
Bootstrap (Y,X) for the coefficients with number of components updated for each resampling.
Source:R/YXadaptplsR.R
coefs.plsR.adapt.ncomp.Rd
Bootstrap (Y,X) for the coefficients with number of components updated for each resampling.
Arguments
- dataset
Dataset to use.
- i
Vector of resampling.
- R
Number of resamplings to find the number of components.
- ncpus
integer: number of processes to be used in parallel operation: typically one would chose this to the number of available CPUs.
- parallel
The type of parallel operation to be used (if any). If missing, the default is taken from the option "boot.parallel" (and if that is not set, "no").
- verbose
Suppress information messages.
Value
Numeric vector: first value is the number of components, the remaining values are the coefficients the variables computed for that number of components.
References
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi:10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Computing, 27, 757–774.
doi:10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand,
N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics,
doi:10.3389/fams.2021.693126
.
Author
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
set.seed(314)
ncol=5
xran=matrix(rnorm(30*ncol),30,ncol)
coefs.plsR.adapt.ncomp(xran,sample(1:30))
#> Loading required namespace: plsdof
#> [1] 0.0000000 -0.3144043 0.0000000 0.0000000 0.0000000 0.0000000
# \donttest{
coefs.plsR.adapt.ncomp(xran,sample(1:30),ncpus=2,parallel="multicore")
#> [1] 0.0000000 -0.3144043 0.0000000 0.0000000 0.0000000 0.0000000
# }