
Package index
-
rerr()
ridge_logistic()
BIC_glmnetB()
AICc_glmnetB()
- AICc and BIC for glmnet logistic models
-
net_confidence
net_confidence_.5
net_confidence_thr
- Confidence indices
-
auto.analyze()
- Find limits for selectboost analysis
-
autoboost()
- Autoboost
-
autoboost.res.x
- Autoboost lasso diabetes first order.
-
autoboost.res.x.adapt
- Autoboost adaptative lasso diabetes first order.
-
autoboost.res.x2
- Autoboost lasso diabetes second order.
-
autoboost.res.x2.adapt
- Autoboost adaptative lasso diabetes second order.
-
boost.normalize()
boost.compcorrs()
boost.correlation_sign()
boost.findgroups()
boost.Xpass()
boost.adjust()
boost.random()
boost.apply()
boost.select()
- Boost step by step functions
-
fastboost()
- Fastboost
-
fastboost.res.x
- Fastboost lasso diabetes first order.
-
fastboost.res.x.adapt
- Fastboost adaptative lasso diabetes first order.
-
fastboost.res.x2
- Fastboost lasso diabetes second order.
-
fastboost.res.x2.adapt
- Fastboost adaptative lasso diabetes second order.
-
force.non.inc()
- Non increasing post processinng step for selectboost analysis
-
group_func_1()
- Generate groups by thresholding.
-
group_func_2()
- Generate groups using community analysis.
-
plot(<matrix>)
- Miscellaneous plot functions
-
network.confidence-class
- Network confidence class.
-
plot(<selectboost>)
- Plot selectboost object
-
plot(<summary.selectboost>)
- Plot a summary of selectboost results
-
plot(<network.confidence>,<ANY>)
- plot_Selectboost_cascade
-
test.seq_C
test.seq_PL
test.seq_PL2
test.seq_PL2_W
test.seq_PL2_tW
test.seq_PSel
test.seq_PSel.5
test.seq_PSel.e2
test.seq_PSel.5.e2
test.seq_PSel_W
test.seq_robust
test.seq_PB
test.seq_PB_095_075
test.seq_PB_075_075
test.seq_PB_W
sensitivity_C
sensitivity_PL
sensitivity_PL2
sensitivity_PL2_W
sensitivity_PL2_tW
sensitivity_PSel
sensitivity_PSel.5
sensitivity_PSel.e2
sensitivity_PSel.5.e2
sensitivity_PSel_W
sensitivity_robust
sensitivity_PB
sensitivity_PB_095_075
sensitivity_PB_075_075
sensitivity_PB_W
predictive_positive_value_C
predictive_positive_value_PL
predictive_positive_value_PL2
predictive_positive_value_PL2_W
predictive_positive_value_PL2_tW
predictive_positive_value_PSel
predictive_positive_value_PSel.5
predictive_positive_value_PSel.e2
predictive_positive_value_PSel.5.e2
predictive_positive_value_PSel_W
predictive_positive_value_robust
predictive_positive_value_PB
predictive_positive_value_PB_095_075
predictive_positive_value_PB_075_075
predictive_positive_value_PB_W
F_score_C
F_score_PL
F_score_PL2
F_score_PL2_W
F_score_PL2_tW
F_score_PSel
F_score_PSel.5
F_score_PSel.e2
F_score_PSel.5.e2
F_score_PSel_W
F_score_robust
F_score_PB
F_score_PB_095_075
F_score_PB_075_075
F_score_PB_W
nv_C
nv_PL
nv_PL2
nv_PL2_W
nv_PL2_tW
nv_PSel
nv_PSel.5
nv_PSel.e2
nv_PSel.5.e2
nv_PSel_W
nv_robust
nv_PB
nv_PB_095_075
nv_PB_075_075
nv_PB_W
- Simulations for reverse-engineering
-
selectboost()
- Selectboost_cascade
-
simulation_cor()
simulation_X()
simulation_DATA()
compsim()
- Miscellaneous simulation functions
-
summary(<selectboost>)
- Summarize a selectboost analysis
-
trajC0()
- Plot trajectories
-
lasso_cv_glmnet_bin_min()
lasso_cv_glmnet_bin_1se()
lasso_glmnet_bin_AICc()
lasso_glmnet_bin_BIC()
lasso_cv_lars_min()
lasso_cv_lars_1se()
lasso_cv_glmnet_min()
lasso_cv_glmnet_min_weighted()
lasso_cv_glmnet_1se()
lasso_cv_glmnet_1se_weighted()
lasso_msgps_Cp()
lasso_msgps_AICc()
lasso_msgps_GCV()
lasso_msgps_BIC()
enetf_msgps_Cp()
enetf_msgps_AICc()
enetf_msgps_GCV()
enetf_msgps_BIC()
lasso_cascade()
- Variable selection functions