
Simulation Tools Provided With the Selectboost Package
Frédéric Bertrand and Myriam Maumy-Bertrand
Université de Strasbourg and CNRSIRMA, labex IRMIAfrederic.bertrand@lecnam.net
2025-09-13
Source:vignettes/sim-with-sb.Rmd
sim-with-sb.Rmd
Contents
This vignette details the simulations tools provided with the selectboost package by providing five examples of use.
If you are a Linux/Unix or a Macos user, you can install a version of
SelectBoost with support for doMC
from github with:
devtools::install_github("fbertran/SelectBoost", ref = "doMC")
First example
Aim
We want to creates datasets with variables and observations. In that example we want groups:
- and belong to the first group and the intra-group Pearson correlation for this group is equal to ,
- belongs to the second group,
- belongs to the third group,
- …
- belongs to the ninth group.
Correlation structure
The correlation structure of the explanatory variables of the dataset
is provided by group
and the intra-group Pearson
correlation value for each of the groups by cor_group
. A
value must be provided even for single variable groups and the number of
variables is length of the group
vector. Use the
simulation_cor
function to create the correlation matrix
(CM
).
library(SelectBoost)
group<-c(1:9,1) #10 variables
cor_group<-rep(0.95,9)
CM<-simulation_cor(group,cor_group)
CM
Explanatory dataset generation
Then generation of an explanatory dataset with
observations is made by the simulation_X
function.
set.seed(3141)
N<-10
X<-simulation_X(N,CM)
X
Response derivation
A response can now be added to the dataset by the
simulation_Data
function. We have to specifiy the support
of the response, i.e. the explanatory variables that will be used in the
linear model created to compute the response. The support is given by
the supp
vector whose entries are either
or
.
The length of the supp
vector must be equal to the number
of explanatory variables and if the
entry
is equal to
,
it means that the
variable
will be used to derive the response value, whereas if the
entry
is equal to
,
it means that the
variable
will not be used to derive the response value
(beta<-rep(0,length(supp))
). The values of the
coefficients for the explanatory variables that are in the support of
the response are random (either absolute value and sign) and given by
beta[which(supp==1)]<-runif(sum(supp),minB,maxB)*(rbinom(sum(supp),1,.5)*2-1)
.
Hence, the user can specify their minimal absolute value with the
minB
option and their maximal absolute value with the
maxB
option. The stn
option is a scaling
factor for the noise added to the response vector
((t(beta)%*%var(X)%*%beta)/stn
, with X
the
matrix of explanatory variables). The higher the stn
value,
the smaller the noise: for instance for a given X
dataset,
an stn
value
times larger will result in a noise exactly
times smaller.
set.seed(3141)
supp<-c(1,1,1,0,0,0,0,0,0,0)
minB<-1
maxB<-2
stn<-50
firstdataset=simulation_DATA(X,supp,minB,maxB,stn)
firstdataset
Multiple datasets and checks
To generate multiple datasets, repeat steps 2 and 3, for instance use
a for
loop. We create
datasets and assign them to the objects DATA_exemple1_nb_1
to DATA_exemple1_nb_200
.
set.seed(3141)
NDatasets=200
for(i in 1:NDatasets){
X<-simulation_X(N,CM)
assign(paste("DATA_exemple1_nb_",i,sep=""),simulation_DATA(X,supp,minB,maxB,stn))
}
We now check the correlation structure of the explanatory variable. First we compute the mean correlation matrix.
corr_sum=matrix(0,length(group),length(group))
for(i in 1:NDatasets){
corr_sum=corr_sum+cor(get(paste("DATA_exemple1_nb_",i,sep=""))$X)
}
corr_mean=corr_sum/NDatasets
Then we display and plot that the mean correlation matrix.
coef_sum=rep(0,length(group))
names(coef_sum)<-paste("x",1:length(group),sep="")
error_counter=0
for(i in 1:NDatasets){
tempdf=data.frame(cbind(Y=get(paste("DATA_exemple1_nb_",i,sep=""))$Y,
get(paste("DATA_exemple1_nb_",i,sep=""))$X))
tempcoef=coef(lm(Y~.-1,data=tempdf))
if(is.null(tempcoef)){
cat("Error in lm fit, skip coefficients\n")
error_counter=error_counter+1
} else{
coef_sum=coef_sum+abs(tempcoef)
}
}
error_counter
coef_mean=coef_sum/NDatasets
All fits were sucessful. Then we display and plot that the mean coefficient vector values.
Reduce the noise in the response for the new responses by a factor . where is the vector of coefficients wh
set.seed(3141)
stn <- 5000
for(i in 1:NDatasets){
X<-simulation_X(N,CM)
assign(paste("DATA_exemple1_bis_nb_",i,sep=""),simulation_DATA(X,supp,minB,maxB,stn))
}
Since it is the same explanatory dataset for response generation, we can compare the between those datasets.
stn_ratios=rep(0,NDatasets)
for(i in 1:NDatasets){
stn_ratios[i]<-get(paste("DATA_exemple1_nb_",i,sep=""))$sigma/
get(paste("DATA_exemple1_bis_nb_",i,sep=""))$sigma
}
all(sapply(stn_ratios,all.equal,10))
All the ratios are equal to 10 as anticipated.
Since, the correlation structure is the same as before, we do not
need to check it again. As befor, we infer the coefficients values of a
linear model using the lm
function.
coef_sum_bis=rep(0,length(group))
names(coef_sum_bis)<-paste("x",1:length(group),sep="")
error_counter_bis=0
for(i in 1:NDatasets){
tempdf=data.frame(cbind(Y=get(paste("DATA_exemple1_bis_nb_",i,sep=""))$Y,
get(paste("DATA_exemple1_bis_nb_",i,sep=""))$X))
tempcoef=coef(lm(Y~.-1,data=tempdf))
if(is.null(tempcoef)){
cat("Error in lm fit, skip coefficients\n")
error_counter_bis=error_counte_bisr+1
} else{
coef_sum_bis=coef_sum_bis+abs(tempcoef)
}
}
error_counter_bis
coef_mean_bis=coef_sum_bis/NDatasets
All fits were sucessful. Then we display and plot that the mean
coefficient vector values. As expected, the noise reduction enhances the
retrieval of the true
mean coefficient absolute values by
the models.
The simulation process looks sucessfull. What are the confidence indices for those variables?
Second example
Aim
We want to creates datasets with variables and observations. In that example we want group:
- , , belong to the same group and the intra-group Pearson correlation for this group is equal to .
- only the first five variables , , are explanatory variables for the response.
Explanatory variables and response
set.seed(3141)
N<-20
supp<-c(1,1,1,1,1,rep(0,45))
minB<-1
maxB<-2
stn<-50
for(i in 1:200){
C<-simulation_cor(group,cor_group)
X<-simulation_X(N,C)
assign(paste("DATA_exemple2_nb_",i,sep=""),simulation_DATA(X,supp,minB,maxB,stn))
}
Checks
We now check the correlation structure of the explanatory variable. First we compute the mean correlation matrix.
corr_sum=matrix(0,length(group),length(group))
for(i in 1:NDatasets){
corr_sum=corr_sum+cor(get(paste("DATA_exemple2_nb_",i,sep=""))$X)
}
corr_mean=corr_sum/NDatasets
Then we display and plot that the mean correlation matrix.
coef_sum=rep(0,length(group))
coef_lasso_sum=rep(0,length(group))
names(coef_sum)<-paste("x",1:length(group),sep="")
names(coef_lasso_sum)<-paste("x",1:length(group),sep="")
error_counter=0
for(i in 1:NDatasets){
tempdf=data.frame(cbind(Y=get(paste("DATA_exemple2_nb_",i,sep=""))$Y,
get(paste("DATA_exemple2_nb_",i,sep=""))$X))
tempcoef=coef(lm(Y~.-1,data=tempdf))
require(lars)
lasso.1 <- lars::lars(x=get(paste("DATA_exemple2_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple2_nb_",i,sep=""))$Y, type="lasso",
trace=FALSE, normalize=FALSE, intercept = FALSE)
# cv.lars() uses crossvalidation to estimate optimal position in path
cv.lasso.1 <- lars::cv.lars(x=get(paste("DATA_exemple2_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple2_nb_",i,sep=""))$Y,
plot.it=FALSE, type="lasso")
# Use the "+1SE rule" to find best model:
# Take the min CV and add its SE ("limit").
# Find smallest model that has its own CV within this limit (at "s.cv.1")
limit <- min(cv.lasso.1$cv) + cv.lasso.1$cv.error[which.min(cv.lasso.1$cv)]
s.cv.1 <- cv.lasso.1$index[min(which(cv.lasso.1$cv < limit))]
# Print out coefficients at optimal s.
coef_lasso_sum=coef_lasso_sum+abs(coef(lasso.1, s=s.cv.1, mode="fraction"))
if(is.null(tempcoef)){
cat("Error in lm fit, skip coefficients\n")
error_counter=error_counter+1
} else{
coef_sum=coef_sum+abs(tempcoef)
}
}
error_counter
coef_mean=coef_sum/NDatasets
coef_lasso_mean=coef_lasso_sum/NDatasets
With regular least squares and lasso estimators all fits were sucessful, yet only 20 variables coefficients could be estimated with regular least squares estimates for the linear model. Then we display and plot that the mean coefficient vector values for the least squares estimates.
coef_lasso_mean
barplot(coef_lasso_mean,ylim=c(0,1.5))
abline(h=(minB+maxB)/2,lwd=2,lty=2,col="blue")
The simulation process looks sucessfull: the lasso estimates retrives mostly the correct variables, yet the other ones are also selected sometimes. What are the confidence indices for those variables?
Third Example
Aim
We want to creates
datasets with
variables and
observations. In that example we use real data for the X
variables that we sample from all the
probesets that are differentially expressed between the two conditions
US and S. The main interest of that simulation is that the correlation
structure of the X
dataset will be a real one.
Data and response generations
First retrieve the datasets and get the differentially expressed probesets. Run the code to get additionnal plots.
require(CascadeData)
data(micro_S)
data(micro_US)
require(Cascade)
micro_US<-as.micro_array(micro_US,c(60,90,240,390),6)
micro_S<-as.micro_array(micro_S,c(60,90,240,390),6)
S<-geneSelection(list(micro_S,micro_US),list("condition",c(1,2),1),-1)
Sel<-micro_S@microarray[S@name,]
summary(S)
plot(S)
Generates the datasets sampling for each of them 100 probesets expressions among the 1650 that were selected and linking the response to the expressions of the first five probesets.
Checks
Here are the plots of an example of correlation structure, namely for
DATA_exemple3_nb_200$X
. Run the code to get the
graphics.
coef_sum=rep(0,length(supp))
coef_lasso_sum=rep(0,length(supp))
names(coef_sum)<-paste("x",1:length(supp),sep="")
names(coef_lasso_sum)<-paste("x",1:length(supp),sep="")
error_counter=0
for(i in 1:NDatasets){
tempdf=data.frame(cbind(Y=get(paste("DATA_exemple3_nb_",i,sep=""))$Y,
get(paste("DATA_exemple3_nb_",i,sep=""))$X))
tempcoef=coef(lm(Y~.-1,data=tempdf))
require(lars)
lasso.1 <- lars::lars(x=get(paste("DATA_exemple3_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple3_nb_",i,sep=""))$Y, type="lasso",
trace=FALSE, normalize=FALSE, intercept = FALSE)
# cv.lars() uses crossvalidation to estimate optimal position in path
cv.lasso.1 <- lars::cv.lars(x=get(paste("DATA_exemple3_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple3_nb_",i,sep=""))$Y,
plot.it=FALSE, normalize=FALSE, intercept = FALSE, type="lasso")
# Use the "+1SE rule" to find best model:
# Take the min CV and add its SE ("limit").
# Find smallest model that has its own CV within this limit (at "s.cv.1")
limit <- min(cv.lasso.1$cv) + cv.lasso.1$cv.error[which.min(cv.lasso.1$cv)]
s.cv.1 <- cv.lasso.1$index[min(which(cv.lasso.1$cv < limit))]
# Print out coefficients at optimal s.
coef_lasso_sum=coef_lasso_sum+abs(coef(lasso.1, s=s.cv.1, mode="fraction"))
if(is.null(tempcoef)){
cat("Error in lm fit, skip coefficients\n")
error_counter=error_counter+1
} else{
coef_sum=coef_sum+abs(tempcoef)
}
}
error_counter
coef_mean=coef_sum/NDatasets
coef_lasso_mean=coef_lasso_sum/NDatasets
With regular least squares and lasso estimators all fits were sucessful, yet only 20 variables coefficients could be estimated with regular least squares estimates for the linear model. Then we display and plot that the mean coefficient vector values for the least squares estimates.
coef_lasso_mean
barplot(coef_lasso_mean,ylim=c(0,1.5))
abline(h=(minB+maxB)/2,lwd=2,lty=2,col="blue")
The simulation process looks sucessfull: the lasso estimates retrives mostly the correct variables, yet the other ones are also selected sometimes. What are the confidence indices for those variables?
Fourth Example
Aim
We want to creates
datasets with
variables and
observations. In that example we use real data for the variables that
are the
probesets that are the more differentially expressed between the two
conditions US and S. We create
datasets by leaving one of the variables out each time and using it as
the response that shall be predicted. We also only use for the
explanatory variables the observations that are the measurements for the
1st, 2nd and 3rd timepoints and for the responses the observations that
are the measurements of the same variables for the 2nd, 3rd and 4th
timepoints. The main interest of that simulation is that the correlation
structure of the X
dataset will be a real one and that it
is a typical setting for cascade network reverse-engineering in genomics
or proteomics, see the Cascade
package for more
details.
Data and response generations
First retrieve the datasets and get the differentially expressed probesets. Run the code to get additionnal plots.
require(CascadeData)
data(micro_S)
data(micro_US)
require(Cascade)
micro_US<-as.micro_array(micro_US,c(60,90,240,390),6)
micro_S<-as.micro_array(micro_S,c(60,90,240,390),6)
S<-geneSelection(list(micro_S,micro_US),list("condition",c(1,2),1),101)
Sel<-micro_S@microarray[S@name,]
summary(S)
plot(S)
suppt<-rep(1:4,6)
supp<-c(1,1,1,1,1,rep(0,95)) #not used since we use one of the probeset expressions as response
minB<-1 #not used since we use one of the probeset expressions as response
maxB<-2 #not used since we use one of the probeset expressions as response
stn<-50 #not used since we use one of the probeset expressions as response
NDatasets<-101
set.seed(3141)
for(i in 1:NDatasets){
#the explanatory variables are the values for the 1st, 2nd and 3rd timepoints
X<-t(as.matrix(Sel[-i,suppt!=4]))
Xnorm<-t(t(X)/sqrt(colSums(X*X)))
DATA<-simulation_DATA(Xnorm,supp,minB,maxB,stn)
#the reponses are the values for the 2nd, 3rd and 4th timepoints
DATA$Y<-as.vector(t(Sel[i,suppt!=1]))
assign(paste("DATA_exemple4_nb_",i,sep=""),DATA)
rm(DATA)
}
Checks
Here are the plots of an example of correlation structure, namely for
DATA_exemple3_nb_200$X
. Run the code to get the
graphics.
coef_sum=rep(0,length(supp)+1)
coef_lasso_sum=rep(0,length(supp)+1)
names(coef_sum)<-paste("x",1:(length(supp)+1),sep="")
names(coef_lasso_sum)<-paste("x",1:(length(supp)+1),sep="")
error_counter=0
for(i in 1:NDatasets){
tempdf=data.frame(cbind(Y=get(paste("DATA_exemple4_nb_",i,sep=""))$Y,
get(paste("DATA_exemple4_nb_",i,sep=""))$X))
tempcoef=coef(lm(Y~.-1,data=tempdf))
require(lars)
lasso.1 <- lars::lars(x=get(paste("DATA_exemple4_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple4_nb_",i,sep=""))$Y, type="lasso",
trace=FALSE, normalize=FALSE, intercept = FALSE)
# cv.lars() uses crossvalidation to estimate optimal position in path
cv.lasso.1 <- lars::cv.lars(x=get(paste("DATA_exemple4_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple4_nb_",i,sep=""))$Y,
plot.it=FALSE, normalize=FALSE, intercept = FALSE, type="lasso")
# Use the "+1SE rule" to find best model:
# Take the min CV and add its SE ("limit").
# Find smallest model that has its own CV within this limit (at "s.cv.1")
limit <- min(cv.lasso.1$cv) + cv.lasso.1$cv.error[which.min(cv.lasso.1$cv)]
s.cv.1 <- cv.lasso.1$index[min(which(cv.lasso.1$cv < limit))]
# Print out coefficients at optimal s.
coef_lasso_sum[-i]=coef_lasso_sum[-i]+abs(coef(lasso.1, s=s.cv.1, mode="fraction"))
if(is.null(tempcoef)){
cat("Error in lm fit, skip coefficients\n")
error_counter=error_counter+1
} else{
coef_sum[-i]=coef_sum[-i]+abs(tempcoef)
}
}
error_counter
coef_mean=coef_sum/NDatasets
coef_lasso_mean=coef_lasso_sum/NDatasets
With regular least squares and lasso estimators all fits were sucessful, yet only 20 variables coefficients could be estimated with regular least squares estimates for the linear model. Then we display and plot that the mean coefficient vector values for the least squares estimates.
Some probesets seem explanatory for many other ones (=hubs). What are the confidence indices for those variables?
Fifth Example
Aim
We want to creates datasets with variables and observations. In that example we want group:
- , , belong to the same group and the intra-group Pearson correlation for this group is equal to .
- only the first five variables , , are explanatory variables for the response.
Explanatory variables and response
set.seed(3141)
N<-25
supp<-c(1,1,1,1,1,rep(0,495))
minB<-1
maxB<-2
stn<-50
for(i in 1:NDatasets){
C<-simulation_cor(group,cor_group)
X<-simulation_X(N,C)
assign(paste("DATA_exemple5_nb_",i,sep=""),simulation_DATA(X,supp,minB,maxB,stn))
}
Checks
We now check the correlation structure of the explanatory variable. First we compute the mean correlation matrix.
corr_sum=matrix(0,length(group),length(group))
for(i in 1:NDatasets){
corr_sum=corr_sum+cor(get(paste("DATA_exemple5_nb_",i,sep=""))$X)
}
corr_mean=corr_sum/NDatasets
Then we display and plot that the mean correlation matrix.
coef_sum=rep(0,length(group))
coef_lasso_sum=rep(0,length(group))
names(coef_sum)<-paste("x",1:length(group),sep="")
names(coef_lasso_sum)<-paste("x",1:length(group),sep="")
error_counter=0
for(i in 1:NDatasets){
tempdf=data.frame(cbind(Y=get(paste("DATA_exemple5_nb_",i,sep=""))$Y,
get(paste("DATA_exemple5_nb_",i,sep=""))$X))
tempcoef=coef(lm(Y~.-1,data=tempdf))
require(lars)
lasso.1 <- lars::lars(x=get(paste("DATA_exemple5_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple5_nb_",i,sep=""))$Y, type="lasso",
trace=FALSE, normalize=FALSE, intercept = FALSE)
# cv.lars() uses crossvalidation to estimate optimal position in path
cv.lasso.1 <- lars::cv.lars(x=get(paste("DATA_exemple5_nb_",i,sep=""))$X,
y=get(paste("DATA_exemple5_nb_",i,sep=""))$Y,
plot.it=FALSE, type="lasso")
# Use the "+1SE rule" to find best model:
# Take the min CV and add its SE ("limit").
# Find smallest model that has its own CV within this limit (at "s.cv.1")
limit <- min(cv.lasso.1$cv) + cv.lasso.1$cv.error[which.min(cv.lasso.1$cv)]
s.cv.1 <- cv.lasso.1$index[min(which(cv.lasso.1$cv < limit))]
# Print out coefficients at optimal s.
coef_lasso_sum=coef_lasso_sum+abs(coef(lasso.1, s=s.cv.1, mode="fraction"))
if(is.null(tempcoef)){
cat("Error in lm fit, skip coefficients\n")
error_counter=error_counter+1
} else{
coef_sum=coef_sum+abs(tempcoef)
}
}
error_counter
coef_mean=coef_sum/NDatasets
coef_lasso_mean=coef_lasso_sum/NDatasets
With regular least squares and lasso estimators all fits were sucessful, yet only 20 variables coefficients could be estimated with regular least squares estimates for the linear model. Then we display and plot that the mean coefficient vector values for the least squares estimates.
head(coef_lasso_mean, 40)
barplot(coef_lasso_mean,ylim=c(0,1.5))
abline(h=(minB+maxB)/2,lwd=2,lty=2,col="blue")
The simulation process looks sucessfull: the lasso estimates retrives mostly the correct variables, yet the other ones are also selected sometimes. What are the confidence indices for those variables?