All functions

rerr() ridge_logistic() BIC_glmnetB() AICc_glmnetB()

AICc and BIC for glmnet logistic models

net_confidence net_confidence_.5 net_confidence_thr

Confidence indices

M Net Net_inf_C

Simulated Cascade network and inference

SelectBoost

SelectBoost

auto.analyze()

Find limits for selectboost analysis

autoboost()

Autoboost

autoboost.res.x

Autoboost lasso diabetes first order.

autoboost.res.x.adapt

Autoboost adaptative lasso diabetes first order.

autoboost.res.x2

Autoboost lasso diabetes second order.

autoboost.res.x2.adapt

Autoboost adaptative lasso diabetes second order.

boost.normalize() boost.compcorrs() boost.correlation_sign() boost.findgroups() boost.Xpass() boost.adjust() boost.random() boost.apply() boost.select()

Boost step by step functions

fastboost()

Fastboost

fastboost.res.x

Fastboost lasso diabetes first order.

fastboost.res.x.adapt

Fastboost adaptative lasso diabetes first order.

fastboost.res.x2

Fastboost lasso diabetes second order.

fastboost.res.x2.adapt

Fastboost adaptative lasso diabetes second order.

force.non.inc()

Non increasing post processinng step for selectboost analysis

group_func_1()

Generate groups by thresholding.

group_func_2()

Generate groups using community analysis.

plot(<matrix>)

Miscellaneous plot functions

network.confidence-class

Network confidence class.

plot(<selectboost>)

Plot selectboost object

plot(<summary.selectboost>)

Plot a summary of selectboost results

plot(<network.confidence>,<ANY>)

plot_Selectboost_cascade

test.seq_C test.seq_PL test.seq_PL2 test.seq_PL2_W test.seq_PL2_tW test.seq_PSel test.seq_PSel.5 test.seq_PSel.e2 test.seq_PSel.5.e2 test.seq_PSel_W test.seq_robust test.seq_PB test.seq_PB_095_075 test.seq_PB_075_075 test.seq_PB_W sensitivity_C sensitivity_PL sensitivity_PL2 sensitivity_PL2_W sensitivity_PL2_tW sensitivity_PSel sensitivity_PSel.5 sensitivity_PSel.e2 sensitivity_PSel.5.e2 sensitivity_PSel_W sensitivity_robust sensitivity_PB sensitivity_PB_095_075 sensitivity_PB_075_075 sensitivity_PB_W predictive_positive_value_C predictive_positive_value_PL predictive_positive_value_PL2 predictive_positive_value_PL2_W predictive_positive_value_PL2_tW predictive_positive_value_PSel predictive_positive_value_PSel.5 predictive_positive_value_PSel.e2 predictive_positive_value_PSel.5.e2 predictive_positive_value_PSel_W predictive_positive_value_robust predictive_positive_value_PB predictive_positive_value_PB_095_075 predictive_positive_value_PB_075_075 predictive_positive_value_PB_W F_score_C F_score_PL F_score_PL2 F_score_PL2_W F_score_PL2_tW F_score_PSel F_score_PSel.5 F_score_PSel.e2 F_score_PSel.5.e2 F_score_PSel_W F_score_robust F_score_PB F_score_PB_095_075 F_score_PB_075_075 F_score_PB_W nv_C nv_PL nv_PL2 nv_PL2_W nv_PL2_tW nv_PSel nv_PSel.5 nv_PSel.e2 nv_PSel.5.e2 nv_PSel_W nv_robust nv_PB nv_PB_095_075 nv_PB_075_075 nv_PB_W

Simulations for reverse-engineering

selectboost()

Selectboost_cascade

simulation_cor() simulation_X() simulation_DATA() compsim()

Miscellaneous simulation functions

summary(<selectboost>)

Summarize a selectboost analysis

trajC0()

Plot trajectories

lasso_cv_glmnet_bin_min() lasso_cv_glmnet_bin_1se() lasso_glmnet_bin_AICc() lasso_glmnet_bin_BIC() lasso_cv_lars_min() lasso_cv_lars_1se() lasso_cv_glmnet_min() lasso_cv_glmnet_min_weighted() lasso_cv_glmnet_1se() lasso_cv_glmnet_1se_weighted() lasso_msgps_Cp() lasso_msgps_AICc() lasso_msgps_GCV() lasso_msgps_BIC() enetf_msgps_Cp() enetf_msgps_AICc() enetf_msgps_GCV() enetf_msgps_BIC() lasso_cascade()

Variable selection functions

lasso_msgps_all() enet_msgps_all() alasso_msgps_all() alasso_enet_msgps_all() lasso_cv_glmnet_all_5f() spls_spls_all() varbvs_linear_all() lasso_cv_glmnet_bin_all() lasso_glmnet_bin_all() splsda_spls_all() sgpls_spls_all() varbvs_binomial_all()

Variable selection functions (all)