
Non-parametric tilted bootstrap for PLS beta regression models
Source:R/tilt.bootplsbeta.R
tilt.bootplsbeta.Rd
Provides a wrapper for the bootstrap function tilt.boot
from the
boot
R package.
Implements non-parametric tilted bootstrap for PLS
beta regression models by case resampling : the tilt.boot
function
will run an initial bootstrap with equal resampling probabilities (if
required) and will use the output of the initial run to find resampling
probabilities which put the value of the statistic at required values. It
then runs an importance resampling bootstrap using the calculated
probabilities as the resampling distribution.
Arguments
- object
An object of class
plsRbetamodel
to bootstrap- typeboot
The type of bootstrap. Either (Y,X) boostrap (
typeboot="plsmodel"
) or (Y,T) bootstrap (typeboot="fmodel_np"
). Defaults to (Y,T) resampling.- statistic
A function which when applied to data returns a vector containing the statistic(s) of interest.
statistic
must take at least two arguments. The first argument passed will always be the original data. The second will be a vector of indices, frequencies or weights which define the bootstrap sample. Further, if predictions are required, then a third argument is required which would be a vector of the random indices used to generate the bootstrap predictions. Any further arguments can be passed to statistic through the...
argument.- R
The number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case
R
would be a vector of integers where each component gives the number of resamples from each of the rows of weights.- alpha
The alpha level to which tilting is required. This parameter is ignored if
R[1]
is 0 or iftheta
is supplied, otherwise it is used to find the values oftheta
as quantiles of the initial uniform bootstrap. In this caseR[1]
should be large enough thatmin(c(alpha, 1-alpha))*R[1] > 5
, if this is not the case then a warning is generated to the effect that thetheta
are extreme values and so the tilted output may be unreliable.- sim
A character string indicating the type of simulation required. Possible values are
"ordinary"
(the default),"balanced"
,"permutation"
, or"antithetic"
.- stype
A character string indicating what the second argument of
statistic
represents. Possible values of stype are"i"
(indices - the default),"f"
(frequencies), or"w"
(weights).- index
The index of the statistic of interest in the output from
statistic
. By default the first element of the output ofstatistic
is used.- stabvalue
A value to hard threshold bootstrap estimates computed from atypical resamplings.
References
Frédéric Bertrand, Nicolas Meyer, Michèle Beau-Faller, Karim El Bayed, Izzie-Jacques Namer, Myriam Maumy-Bertrand (2013). Régression Bêta PLS. Journal de la Société Française de Statistique, 154(3):143-159. https://ojs-test.apps.ocp.math.cnrs.fr/index.php/J-SFdS/article/view/215
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
# \donttest{
data("GasolineYield",package="betareg")
yGasolineYield <- GasolineYield$yield
XGasolineYield <- GasolineYield[,2:5]
modplsRbeta <- plsRbeta(yGasolineYield, XGasolineYield, nt=3,
modele="pls-beta")
#> ____************************************************____
#>
#> Model: pls-beta
#>
#> Link: logit
#>
#> Link.phi:
#>
#> Type: ML
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
# GazYield.tilt.boot <- tilt.bootplsbeta(modplsRbeta,
# statistic=coefs.plsRbeta, R=c(499, 100, 100),
# alpha=c(0.025, 0.975), sim="balanced", stype="i", index=1)
# boxplots.bootpls(GazYield.tilt.boot,1:2)
# }