R/YXadaptplsR.R
coefs.plsR.adapt.ncomp.Rd
Bootstrap (Y,X) for the coefficients with number of components updated for each resampling.
coefs.plsR.adapt.ncomp( dataset, i, R = 1000, ncpus = 1, parallel = "no", verbose = FALSE )
dataset | Dataset to use. |
---|---|
i | Vector of resampling. |
R | Number of resamplings to find the number of components. |
ncpus | integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs. |
parallel | The type of parallel operation to be used (if any). If missing, the default is taken from the option "boot.parallel" (and if that is not set, "no"). |
verbose | Suppress information messages. |
Numeric vector: first value is the number of components, the remaining values are the coefficients the variables computed for that number of components.
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi: 10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Computing, 27, 757–774.
doi: 10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand,
N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics,
doi: 10.3389/fams.2021.693126
.
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
#>#> [1] 0.0000000 -0.3144043 0.0000000 0.0000000 0.0000000 0.0000000#> [1] 0.0000000 -0.3144043 0.0000000 0.0000000 0.0000000 0.0000000# }