Compute coefficient vector after variable selection.
lasso_cv_glmnet_bin_min(X, Y)
lasso_cv_glmnet_bin_1se(X, Y)
lasso_glmnet_bin_AICc(X, Y)
lasso_glmnet_bin_BIC(X, Y)
lasso_cv_lars_min(X, Y)
lasso_cv_lars_1se(X, Y)
lasso_cv_glmnet_min(X, Y)
lasso_cv_glmnet_min_weighted(X, Y, priors)
lasso_cv_glmnet_1se(X, Y)
lasso_cv_glmnet_1se_weighted(X, Y, priors)
lasso_msgps_Cp(X, Y, penalty = "enet")
lasso_msgps_AICc(X, Y, penalty = "enet")
lasso_msgps_GCV(X, Y, penalty = "enet")
lasso_msgps_BIC(X, Y, penalty = "enet")
enetf_msgps_Cp(X, Y, penalty = "enet", alpha = 0.5)
enetf_msgps_AICc(X, Y, penalty = "enet", alpha = 0.5)
enetf_msgps_GCV(X, Y, penalty = "enet", alpha = 0.5)
enetf_msgps_BIC(X, Y, penalty = "enet", alpha = 0.5)
lasso_cascade(M, Y, K, eps = 10^-5, cv.fun)
A numeric matrix. The predictors matrix.
A binary factor. The 0/1 classification response.
A numeric vector. Weighting vector for the variable selection. When used with the glmnet
estimation function, the weights share the following meanings:
0: the variable is always included in the model
1: neutral weight
Inf: variable is always excluded from the model
A character value to select the penalty term in msgps (Model Selection Criteria via Generalized Path Seeking). Defaults to "enet". "genet" is the generalized elastic net and "alasso" is the adaptive lasso, which is a weighted version of the lasso.
A numeric value to set the value of \(\alpha\) on "enet" and "genet" penalty in msgps (Model Selection Criteria via Generalized Path Seeking).
A numeric matrix. The transposed predictors matrix.
A numeric value. Number of folds to use.
A numeric value. Threshold to set to 0 the inferred value of a parameter.
A function. Fonction used to create folds. Used to perform corss-validation subkectwise.
A vector of coefficients.
lasso_cv_glmnet_bin_min
returns the vector of coefficients
for a binary logistic model estimated by the lasso using the lambda.min
value
computed by 10 fold cross validation. It uses the glmnet
function of
the glmnet
package.
lasso_cv_glmnet_bin_1se
returns the vector of coefficients
for a binary logistic model estimated by the lasso using the lambda.1se
(lambda.min+1se) value computed by 10 fold cross validation. It uses the glmnet
function of the glmnet
package.
lasso_glmnet_bin_AICc
returns the vector of coefficients
for a binary logistic model estimated by the lasso and selected according to the
bias-corrected AIC (AICC) criterion. It uses the glmnet
lasso_glmnet_bin_BIC
returns the vector of coefficients
for a binary logistic model estimated by the lasso and selected according to the BIC
criterion. It uses the glmnet
lasso_cv_lars_min
returns the vector of coefficients
for a linear model estimated by the lasso using the lambda.min
value
computed by 5 fold cross validation. It uses the lars
function of the
lars
package.
lasso_cv_lars_1se
returns the vector of coefficients
for a linear model estimated by the lasso using the lambda.1se
(lambda.min+1se) value computed by 5 fold cross validation.
It uses the lars
function of the lars
package.
lasso_cv_glmnet_min
returns the vector of coefficients
for a linear model estimated by the lasso using the lambda.min
value
computed by 10 fold cross validation. It uses the glmnet
function of the
glmnet
package.
lasso_cv_glmnet_min_weighted
returns the vector of coefficients
for a linear model estimated by the weighted lasso using the lambda.min
value
computed by 10 fold cross validation. It uses the glmnet
function of the
glmnet
package.
lasso_cv_glmnet_1se
returns the vector of coefficients
for a linear model estimated by the lasso using the lambda.1se
(lambda.min+1se) value computed by 10 fold cross validation. It uses the glmnet
function of the
glmnet
package.
lasso_cv_glmnet_1se_weighted
returns the vector of coefficients
for a linear model estimated by the weighted lasso using the lambda.1se
(lambda.min+1se) value computed by 10 fold cross validation. It uses the glmnet
function of the glmnet
package.
lasso_msgps_Cp
returns the vector of coefficients
for a linear model estimated by the lasso selectd using Mallows' Cp.
It uses the msgps
function of the msgps
package.
lasso_msgps_AICc
returns the vector of coefficients
for a linear model estimated by the lasso selected according to the bias-corrected AIC
(AICC) criterion. It uses the msgps
function of the msgps
package.
lasso_msgps_GCV
returns the vector of coefficients
for a linear model estimated by the lasso selected according to the generalized
cross validation criterion. It uses the msgps
function of the msgps
package.
lasso_msgps_BIC
returns the vector of coefficients
for a linear model estimated by the lasso selected according to the BIC criterion.
It uses the msgps
function of the msgps
package.
enetf_msgps_Cp
returns the vector of coefficients
for a linear model estimated by the elastic net selectd using Mallows' Cp.
It uses the msgps
function of the msgps
package.
enetf_msgps_AICc
returns the vector of coefficients
for a linear model estimated by the elastic net selected according to the bias-corrected AIC
(AICC) criterion. It uses the msgps
function of the msgps
package.
enetf_msgps_GCV
returns the vector of coefficients
for a linear model estimated by the elastic net selected according to the generalized
cross validation criterion. It uses the msgps
function of the msgps
package.
enetf_msgps_BIC
returns the vector of coefficients
for a linear model estimated by the elastic net selected according to the BIC criterion.
It uses the msgps
function of the msgps
package.
lasso_cascade
returns the vector of coefficients
for a linear model estimated by the lasso.
It uses the lars
function of the lars
package.
selectBoost: a general algorithm to enhance the performance of variable selection methods in correlated datasets, Frédéric Bertrand, Ismaïl Aouadi, Nicolas Jung, Raphael Carapito, Laurent Vallat, Seiamak Bahram, Myriam Maumy-Bertrand, Bioinformatics, 2020. doi:10.1093/bioinformatics/btaa855
glmnet
, cv.glmnet
, AICc_BIC_glmnetB
, lars
, cv.lars
, msgps
Other Variable selection functions:
var_select_all
set.seed(314)
xran=matrix(rnorm(150),30,5)
ybin=sample(0:1,30,replace=TRUE)
yran=rnorm(30)
set.seed(314)
lasso_cv_glmnet_bin_min(xran,ybin)
#> [1] -0.2541407 0.0000000 0.1191938 0.0000000 0.0000000 0.4885167
set.seed(314)
lasso_cv_glmnet_bin_1se(xran,ybin)
#> [1] -0.23703995 0.00000000 0.06427661 0.00000000 0.00000000 0.42415945
set.seed(314)
lasso_glmnet_bin_AICc(xran,ybin)
#> [1] 0.000000 0.000000 0.000000 0.000000 1.138298
set.seed(314)
lasso_glmnet_bin_BIC(xran,ybin)
#> [1] 0.000000 0.000000 0.000000 0.000000 1.138298
set.seed(314)
lasso_cv_lars_min(xran,yran)
#> [1] 0 0 0 0 0
set.seed(314)
lasso_cv_lars_1se(xran,yran)
#> [1] 0 0 0 0 0
set.seed(314)
lasso_cv_glmnet_min(xran,yran)
#> [1] 0 0 0 0 0
set.seed(314)
lasso_cv_glmnet_min_weighted(xran,yran,c(1000,0,0,1,1))
#> [1] 0.00000000 -0.05593766 -0.12916707 0.00000000 0.00000000
set.seed(314)
lasso_cv_glmnet_1se(xran,yran)
#> [1] 0 0 0 0 0
set.seed(314)
lasso_cv_glmnet_1se_weighted(xran,yran,c(1000,0,0,1,1))
#> [1] 0.00000000 -0.05593766 -0.12916707 0.00000000 0.00000000
set.seed(314)
lasso_msgps_Cp(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
lasso_msgps_AICc(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
lasso_msgps_GCV(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
lasso_msgps_BIC(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
enetf_msgps_Cp(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
enetf_msgps_AICc(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
enetf_msgps_GCV(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
enetf_msgps_BIC(xran,yran)
#> V1 V2 V3 V4 V5
#> 0 0 0 0 0
set.seed(314)
lasso_cascade(t(xran),yran,5,cv.fun=lars::cv.folds)
#> [1] 0 0 0 0 0