Step by step functions to apply the selectboost algorithm.
boost.normalize(X, eps = 1e-08)
boost.compcorrs(
Xnorm,
corrfunc = "cor",
verbose = FALSE,
testvarindic = rep(TRUE, ncol(Xnorm))
)
boost.correlation_sign(Correlation_matrice, verbose = FALSE)
boost.findgroups(Correlation_matrice, group, corr = 1, verbose = FALSE)
boost.Xpass(nrowX, ncolX)
boost.adjust(
X,
groups,
Correlation_sign,
Xpass = boost.Xpass(nrowX, ncolX),
verbose = FALSE,
use.parallel = FALSE,
ncores = 4
)
boost.random(
X,
Xpass,
vmf.params,
verbose = FALSE,
B = 100,
use.parallel = FALSE,
ncores = 4
)
boost.apply(
X,
cols.simul,
Y,
func,
verbose = FALSE,
use.parallel = FALSE,
ncores = 4,
...
)
boost.select(Boost.coeffs, eps = 10^(-4), version = "lars", verbose = FALSE)
Numerical matrix. Matrix of the variables.
Numerical value. Response vector.
Numerical matrix. Needs to be centered and l2 normalized.
Character value or function. The function to compute associations between the variables.
Boolean.
Defaults to FALSE
.
Boolean vector. Compute associations for a subset of variables.
By default, the scope of the computation is the whole dataset, i.e. rep(TRUE,ncol(Xnorm))
.
Numerical matrix.
Character value or function. The grouping function.
Numerical value. Thresholding value. Defaults to 1
.
Numerical value
Numerical value.
List. List of groups or communities (compact form).
Numerical -1/1 matrix.
Numerical value. Transformation matrix.
Defaults to boost.Xpass(nrowX,ncolX)
, with nrowX=nrow(X)
and ncolX=ncol(X)
.
Boolean.
Defaults to FALSE
.
Numerical value. Number of cores to use.
Defaults to 4
.
List. List of the parameters ot the fitted von-Mises distributions.
Integer value. Number of resampling.
Numerical value. Transformation matrix.
Numerical vector or factor. Response.
Function. Variable selection function.
. Additionnal parameters passed to the func
function.
Numerical matrix. l2 normed matrix of predictors.
Character value. "lars" (no intercept value) or "glmnet" (first coefficient is the intercept value).
Various types depending on the function.
boost.normalize
returns a numeric matrix whose colun are centered and l2 normalized.
boost.compcorrs
returns a correlation like matrix computed using the corrfunc
function.
boost.Xpass
returns the transformation matrix.
boost.findgroups
returns a list of groups or communities found using the group
function.
boost.Xpass
returns the transformation matrix.
boost.adjust
returns the list of the parameters ot the fitted von-Mises distributions.
boost.random
returns an array with the resampled datasets.
boost.apply
returns a matrix with the coefficients estimated using the resampled datasets.
boost.select
returns a vector with the proportion of times each variable was selected.
selectBoost: a general algorithm to enhance the performance of variable selection methods in correlated datasets, Frédéric Bertrand, Ismaïl Aouadi, Nicolas Jung, Raphael Carapito, Laurent Vallat, Seiamak Bahram, Myriam Maumy-Bertrand, Bioinformatics, 2020. doi:10.1093/bioinformatics/btaa855
Other Selectboost functions:
autoboost()
,
fastboost()
,
plot_selectboost_cascade
,
selectboost_cascade
set.seed(314)
xran=matrix(rnorm(200),20,10)
yran=rnorm(20)
xran_norm <- boost.normalize(xran)
xran_corr<- boost.compcorrs(xran_norm)
xran_corr_sign <- boost.correlation_sign(xran_corr)
xran_groups <- boost.findgroups(xran_corr, group=group_func_1, .3)
xran_groups_2 <- boost.findgroups(xran_corr, group=group_func_2, .3)
xran_Xpass <- boost.Xpass(nrow(xran_norm),ncol(xran_norm))
xran_adjust <- boost.adjust(xran_norm, xran_groups$groups, xran_corr_sign)
#Not meaningful, should be run with B>=100
xran_random <- boost.random(xran_norm, xran_Xpass, xran_adjust$vmf.params, B=5)
# \donttest{
xran_random <- boost.random(xran_norm, xran_Xpass, xran_adjust$vmf.params, B=100)
# }
xran_apply <- boost.apply(xran_norm, xran_random, yran, lasso_msgps_AICc)
xran_select <- boost.select(xran_apply)