Selectboost for Cascade inference.
selectboost(M, ...)
# S4 method for micro_array
selectboost(
M,
Fabhat,
K = 5,
eps = 10^-5,
cv.subjects = TRUE,
ncores = 4,
use.parallel = FALSE,
verbose = FALSE,
group = group_func_2,
c0value = 0.95
)
Microarray class from the Cascade package.
Additionnal arguments. Not used.
F matrix inferred using the inference function from the Cascade package.
Number of crossvalidation folds.
Threshold for assinging a zero value to an inferred parameter. Defaults to 10^-5.
Crossvalidation is made subjectwise using leave one out. Discards the K option.
Numerical value. Number of cores for parallel computing.
Defaults to 4
.
Boolean. To use parallel computing (doMC) download the extended package from Github.
Set to FALSE
.
Boolean.
Defaults to FALSE
.
Function. The grouping function.
Defaults to group_func_2
.
Numeric. c0 value to use for confidence computation.
Defaults to TRUE
A network.confidence
object.
Extending results from the Cascade package: providing confidence indices for the reverse engineered links.
Reference for the Cascade modelling Vallat, L., Kemper, C. a., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., Pocheville, A., Fisher, J. W., Gribben, J. G. et Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 459-64.
Reference for the Cascade package Jung, N., Bertrand, F., Bahram, S., Vallat, L. et Maumy-Bertrand, M. (2014). Cascade : A R package to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics. ISSN 13674803..
selectBoost: a general algorithm to enhance the performance of variable selection methods in correlated datasets, Frédéric Bertrand, Ismaïl Aouadi, Nicolas Jung, Raphael Carapito, Laurent Vallat, Seiamak Bahram, Myriam Maumy-Bertrand, Bioinformatics, 2020. doi:10.1093/bioinformatics/btaa855
boost
, fastboost
, plot.selectboost
, inference
Other Selectboost functions:
autoboost()
,
boost
,
fastboost()
,
plot_selectboost_cascade
set.seed(314)
set.seed(314)
# \donttest{
data(Cascade_example)
Fab_inf_C <- Net_inf_C@F
#By default community grouping of variables
set.seed(1)
net_confidence <- selectboost(M, Fab_inf_C)
#>
#> We are at peak : 2
#> .........................
#> We are at peak : 3
#> .........................
#> We are at peak : 4
#> .........................
net_confidence_.5 <- selectboost(M, Fab_inf_C, c0value = .5)
#>
#> We are at peak : 2
#> .........................
#> We are at peak : 3
#> .........................
#> We are at peak : 4
#> .........................
#With group_func_1, variables are grouped by thresholding the correlation matrix
net_confidence_thr <- selectboost(M, Fab_inf_C, group = group_func_1)
#>
#> We are at peak : 2
#> .........................
#> We are at peak : 3
#> .........................
#> We are at peak : 4
#> .........................
# }