Skip to contents

All functions

rerr() ridge_logistic() BIC_glmnetB() AICc_glmnetB()
AICc and BIC for glmnet logistic models
net_confidence net_confidence_.5 net_confidence_thr
Confidence indices
M Net Net_inf_C
Simulated Cascade network and inference
auto.analyze()
Find limits for selectboost analysis
autoboost()
Autoboost
autoboost.res.x
Autoboost lasso diabetes first order.
autoboost.res.x.adapt
Autoboost adaptative lasso diabetes first order.
autoboost.res.x2
Autoboost lasso diabetes second order.
autoboost.res.x2.adapt
Autoboost adaptative lasso diabetes second order.
boost.normalize() boost.compcorrs() boost.correlation_sign() boost.findgroups() boost.Xpass() boost.adjust() boost.random() boost.apply() boost.select()
Boost step by step functions
fastboost()
Fastboost
fastboost.res.x
Fastboost lasso diabetes first order.
fastboost.res.x.adapt
Fastboost adaptative lasso diabetes first order.
fastboost.res.x2
Fastboost lasso diabetes second order.
fastboost.res.x2.adapt
Fastboost adaptative lasso diabetes second order.
force.non.inc()
Non increasing post processinng step for selectboost analysis
group_func_1()
Generate groups by thresholding.
group_func_2()
Generate groups using community analysis.
plot(<matrix>)
Miscellaneous plot functions
network.confidence-class
Network confidence class.
plot(<selectboost>)
Plot selectboost object
plot(<summary.selectboost>)
Plot a summary of selectboost results
plot(<network.confidence>,<ANY>)
plot_Selectboost_cascade
test.seq_C test.seq_PL test.seq_PL2 test.seq_PL2_W test.seq_PL2_tW test.seq_PSel test.seq_PSel.5 test.seq_PSel.e2 test.seq_PSel.5.e2 test.seq_PSel_W test.seq_robust test.seq_PB test.seq_PB_095_075 test.seq_PB_075_075 test.seq_PB_W sensitivity_C sensitivity_PL sensitivity_PL2 sensitivity_PL2_W sensitivity_PL2_tW sensitivity_PSel sensitivity_PSel.5 sensitivity_PSel.e2 sensitivity_PSel.5.e2 sensitivity_PSel_W sensitivity_robust sensitivity_PB sensitivity_PB_095_075 sensitivity_PB_075_075 sensitivity_PB_W predictive_positive_value_C predictive_positive_value_PL predictive_positive_value_PL2 predictive_positive_value_PL2_W predictive_positive_value_PL2_tW predictive_positive_value_PSel predictive_positive_value_PSel.5 predictive_positive_value_PSel.e2 predictive_positive_value_PSel.5.e2 predictive_positive_value_PSel_W predictive_positive_value_robust predictive_positive_value_PB predictive_positive_value_PB_095_075 predictive_positive_value_PB_075_075 predictive_positive_value_PB_W F_score_C F_score_PL F_score_PL2 F_score_PL2_W F_score_PL2_tW F_score_PSel F_score_PSel.5 F_score_PSel.e2 F_score_PSel.5.e2 F_score_PSel_W F_score_robust F_score_PB F_score_PB_095_075 F_score_PB_075_075 F_score_PB_W nv_C nv_PL nv_PL2 nv_PL2_W nv_PL2_tW nv_PSel nv_PSel.5 nv_PSel.e2 nv_PSel.5.e2 nv_PSel_W nv_robust nv_PB nv_PB_095_075 nv_PB_075_075 nv_PB_W
Simulations for reverse-engineering
selectboost()
Selectboost_cascade
simulation_cor() simulation_X() simulation_DATA() compsim()
Miscellaneous simulation functions
summary(<selectboost>)
Summarize a selectboost analysis
trajC0()
Plot trajectories
lasso_cv_glmnet_bin_min() lasso_cv_glmnet_bin_1se() lasso_glmnet_bin_AICc() lasso_glmnet_bin_BIC() lasso_cv_lars_min() lasso_cv_lars_1se() lasso_cv_glmnet_min() lasso_cv_glmnet_min_weighted() lasso_cv_glmnet_1se() lasso_cv_glmnet_1se_weighted() lasso_msgps_Cp() lasso_msgps_AICc() lasso_msgps_GCV() lasso_msgps_BIC() enetf_msgps_Cp() enetf_msgps_AICc() enetf_msgps_GCV() enetf_msgps_BIC() lasso_cascade()
Variable selection functions
lasso_msgps_all() enet_msgps_all() alasso_msgps_all() alasso_enet_msgps_all() lasso_cv_glmnet_all_5f() spls_spls_all() varbvs_linear_all() lasso_cv_glmnet_bin_all() lasso_glmnet_bin_all() splsda_spls_all() sgpls_spls_all() varbvs_binomial_all()
Variable selection functions (all)