Quality of Bordeaux wines (Quality
) and four potentially predictive
variables (Temperature
, Sunshine
, Heat
and
Rain
).
A data frame with 34 observations on the following 5 variables.
a numeric vector
a numeric vector
a numeric vector
a numeric vector
an
ordered factor with levels 1
< 2
< 3
P. Bastien, V. Esposito-Vinzi, and M. Tenenhaus. (2005). PLS generalised linear regression. Computational Statistics & Data Analysis, 48(1):17-46.
The value of x1 for the first observation was removed from the matrix of predictors on purpose.
The bordeauxNA
is a dataset with a missing value for testing purpose.
M. Tenenhaus. (2005). La regression logistique PLS. In J.-J. Droesbeke, M. Lejeune, and G. Saporta, editors, Modeles statistiques pour donnees qualitatives. Editions Technip, Paris.
#> 'data.frame': 34 obs. of 5 variables: #> $ Temperature: int NA 3000 3155 3085 3245 3267 3080 2974 3038 3318 ... #> $ Sunshine : int 1201 1053 1133 970 1258 1386 966 1189 1103 1310 ... #> $ Heat : int 10 11 19 4 36 35 13 12 14 29 ... #> $ Rain : int 361 338 393 467 294 225 417 488 677 427 ... #> $ Quality : Ord.factor w/ 3 levels "1"<"2"<"3": 2 3 2 3 1 1 3 3 3 2 ...