
Package index
-
rerr()ridge_logistic()BIC_glmnetB()AICc_glmnetB() - AICc and BIC for glmnet logistic models
-
net_confidencenet_confidence_.5net_confidence_thr - Confidence indices
-
auto.analyze() - Find limits for selectboost analysis
-
autoboost() - Autoboost
-
autoboost.res.x - Autoboost lasso diabetes first order.
-
autoboost.res.x.adapt - Autoboost adaptative lasso diabetes first order.
-
autoboost.res.x2 - Autoboost lasso diabetes second order.
-
autoboost.res.x2.adapt - Autoboost adaptative lasso diabetes second order.
-
boost.normalize()boost.compcorrs()boost.correlation_sign()boost.findgroups()boost.Xpass()boost.adjust()boost.random()boost.apply()boost.select() - Boost step by step functions
-
fastboost() - Fastboost
-
fastboost.res.x - Fastboost lasso diabetes first order.
-
fastboost.res.x.adapt - Fastboost adaptative lasso diabetes first order.
-
fastboost.res.x2 - Fastboost lasso diabetes second order.
-
fastboost.res.x2.adapt - Fastboost adaptative lasso diabetes second order.
-
force.non.inc() - Non increasing post processinng step for selectboost analysis
-
group_func_1() - Generate groups by thresholding.
-
group_func_2() - Generate groups using community analysis.
-
plot(<matrix>) - Miscellaneous plot functions
-
network.confidence-class - Network confidence class.
-
plot(<selectboost>) - Plot selectboost object
-
plot(<summary.selectboost>) - Plot a summary of selectboost results
-
plot(<network.confidence>,<ANY>) - plot_Selectboost_cascade
-
test.seq_Ctest.seq_PLtest.seq_PL2test.seq_PL2_Wtest.seq_PL2_tWtest.seq_PSeltest.seq_PSel.5test.seq_PSel.e2test.seq_PSel.5.e2test.seq_PSel_Wtest.seq_robusttest.seq_PBtest.seq_PB_095_075test.seq_PB_075_075test.seq_PB_Wsensitivity_Csensitivity_PLsensitivity_PL2sensitivity_PL2_Wsensitivity_PL2_tWsensitivity_PSelsensitivity_PSel.5sensitivity_PSel.e2sensitivity_PSel.5.e2sensitivity_PSel_Wsensitivity_robustsensitivity_PBsensitivity_PB_095_075sensitivity_PB_075_075sensitivity_PB_Wpredictive_positive_value_Cpredictive_positive_value_PLpredictive_positive_value_PL2predictive_positive_value_PL2_Wpredictive_positive_value_PL2_tWpredictive_positive_value_PSelpredictive_positive_value_PSel.5predictive_positive_value_PSel.e2predictive_positive_value_PSel.5.e2predictive_positive_value_PSel_Wpredictive_positive_value_robustpredictive_positive_value_PBpredictive_positive_value_PB_095_075predictive_positive_value_PB_075_075predictive_positive_value_PB_WF_score_CF_score_PLF_score_PL2F_score_PL2_WF_score_PL2_tWF_score_PSelF_score_PSel.5F_score_PSel.e2F_score_PSel.5.e2F_score_PSel_WF_score_robustF_score_PBF_score_PB_095_075F_score_PB_075_075F_score_PB_Wnv_Cnv_PLnv_PL2nv_PL2_Wnv_PL2_tWnv_PSelnv_PSel.5nv_PSel.e2nv_PSel.5.e2nv_PSel_Wnv_robustnv_PBnv_PB_095_075nv_PB_075_075nv_PB_W - Simulations for reverse-engineering
-
selectboost() - Selectboost_cascade
-
simulation_cor()simulation_X()simulation_DATA()compsim() - Miscellaneous simulation functions
-
summary(<selectboost>) - Summarize a selectboost analysis
-
trajC0() - Plot trajectories
-
lasso_cv_glmnet_bin_min()lasso_cv_glmnet_bin_1se()lasso_glmnet_bin_AICc()lasso_glmnet_bin_BIC()lasso_cv_lars_min()lasso_cv_lars_1se()lasso_cv_glmnet_min()lasso_cv_glmnet_min_weighted()lasso_cv_glmnet_1se()lasso_cv_glmnet_1se_weighted()lasso_msgps_Cp()lasso_msgps_AICc()lasso_msgps_GCV()lasso_msgps_BIC()enetf_msgps_Cp()enetf_msgps_AICc()enetf_msgps_GCV()enetf_msgps_BIC()lasso_cascade() - Variable selection functions