Estimators of Prediction Accuracy for Time-to-Event Data
Maintainer F. Bertrand
https://doi.org/10.32614/CRAN.package.survAUC
The goal of survAUC is to provide a variety of functions to estimate time-dependent true/false positive rates and AUC curves from a set of censored survival data.
Installation
You can install the released version of survAUC from CRAN with:
install.packages("survAUC")
And the development version from GitHub with:
install.packages("devtools")
devtools::install_github("fbertran/survAUC")
or alternatively
# install.packages("pak")
pak::pak("fbertran/survAUC")
Example
This is a basic example which shows you how to solve a common problem:
Retrieve the example dataset, split it into a train (TR
) and a test (TE
) set. Then train a model on the train set and derive predictions for both train (lp
and Surv.rsp
) and test (lpnew
and Surv.rsp.new
).
data(cancer,package="survival")
TR <- ovarian[1:16,]
TE <- ovarian[17:26,]
train.fit <- survival::coxph(survival::Surv(futime, fustat) ~ age,
x=TRUE, y=TRUE, method="breslow", data=TR)
lp <- predict(train.fit)
lpnew <- predict(train.fit, newdata=TE)
Surv.rsp <- survival::Surv(TR$futime, TR$fustat)
Surv.rsp.new <- survival::Surv(TE$futime, TE$fustat)
times <- seq(10, 1000, 10)
Chambless and Diao’s estimator of cumulative/dynamic AUC for right-censored time-to-event data
This function implements the estimator of cumulative/dynamic AUC proposed in Section 3.3 of Chambless and Diao (2006). In contrast to the general form of Chambless and Diao’s estimator, AUC.cd
is restricted to Cox regression.
Specifically, it is assumed that lp
and lpnew
are the predictors of a Cox proportional hazards model. Estimates obtained from AUC.cd
are valid as long as the Cox model is specified correctly.
The iauc
summary measure is given by the integral of AUC on (weighted by the estimated probability density of the time-to-event outcome).
AUC_CD <- AUC.cd(Surv.rsp, Surv.rsp.new, lp, lpnew, times)
AUC_CD$iauc
#> [1] 0.8728364
AUC_CD
#> $auc
#> [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8467091
#> [7] 0.8467091 0.8467091 0.8467091 0.8467091 0.8467091 0.8625872
#> [13] 0.8625872 0.8625872 0.8625872 0.8728364 0.8728364 0.8728364
#> [19] 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364
#> [25] 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364
#> [31] 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364
#> [37] 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364 0.8728364
#> [43] 0.8728364 0.8719455 0.8719455 0.8719455 0.8736755 0.8795809
#> [49] 0.8795809 0.8795809 0.8795809 0.8795809 0.8795809 0.8795809
#> [55] 0.8795809 0.8795809 0.8945198 0.8945198 0.8945198 0.8945198
#> [61] 0.8945198 0.8945198 0.8945198 0.9078402 0.9078402 0.9078402
#> [67] 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402
#> [73] 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402
#> [79] 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402
#> [85] 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402
#> [91] 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402 0.9078402
#> [97] 0.9078402 0.9078402 0.9078402 0.9078402
#>
#> $times
#> [1] 10 20 30 40 50 60 70 80 90 100 110 120
#> [13] 130 140 150 160 170 180 190 200 210 220 230 240
#> [25] 250 260 270 280 290 300 310 320 330 340 350 360
#> [37] 370 380 390 400 410 420 430 440 450 460 470 480
#> [49] 490 500 510 520 530 540 550 560 570 580 590 600
#> [61] 610 620 630 640 650 660 670 680 690 700 710 720
#> [73] 730 740 750 760 770 780 790 800 810 820 830 840
#> [85] 850 860 870 880 890 900 910 920 930 940 950 960
#> [97] 970 980 990 1000
#>
#> $iauc
#> [1] 0.8728364
#>
#> attr(,"class")
#> [1] "survAUC"
plot(AUC_CD)

plot of chunk unnamed-chunk-8
Hung and Chiang’s estimator of cumulative/dynamic AUC for right-censored time-to-event data
This function implements the estimator of cumulative/dynamic AUC proposed by Hung and Chiang (2010).
The estimator is based on inverse-probability-of-censoring weights and does not assume a specific working model for deriving the predictor lpnew
. It is assumed, however, that there is a one-to-one relationship between the predictor and the expected survival times conditional on the predictor.
The iauc
summary measure is given by the integral of AUC on (weighted by the estimated probability density of the time-to-event outcome).
AUC_hc <- AUC.hc(Surv.rsp, Surv.rsp.new, lpnew, times)
AUC_hc$iAUC
#> NULL
plot(AUC_hc)

plot of chunk unnamed-chunk-10
Song and Zhou’s estimators of AUC for right-censored time-to-event data
The sens.sh
and spec.sh
functions implement the estimators of time-dependent true and false positive rates proposed by Song and Zhou (2008).
The AUC.sh
function implements the estimators of cumulative/dynamic and incident/dynamic AUC proposed by Song and Zhou (2008). These estimators are given by the areas under the time-dependent ROC curves estimated by sens.sh
and spec.sh
.
In case of cumulative/dynamic AUC, the iauc
summary measure is given by the integral of AUC on (weighted by the estimated probability density of the time-to-event outcome).
In case of incident/dynamic AUC, iauc
is given by the integral of AUC on (weighted by 2 times the product of the estimated probability density and the estimated survival function of the time-to-event outcome).
lp <- predict(train.fit)
AUC_sh <- AUC.sh(Surv.rsp, Surv.rsp.new, lp, lpnew, times)
names(AUC_sh)
#> [1] "auc" "times" "iauc"
AUC_sh$iauc
#> [1] 0.8430845
plot(AUC_sh)

plot of chunk unnamed-chunk-12
Uno’s estimator of cumulative/dynamic AUC for right-censored time-to-event data
The sens.uno
and spec.uno
functions implement the estimators of time-dependent true and false positive rates proposed in Section 5.1 of Uno et al. (2007).
The AUC.uno
function implements the estimator of cumulative/dynamic AUC that is based on the TPR and FPR estimators proposed by Uno et al. (2007).
It is given by the area(s) under the time-dependent ROC curve(s) estimated by sens.uno
and spec.uno
. The iauc
summary measure is given by the integral of AUC on (weighted by the estimated probability density of the time-to-event outcome).
AUC_Uno <- AUC.uno(Surv.rsp, Surv.rsp.new, lpnew, times)
names(AUC_Uno)
#> [1] "auc" "times" "iauc"
AUC_Uno$iauc
#> [1] 0.7552083
plot(AUC_Uno)

plot of chunk unnamed-chunk-14
Censoring-adjusted C-statistic by Uno et al.
The UnoC
function implements the censoring-adjusted C-statistic proposed by Uno et al. (2011). It has the same interpretation as Harrell’s C for survival data (implemented in the rcorr.cens
function of the Hmisc
package).
Cstat <- UnoC(Surv.rsp, Surv.rsp.new, lpnew)
Cstat
#> [1] 0.7333333
References
Chambless, L. E. and G. Diao (2006). Estimation of time-dependent area under the ROC curve for long-term risk prediction. Statistics in Medicine, 25, 3474-3486.
Hung, H. and C.-T. Chiang (2010). Estimation methods for time-dependent AUC models with survival data. Canadian Journal of Statistics, 38, 8-26.
Song, X. and X.-H. Zhou (2008). A semiparametric approach for the covariate specific ROC curve with survival outcome. Statistica Sinica, 18, 947-965.
Uno, H., T. Cai, L. Tian, and L. J. Wei (2007). Evaluating prediction rules for t-year survivors with censored regression models. Journal of the American Statistical Association, 102, 527-537.