncol(object$dataX)))], wwetoile = wwetoile, ifbootfail = ifbootfail)
#>
#>
#> Bootstrap Statistics :
#> original bias std. error
#> t1* 0.0139841003 -8.475618e-04 0.007835618
#> t2* 0.0129719714 -1.322232e-03 0.015578140
#> t3* -0.0437412382 2.162199e-03 0.029320315
#> t4* 0.1099552630 2.647930e-03 0.042843717
#> t5* 0.0043782576 -6.610652e-05 0.017398728
#> t6* 0.0068269103 -5.143025e-04 0.013758681
#> t7* 0.0105674939 -3.637492e-04 0.011353774
#> t8* -0.0000215689 -5.166384e-05 0.002127845
#> t9* 0.0034693882 8.810699e-04 0.015678654
#> t10* 0.0044693385 5.520933e-04 0.006762267
#> t11* -0.0037252887 -1.058912e-03 0.024123222
#> t12* -0.0020821555 1.555461e-04 0.003058469
#> t13* -0.0031646188 5.282972e-04 0.007190695
#> t14* -0.0089486739 2.323208e-04 0.004088138
# }