Censoring-adjusted C-statistic by Uno et al.
Details
This function implements the censoring-adjusted C-statistic proposed by Uno
et al. (2011). It has the same interpretation as Harrell's C for survival
data (implemented in the rcorr.cens
function of the Hmisc
package).
Uno's estimator is based on inverse-probability-of-censoring weights and
does not assume a specific working model for deriving the predictor
lpnew
. It is assumed, however, that there is a one-to-one
relationship between the predictor and the expected survival times
conditional on the predictor. Note that the estimator implemented in
UnoC
is restricted to situations where the random censoring
assumption holds.
References
Harrell, F. E., R. M. Califf, D. B. Pryor, K. L. Lee and R. A. Rosati
(1982).
Evaluating the yield of medical tests.
Journal of the
American Medical Association 247, 2543–2546.
Harrell, F. E., K. L. Lee, R. M. Califf, D. B. Pryor and R. A. Rosati
(1984).
Regression modeling strategies for improved prognostic
prediction.
Statistics in Medicine 3, 143–152.
Uno, H., T. Cai T, M. J. Pencina, R. B. D'Agostino and W. L. Wei (2011).
On the C-statistics for evaluating overall adequacy of risk prediction
procedures with censored survival data.
Statistics in Medicine
30, 1105–1117.
Examples
data(cancer,package="survival")
TR <- ovarian[1:16,]
TE <- ovarian[17:26,]
train.fit <- survival::coxph(survival::Surv(futime, fustat) ~ age,
x=TRUE, y=TRUE, method="breslow", data=TR)
lpnew <- predict(train.fit, newdata=TE)
Surv.rsp <- survival::Surv(TR$futime, TR$fustat)
Surv.rsp.new <- survival::Surv(TE$futime, TE$fustat)
Cstat <- UnoC(Surv.rsp, Surv.rsp.new, lpnew)
Cstat
#> [1] 0.7333333