
Package index
-
AICpls()
- AIC function for plsR models
-
CorMat
- Correlation matrix for simulating plsR datasets
-
Cornell
- Cornell dataset
-
PLS_glm_wvc()
- Light version of PLS_glm for cross validation purposes
-
PLS_lm_wvc()
- Light version of PLS_lm for cross validation purposes
-
XbordeauxNA
- Incomplete dataset for the quality of wine dataset
-
XpineNAX21
- Incomplete dataset from the pine caterpillars example
-
aic.dof()
bic.dof()
gmdl.dof()
- Akaike and Bayesian Information Criteria and Generalized minimum description length
-
aze
- Microsatellites Dataset
-
aze_compl
- As aze without missing values
-
bootpls()
- Non-parametric Bootstrap for PLS models
-
bootplsglm()
- Non-parametric Bootstrap for PLS generalized linear models
-
bordeaux
- Quality of wine dataset
-
bordeauxNA
- Quality of wine dataset
-
boxplots.bootpls()
- Boxplot bootstrap distributions
-
coef(<plsRglmmodel>)
- coef method for plsR models
-
coef(<plsRmodel>)
- coef method for plsR models
-
coefs.plsR()
- Coefficients for bootstrap computations of PLSR models
-
coefs.plsR.raw()
- Raw coefficients for bootstrap computations of PLSR models
-
coefs.plsRglm()
- Coefficients for bootstrap computations of PLSGLR models
-
coefs.plsRglm.raw()
- Raw coefficients for bootstrap computations of PLSGLR models
-
coefs.plsRglmnp()
- Coefficients for bootstrap computations of PLSGLR models
-
coefs.plsRnp()
- Coefficients for bootstrap computations of PLSR models
-
confints.bootpls()
- Bootstrap confidence intervals
-
cv.plsR()
cv.plsRmodel(<default>)
cv.plsRmodel(<formula>)
PLS_lm_kfoldcv()
PLS_lm_kfoldcv_formula()
- Partial least squares regression models with k-fold cross-validation
-
cv.plsRglm()
cv.plsRglmmodel(<default>)
cv.plsRglmmodel(<formula>)
PLS_glm_kfoldcv()
PLS_glm_kfoldcv_formula()
- Partial least squares regression glm models with k-fold cross validation
-
cvtable()
- Table method for summary of cross validated PLSR and PLSGLR models
-
dicho()
- Dichotomization
-
fowlkes
- Fowlkes dataset
-
infcrit.dof()
- Information criteria
-
kfolds2CVinfos_glm()
- Extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares glm models
-
kfolds2CVinfos_lm()
- Extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares models
-
kfolds2Chisq()
- Computes Predicted Chisquare for k-fold cross-validated partial least squares regression models.
-
kfolds2Chisqind()
- Computes individual Predicted Chisquare for k-fold cross validated partial least squares regression models.
-
kfolds2Mclassed()
- Number of missclassified individuals for k-fold cross validated partial least squares regression models.
-
kfolds2Mclassedind()
- Number of missclassified individuals per group for k-fold cross validated partial least squares regression models.
-
kfolds2Press()
- Computes PRESS for k-fold cross validated partial least squares regression models.
-
kfolds2Pressind()
- Computes individual PRESS for k-fold cross validated partial least squares regression models.
-
kfolds2coeff()
- Extracts coefficients from k-fold cross validated partial least squares regression models
-
loglikpls()
- loglikelihood function for plsR models
-
permcoefs.plsR()
- Coefficients for permutation bootstrap computations of PLSR models
-
permcoefs.plsR.raw()
- Raw coefficients for permutation bootstrap computations of PLSR models
-
permcoefs.plsRglm()
- Coefficients for permutation bootstrap computations of PLSGLR models
-
permcoefs.plsRglm.raw()
- Raw coefficients for permutation bootstrap computations of PLSGLR models
-
permcoefs.plsRglmnp()
- Coefficients for permutation bootstrap computations of PLSGLR models
-
permcoefs.plsRnp()
- Coefficients computation for permutation bootstrap
-
pine
- Pine dataset
-
pineNAX21
- Incomplete dataset from the pine caterpillars example
-
pine_full
- Complete Pine dataset
-
pine_sup
- Complete Pine dataset
-
plot(<table.summary.cv.plsRglmmodel>)
- Plot method for table of summary of cross validated plsRglm models
-
plot(<table.summary.cv.plsRmodel>)
- Plot method for table of summary of cross validated plsR models
-
plots.confints.bootpls()
- Plot bootstrap confidence intervals
-
plsR()
plsRmodel(<default>)
plsRmodel(<formula>)
PLS_lm()
PLS_lm_formula()
- Partial least squares Regression models with leave one out cross validation
-
plsR(<dof>)
- Computation of the Degrees of Freedom
-
plsRglm()
plsRglmmodel(<default>)
plsRglmmodel(<formula>)
PLS_glm()
PLS_glm_formula()
- Partial least squares Regression generalized linear models
-
predict(<plsRglmmodel>)
- Print method for plsRglm models
-
predict(<plsRmodel>)
- Print method for plsR models
-
print(<coef.plsRglmmodel>)
- Print method for plsRglm models
-
print(<coef.plsRmodel>)
- Print method for plsR models
-
print(<cv.plsRglmmodel>)
- Print method for plsRglm models
-
print(<cv.plsRmodel>)
- Print method for plsR models
-
print(<plsRglmmodel>)
- Print method for plsRglm models
-
print(<plsRmodel>)
- Print method for plsR models
-
print(<summary.plsRglmmodel>)
- Print method for summaries of plsRglm models
-
print(<summary.plsRmodel>)
- Print method for summaries of plsR models
-
signpred()
- Graphical assessment of the stability of selected variables
-
simul_data_UniYX()
- Data generating function for univariate plsR models
-
simul_data_UniYX_binom()
- Data generating function for univariate binomial plsR models
-
simul_data_YX()
- Data generating function for multivariate plsR models
-
simul_data_complete()
- Data generating detailed process for multivariate plsR models
-
summary(<cv.plsRglmmodel>)
- Summary method for plsRglm models
-
summary(<cv.plsRmodel>)
- Summary method for plsR models
-
summary(<plsRglmmodel>)
- Summary method for plsRglm models
-
summary(<plsRmodel>)
- Summary method for plsR models
-
tilt.bootpls()
- Non-parametric tilted bootstrap for PLS regression models
-
tilt.bootplsglm()
- Non-parametric tilted bootstrap for PLS generalized linear regression models