Provides Partial least squares Regression for (weighted) beta regression models (Bertrand 2013, <http://journal-sfds.fr/article/view/215>) and k-fold cross-validation of such models using various criteria. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.

References

Partial least squares Regression for (weighted) beta regression models (Bertrand 2013, <http://journal-sfds.fr/article/view/215>), https://github.com/fbertran/plsRbeta/ et https://fbertran.github.io/plsRbeta/

Examples

data("GasolineYield",package="betareg") modpls <- plsRbeta(yield~.,data=GasolineYield,nt=3,modele="pls-beta")
#> ____************************************************____ #> #> Model: pls-beta #> #> Link: logit #> #> Link.phi: #> #> Type: ML #> #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Predicting X without NA neither in X or Y____ #> ****________________________________________________**** #>
modpls$pp
#> Comp_ 1 Comp_ 2 Comp_ 3 #> gravity 0.37895923 -0.42864981 0.50983922 #> pressure 0.61533000 -0.41618828 -0.01737302 #> temp10 -0.50627633 0.47379983 -0.47750566 #> temp 0.30248369 0.60751756 0.28239621 #> batch1 0.50274128 -0.30221156 -0.25801764 #> batch2 -0.14241033 -0.13859422 0.80068659 #> batch3 -0.04388172 -0.17303214 0.48564161 #> batch4 0.11299471 -0.08302689 0.04755182 #> batch5 0.23341035 0.08396326 -0.51238456 #> batch6 0.07974302 0.07209943 -0.30710455 #> batch7 -0.37365392 -0.02133356 0.81852001 #> batch8 -0.12891598 0.16967195 -0.06904725 #> batch9 -0.02230288 0.19425476 -0.57189134 #> batch10 -0.25409429 0.28587553 -0.61277072
modpls$Coeffs
#> [,1] #> Intercept -4.1210566077 #> gravity 0.0157208676 #> pressure 0.0305159627 #> temp10 -0.0074167766 #> temp 0.0108057945 #> batch1 0.0910284843 #> batch2 0.1398537354 #> batch3 0.2287070465 #> batch4 -0.0008124326 #> batch5 0.1018679027 #> batch6 0.1147971957 #> batch7 -0.1005469609 #> batch8 -0.0447907428 #> batch9 -0.0706292318 #> batch10 -0.1984703429
modpls$Std.Coeffs
#> [,1] #> Intercept -1.5526788976 #> gravity 0.0885938394 #> pressure 0.0799466278 #> temp10 -0.2784359925 #> temp 0.7537685874 #> batch1 0.0305865495 #> batch2 0.0414169259 #> batch3 0.0677303525 #> batch4 -0.0002729861 #> batch5 0.0301676274 #> batch6 0.0339965674 #> batch7 -0.0337848600 #> batch8 -0.0132645358 #> batch9 -0.0173701781 #> batch10 -0.0587759166
modpls$InfCrit
#> AIC BIC Chi2_Pearson_Y RSS_Y pseudo_R2_Y R2_Y #> Nb_Comp_0 -52.77074 -49.83927 30.72004 0.35640772 NA NA #> Nb_Comp_1 -87.96104 -83.56383 31.31448 0.11172576 0.6879757 0.6865226 #> Nb_Comp_2 -114.10269 -108.23975 33.06807 0.04650238 0.8671800 0.8695248 #> Nb_Comp_3 -152.71170 -145.38302 30.69727 0.01138837 0.9526757 0.9680468
modpls$PredictY[1,]
#> gravity pressure temp10 temp batch1 batch2 batch3 #> 2.0495333 1.6866554 -1.3718198 -1.8219769 2.6040833 -0.3165683 -0.3165683 #> batch4 batch5 batch6 batch7 batch8 batch9 batch10 #> -0.3720119 -0.3165683 -0.3165683 -0.3720119 -0.3165683 -0.2541325 -0.3165683
rm("modpls") data("GasolineYield",package="betareg") yGasolineYield <- GasolineYield$yield XGasolineYield <- GasolineYield[,2:5] modpls <- plsRbeta(yGasolineYield,XGasolineYield,nt=3,modele="pls-beta")
#> ____************************************************____ #> #> Model: pls-beta #> #> Link: logit #> #> Link.phi: #> #> Type: ML #> #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Predicting X without NA neither in X nor in Y____ #> ****________________________________________________**** #>
modpls$pp
#> Comp_ 1 Comp_ 2 Comp_ 3 #> gravity 0.4590380 -0.4538663 -2.5188256 #> pressure 0.6395524 -0.4733525 0.6488823 #> temp10 -0.5435643 0.5292108 -1.3295905 #> temp 0.5682795 0.5473174 -0.2156423
modpls$Coeffs
#> [,1] #> Intercept -3.324462301 #> gravity 0.001577508 #> pressure 0.072027686 #> temp10 -0.008398771 #> temp 0.010365973
modpls$Std.Coeffs
#> [,1] #> Intercept -1.547207760 #> gravity 0.008889933 #> pressure 0.188700277 #> temp10 -0.315301400 #> temp 0.723088387
modpls$InfCrit
#> AIC BIC Chi2_Pearson_Y RSS_Y pseudo_R2_Y R2_Y #> Nb_Comp_0 -52.77074 -49.83927 30.72004 0.35640772 NA NA #> Nb_Comp_1 -112.87383 -108.47662 30.57369 0.05211039 0.8498691 0.8537900 #> Nb_Comp_2 -136.43184 -130.56889 30.97370 0.02290022 0.9256771 0.9357471 #> Nb_Comp_3 -139.08440 -131.75572 31.08224 0.02022386 0.9385887 0.9432564
modpls$PredictY[1,]
#> gravity pressure temp10 temp #> 2.049533 1.686655 -1.371820 -1.821977
rm("modpls")