plsR.Rd
This function implements Partial least squares Regression models with leave one out cross validation for complete or incomplete datasets.
plsR(object, ...)
# S3 method for default
plsRmodel(object, dataX, nt = 2, limQ2set = 0.0975,
dataPredictY = dataX, modele = "pls", family = NULL, typeVC = "none",
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
sparse = FALSE, sparseStop = TRUE, naive = FALSE,verbose=TRUE,...)
# S3 method for formula
plsRmodel(object, data, nt = 2, limQ2set = 0.0975,
dataPredictY, modele = "pls", family = NULL, typeVC = "none",
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
subset, contrasts = NULL, sparse = FALSE, sparseStop = TRUE, naive = FALSE,
verbose=TRUE,...)
PLS_lm(dataY, dataX, nt = 2, limQ2set = 0.0975, dataPredictY = dataX,
modele = "pls", family = NULL, typeVC = "none", EstimXNA = FALSE,
scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12),
weights,sparse=FALSE,sparseStop=FALSE,naive=FALSE,verbose=TRUE)
PLS_lm_formula(formula,data=NULL,nt=2,limQ2set=.0975,dataPredictY=dataX,
modele="pls",family=NULL,typeVC="none",EstimXNA=FALSE,scaleX=TRUE,
scaleY=NULL,pvals.expli=FALSE,alpha.pvals.expli=.05,MClassed=FALSE,
tol_Xi=10^(-12),weights,subset,contrasts=NULL,sparse=FALSE,
sparseStop=FALSE,naive=FALSE,verbose=TRUE)
response (training) dataset or an object of class "formula
" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
response (training) dataset
predictor(s) (training) dataset
an object of class "formula
" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data
, the variables are taken from environment(formula)
, typically the environment from which plsR
is called.
number of components to be extracted
limit value for the Q2
predictor(s) (testing) dataset
name of the PLS model to be fitted, only ("pls"
available for this fonction.
for the present moment the family argument is ignored and set thanks to the value of modele.
type of leave one out cross validation. Several procedures are available. If cross validation is required, one needs to selects the way of predicting the response for left out observations. For complete rows, without any missing value, there are two different ways of computing these predictions. As a consequence, for mixed datasets, with complete and incomplete rows, there are two ways of computing prediction : either predicts any row as if there were missing values in it (missingdata
) or selects the prediction method accordingly to the completeness of the row (adaptative
).
none
no cross validation
standard
as in SIMCA for datasets without any missing value. For datasets with any missing value, it is the as using missingdata
missingdata
all values predicted as those with missing values for datasets with any missing values
adaptative
predict a response value for an x with any missing value as those with missing values and for an x without any missing value as those without missing values.
only for modele="pls"
. Set whether the missing X values have to be estimated.
scale the predictor(s) : must be set to TRUE for modele="pls"
and should be for glms pls.
scale the response : Yes/No. Ignored since non always possible for glm responses.
should individual p-values be reported to tune model selection ?
level of significance for predictors when pvals.expli=TRUE
number of missclassified cases, should only be used for binary responses
minimal value for Norm2(Xi) and \(\mathrm{det}(pp' \times pp)\) if there is any missing value in the dataX
. It defaults to \(10^{-12}\)
an optional vector of 'prior weights' to be used in the fitting process. Should be NULL
or a numeric vector.
an optional vector specifying a subset of observations to be used in the fitting process.
an optional list. See the contrasts.arg
of model.matrix.default
.
should the coefficients of non-significant predictors (<alpha.pvals.expli
) be set to 0
should component extraction stop when no significant predictors (<alpha.pvals.expli
) are found
Use the naive estimates for the Degrees of Freedom in plsR? Default is FALSE
.
should info messages be displayed ?
arguments to pass to plsRmodel.default
or to plsRmodel.formula
There are several ways to deal with missing values that leads to different computations of leave one out cross validation criteria.
A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.
A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.
The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.
Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.
The default estimator for Degrees of Freedom is the Kramer and Sugiyama's one. Information criteria are computed accordingly to these estimations. Naive Degrees of Freedom and Information Criteria are also provided for comparison purposes. For more details, see N. Kraemer and M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association, 106(494), 697-705, 2011.
Number of observations
Number of predictors
Number of requested components
raw weights (before L2-normalization)
L2 normed weights (to be used with deflated matrices of predictor variables)
modified weights (to be used with original matrix of predictor variables)
PLS components
loadings of the predictor variables
coefficients of the PLS components
scores of the response variable
predicted response values for the dataX set
residuals of the deflated response on the standardized scale
scaled response vector
is there any NA value in the response vector
indicatrix vector of missing values in RepY
deflated scaled response vector
scaled matrix of predictors
is there any NA value in the predictor matrix
indicator of non-NA values in the predictor matrix
deflated predictor matrix
response values with NA replaced with 0
individual PRESS value for each observation (scaled scale)
total PRESS value for all observations (scaled scale)
glm family used to fit PLSGLR model
PLS components for the dataset on which prediction was requested
type of leave one out cross-validation used
predictor values
response values
number of components that were computed
matrix of the coefficients of the predictors
value of the intercept (scaled scale)
Vector of standardized regression coefficients
individual PRESS value for each observation (original scale)
residual sum of squares (scaled scale)
Vector of regression coefficients (used with the original data scale)
residuals of the PLS model
residual sum of squares (original scale)
residuals of the deflated response on the standardized scale
AIC.std vs number of components (AIC computed for the standardized model
AIC vs number of components
If the response is assumed to be binary:
i.e. MClassed=TRUE
.
MissClassed
Number of miss classed results
Probs
"Probability" predicted by the model. These are not true probabilities since they may lay outside of [0,1]
Probs.trc
Probability predicted by the model and constrained to belong to [0,1]
Description of 'comp2'
If cross validation was requested:
i.e. typeVC="standard"
, typeVC="missingdata"
or typeVC="adaptative"
.
R2residY
R2 coefficient value on the standardized scale
R2
R2 coefficient value on the original scale
press.tot2
total PRESS value for all observations (original scale)
Q2
Q2 value (standardized scale)
limQ2
limit of the Q2 value
Q2_2
Q2 value (original scale)
Q2cum
cumulated Q2 (standardized scale)
Q2cum_2
cumulated Q2 (original scale)
table of Information Criteria
predicted response values for supplementary dataset (standardized scale)
predicted response values for supplementary dataset (original scale)
estimated values for missing values in the predictor matrix (standardized scale)
predictor matrix with missing values replaced with 0
Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47
See also plsRglm
to fit PLSGLR models.
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
#maximum 6 components could be extracted from this dataset
#trying 10 to trigger automatic stopping criterion
modpls10<-plsR(yCornell,XCornell,10)
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> Warning : 1 2 3 4 5 6 7 < 10^{-12}
#> Warning only 6 components could thus be extracted
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
modpls10
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#> [,1]
#> Intercept 88.7107982
#> X1 -54.3905712
#> X2 -2.7879678
#> X3 52.5411315
#> X4 -11.5306977
#> X5 -0.9605822
#> X6 11.5900307
#> X7 28.2104803
#> Information criteria and Fit statistics:
#> AIC RSS_Y R2_Y R2_residY RSS_residY AIC.std
#> Nb_Comp_0 82.01205 467.796667 NA NA 11.00000000 37.010388
#> Nb_Comp_1 53.15173 35.742486 0.9235940 0.9235940 0.84046633 8.150064
#> Nb_Comp_2 41.08283 11.066606 0.9763431 0.9763431 0.26022559 -3.918831
#> Nb_Comp_3 32.06411 4.418081 0.9905556 0.9905556 0.10388893 -12.937550
#> Nb_Comp_4 33.76477 4.309235 0.9907882 0.9907882 0.10132947 -11.236891
#> Nb_Comp_5 33.34373 3.521924 0.9924713 0.9924713 0.08281624 -11.657929
#> Nb_Comp_6 35.25533 3.496074 0.9925265 0.9925265 0.08220840 -9.746328
#> DoF.dof sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
#> Nb_Comp_0 1.000000 6.5212706 46.0708838 47.7893514 27.59461 1
#> Nb_Comp_1 2.740749 1.8665281 4.5699686 4.9558156 21.34020 2
#> Nb_Comp_2 5.085967 1.1825195 2.1075461 2.3949331 27.40202 3
#> Nb_Comp_3 5.121086 0.7488308 0.8467795 0.9628191 24.40842 4
#> Nb_Comp_4 5.103312 0.7387162 0.8232505 0.9357846 24.23105 5
#> Nb_Comp_5 6.006316 0.7096382 0.7976101 0.9198348 28.21184 6
#> Nb_Comp_6 7.000002 0.7633343 0.9711322 1.1359501 33.18348 7
#> sigmahat.naive AIC.naive BIC.naive GMDL.naive
#> Nb_Comp_0 6.5212706 46.0708838 47.7893514 27.59461
#> Nb_Comp_1 1.8905683 4.1699567 4.4588195 18.37545
#> Nb_Comp_2 1.1088836 1.5370286 1.6860917 17.71117
#> Nb_Comp_3 0.7431421 0.7363469 0.8256118 19.01033
#> Nb_Comp_4 0.7846050 0.8721072 0.9964867 24.16510
#> Nb_Comp_5 0.7661509 0.8804809 1.0227979 28.64206
#> Nb_Comp_6 0.8361907 1.1070902 1.3048716 33.63927
#With iterated leave one out CV PRESS
modpls6cv<-plsR(Y~.,data=Cornell,6,typeVC="standard")
#> ____************************************************____
#> ____TypeVC____ standard ____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
modpls6cv
#> Number of required components:
#> [1] 6
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#> [,1]
#> Intercept 88.7107982
#> X1 -54.3905712
#> X2 -2.7879678
#> X3 52.5411315
#> X4 -11.5306977
#> X5 -0.9605822
#> X6 11.5900307
#> X7 28.2104803
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#> AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y
#> Nb_Comp_0 82.01205 NA NA NA NA 467.796667 NA
#> Nb_Comp_1 53.15173 0.8966556 0.0975 0.89665563 48.344150 35.742486 0.9235940
#> Nb_Comp_2 41.08283 0.9175426 0.0975 0.20210989 28.518576 11.066606 0.9763431
#> Nb_Comp_3 32.06411 0.9399676 0.0975 0.27195907 8.056942 4.418081 0.9905556
#> Nb_Comp_4 33.76477 0.9197009 0.0975 -0.33759604 5.909608 4.309235 0.9907882
#> Nb_Comp_5 33.34373 0.9281373 0.0975 0.10506161 3.856500 3.521924 0.9924713
#> Nb_Comp_6 35.25533 0.9232562 0.0975 -0.06792167 3.761138 3.496074 0.9925265
#> R2_residY RSS_residY PRESS_residY Q2_residY LimQ2 Q2cum_residY
#> Nb_Comp_0 NA 11.00000000 NA NA NA NA
#> Nb_Comp_1 0.9235940 0.84046633 1.13678803 0.89665563 0.0975 0.8966556
#> Nb_Comp_2 0.9763431 0.26022559 0.67059977 0.20210989 0.0975 0.9175426
#> Nb_Comp_3 0.9905556 0.10388893 0.18945488 0.27195907 0.0975 0.9399676
#> Nb_Comp_4 0.9907882 0.10132947 0.13896142 -0.33759604 0.0975 0.9197009
#> Nb_Comp_5 0.9924713 0.08281624 0.09068364 0.10506161 0.0975 0.9281373
#> Nb_Comp_6 0.9925265 0.08220840 0.08844125 -0.06792167 0.0975 0.9232562
#> AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof GMDL.dof
#> Nb_Comp_0 37.010388 1.000000 6.5212706 46.0708838 47.7893514 27.59461
#> Nb_Comp_1 8.150064 2.740749 1.8665281 4.5699686 4.9558156 21.34020
#> Nb_Comp_2 -3.918831 5.085967 1.1825195 2.1075461 2.3949331 27.40202
#> Nb_Comp_3 -12.937550 5.121086 0.7488308 0.8467795 0.9628191 24.40842
#> Nb_Comp_4 -11.236891 5.103312 0.7387162 0.8232505 0.9357846 24.23105
#> Nb_Comp_5 -11.657929 6.006316 0.7096382 0.7976101 0.9198348 28.21184
#> Nb_Comp_6 -9.746328 7.000002 0.7633343 0.9711322 1.1359501 33.18348
#> DoF.naive sigmahat.naive AIC.naive BIC.naive GMDL.naive
#> Nb_Comp_0 1 6.5212706 46.0708838 47.7893514 27.59461
#> Nb_Comp_1 2 1.8905683 4.1699567 4.4588195 18.37545
#> Nb_Comp_2 3 1.1088836 1.5370286 1.6860917 17.71117
#> Nb_Comp_3 4 0.7431421 0.7363469 0.8256118 19.01033
#> Nb_Comp_4 5 0.7846050 0.8721072 0.9964867 24.16510
#> Nb_Comp_5 6 0.7661509 0.8804809 1.0227979 28.64206
#> Nb_Comp_6 7 0.8361907 1.1070902 1.3048716 33.63927
cv.modpls<-cv.plsR(Y~.,data=Cornell,6,NK=100, verbose=FALSE)
res.cv.modpls<-cvtable(summary(cv.modpls))
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
#> NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#> NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#> NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
#> NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
#> NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
#> NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
#> NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
#> NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
#> NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
#>
#> CV Q2 criterion:
#> 0 1 2
#> 0 77 23
#>
#> CV Press criterion:
#> 1 2 3 4 5
#> 1 0 37 44 18
plot(res.cv.modpls)
rm(list=c("XCornell","yCornell","modpls10","modpls6cv"))
# \donttest{
#A binary response example
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
modpls.aze <- plsR(yaze_compl,Xaze_compl,10,MClassed=TRUE,typeVC="standard")
#> ____************************************************____
#> ____TypeVC____ standard ____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
modpls.aze
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 10
#> Coefficients:
#> [,1]
#> Intercept 0.308019808
#> D2S138 -0.131218617
#> D18S61 0.450219840
#> D16S422 -0.183848373
#> D17S794 0.269084083
#> D6S264 0.105061098
#> D14S65 -0.052837918
#> D18S53 0.008489326
#> D17S790 -0.213122117
#> D1S225 0.046277290
#> D3S1282 -0.095666162
#> D9S179 0.054547887
#> D5S430 -0.126491043
#> D8S283 0.106373432
#> D11S916 0.111623381
#> D2S159 0.056759714
#> D16S408 0.010288859
#> D5S346 0.233674850
#> D10S191 0.010715856
#> D13S173 0.074148740
#> D6S275 -0.123145693
#> D15S127 0.064566148
#> D1S305 0.190500469
#> D4S394 -0.142585807
#> D20S107 -0.184483600
#> D1S197 -0.284373695
#> D1S207 0.186728597
#> D10S192 0.195516079
#> D3S1283 -0.096309755
#> D4S414 0.017960975
#> D8S264 0.121051206
#> D22S928 -0.049091794
#> TP53 -0.391965015
#> D9S171 -0.012315197
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#> AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y
#> Nb_Comp_0 154.6179 NA NA NA NA 25.91346
#> Nb_Comp_1 126.4083 -0.09840016 0.0975 -0.09840016 28.46335 19.38086
#> Nb_Comp_2 119.3375 -0.19018163 0.0975 -0.08355923 21.00031 17.76209
#> Nb_Comp_3 114.2313 -0.77332918 0.0975 -0.48996518 26.46489 16.58896
#> Nb_Comp_4 112.3463 -1.64635954 0.0975 -0.49231150 24.75590 15.98071
#> Nb_Comp_5 113.2362 -2.74242209 0.0975 -0.41417749 22.59955 15.81104
#> Nb_Comp_6 114.7620 -4.46009228 0.0975 -0.45897286 23.06788 15.73910
#> Nb_Comp_7 116.5264 -7.36664482 0.0975 -0.53232663 24.11744 15.70350
#> Nb_Comp_8 118.4601 -11.80011367 0.0975 -0.52989806 24.02475 15.69348
#> Nb_Comp_9 120.4452 -17.90787273 0.0975 -0.47716444 23.18185 15.69123
#> Nb_Comp_10 122.4395 -26.50536212 0.0975 -0.45470421 22.82610 15.69037
#> R2_Y MissClassed R2_residY RSS_residY PRESS_residY Q2_residY
#> Nb_Comp_0 NA 49 NA 103.00000 NA NA
#> Nb_Comp_1 0.2520929 27 0.2520929 77.03443 113.13522 -0.09840016
#> Nb_Comp_2 0.3145613 25 0.3145613 70.60018 83.47137 -0.08355923
#> Nb_Comp_3 0.3598323 27 0.3598323 65.93728 105.19181 -0.48996518
#> Nb_Comp_4 0.3833049 23 0.3833049 63.51960 98.39895 -0.49231150
#> Nb_Comp_5 0.3898523 22 0.3898523 62.84522 89.82798 -0.41417749
#> Nb_Comp_6 0.3926285 21 0.3926285 62.55927 91.68947 -0.45897286
#> Nb_Comp_7 0.3940024 20 0.3940024 62.41775 95.86123 -0.53232663
#> Nb_Comp_8 0.3943888 20 0.3943888 62.37795 95.49280 -0.52989806
#> Nb_Comp_9 0.3944758 19 0.3944758 62.36900 92.14249 -0.47716444
#> Nb_Comp_10 0.3945088 19 0.3945088 62.36560 90.72844 -0.45470421
#> LimQ2 Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof
#> Nb_Comp_0 NA NA 298.1344 1.00000 0.5015845 0.2540061
#> Nb_Comp_1 0.0975 -0.09840016 269.9248 22.55372 0.4848429 0.2883114
#> Nb_Comp_2 0.0975 -0.19018163 262.8540 27.31542 0.4781670 0.2908950
#> Nb_Comp_3 0.0975 -0.77332918 257.7478 30.52370 0.4719550 0.2902572
#> Nb_Comp_4 0.0975 -1.64635954 255.8628 34.00000 0.4744263 0.3008285
#> Nb_Comp_5 0.0975 -2.74242209 256.7527 34.00000 0.4719012 0.2976347
#> Nb_Comp_6 0.0975 -4.46009228 258.2785 34.00000 0.4708264 0.2962804
#> Nb_Comp_7 0.0975 -7.36664482 260.0429 33.71066 0.4693382 0.2937976
#> Nb_Comp_8 0.0975 -11.80011367 261.9766 34.00000 0.4701436 0.2954217
#> Nb_Comp_9 0.0975 -17.90787273 263.9617 33.87284 0.4696894 0.2945815
#> Nb_Comp_10 0.0975 -26.50536212 265.9560 34.00000 0.4700970 0.2953632
#> BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
#> Nb_Comp_0 0.2604032 -67.17645 1 0.5015845 0.2540061 0.2604032
#> Nb_Comp_1 0.4231184 -53.56607 2 0.4358996 0.1936625 0.2033251
#> Nb_Comp_2 0.4496983 -52.42272 3 0.4193593 0.1809352 0.1943501
#> Nb_Comp_3 0.4631316 -51.93343 4 0.4072955 0.1722700 0.1891422
#> Nb_Comp_4 0.4954133 -50.37079 5 0.4017727 0.1691819 0.1897041
#> Nb_Comp_5 0.4901536 -50.65724 6 0.4016679 0.1706451 0.1952588
#> Nb_Comp_6 0.4879234 -50.78005 7 0.4028135 0.1731800 0.2020601
#> Nb_Comp_7 0.4826103 -51.05525 8 0.4044479 0.1761610 0.2094352
#> Nb_Comp_8 0.4865092 -50.85833 9 0.4064413 0.1794902 0.2172936
#> Nb_Comp_9 0.4845867 -50.95616 10 0.4085682 0.1829787 0.2254232
#> Nb_Comp_10 0.4864128 -50.86368 11 0.4107477 0.1865584 0.2337468
#> GMDL.naive
#> Nb_Comp_0 -67.17645
#> Nb_Comp_1 -79.67755
#> Nb_Comp_2 -81.93501
#> Nb_Comp_3 -83.31503
#> Nb_Comp_4 -83.23369
#> Nb_Comp_5 -81.93513
#> Nb_Comp_6 -80.42345
#> Nb_Comp_7 -78.87607
#> Nb_Comp_8 -77.31942
#> Nb_Comp_9 -75.80069
#> Nb_Comp_10 -74.33325
#Direct access to not cross-validated values
modpls.aze$AIC
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 154.6179 126.4083 119.3375 114.2313 112.3463 113.2362 114.762 116.5264
#> [,9] [,10] [,11]
#> [1,] 118.4601 120.4452 122.4395
modpls.aze$AIC.std
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 298.1344 269.9248 262.854 257.7478 255.8628 256.7527 258.2785 260.0429
#> [,9] [,10] [,11]
#> [1,] 261.9766 263.9617 265.956
modpls.aze$MissClassed
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,] 49 27 25 27 23 22 21 20 20 19 19
#Raw predicted values (not really probabily since not constrained in [0,1]
modpls.aze$Probs
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> 1 0.4711538 0.46105744 0.63458141 0.67961627 0.69452246 0.64534767
#> 2 0.4711538 0.26911816 0.26581497 0.16989268 0.11760783 0.18096700
#> 3 0.4711538 -0.09080494 -0.05104846 -0.17166916 -0.21455242 -0.21725391
#> 4 0.4711538 0.36370490 0.54112657 0.50724821 0.55508565 0.57773785
#> 5 0.4711538 -0.04408124 0.07399231 -0.07129909 -0.24018962 -0.23445282
#> 6 0.4711538 -0.03776963 0.17275288 0.01806190 -0.02597539 -0.06284454
#> 7 0.4711538 -0.06930728 -0.19928456 -0.09137261 0.01116043 0.06506517
#> 8 0.4711538 0.27158233 0.24933653 0.11611522 0.12804487 0.04118115
#> 9 0.4711538 0.76949497 0.60296556 0.47237794 0.51581382 0.49885092
#> 10 0.4711538 0.22096539 0.34482052 0.34660816 0.38580378 0.43528451
#> 11 0.4711538 0.87147914 0.84865348 0.76372713 0.73582307 0.76725258
#> 12 0.4711538 0.79792975 0.67828859 0.73747065 0.67844373 0.67908585
#> 13 0.4711538 0.09432664 -0.04344681 0.10780023 0.22488457 0.26144110
#> 14 0.4711538 0.28543133 0.29293086 0.37385135 0.37961001 0.30207755
#> 15 0.4711538 0.30637401 0.27816310 0.18074751 0.01510565 0.05074255
#> 16 0.4711538 0.12893721 -0.07276258 -0.05146556 -0.09988241 -0.06790398
#> 17 0.4711538 0.59910292 0.41302582 0.40055026 0.32477692 0.32429673
#> 18 0.4711538 0.60665328 0.51461671 0.70351041 0.63093215 0.60232625
#> 19 0.4711538 0.18381206 0.36596047 0.33591603 0.25289460 0.21859872
#> 20 0.4711538 0.28422822 0.15202852 0.29980632 0.42075827 0.43463142
#> 21 0.4711538 0.35982960 0.40300075 0.63220247 0.58056075 0.55273462
#> 22 0.4711538 0.31574837 0.28422517 0.37116719 0.27156145 0.25529246
#> 23 0.4711538 0.41682757 0.36900849 0.23791176 0.25730930 0.24221472
#> 24 0.4711538 0.30288056 0.15972272 0.19362318 0.07194768 0.07250435
#> 25 0.4711538 0.29650015 0.48867070 0.61025747 0.59737342 0.67704212
#> 26 0.4711538 0.23008536 0.32001822 0.15862645 0.26312675 0.22513847
#> 27 0.4711538 0.67526360 0.68123526 0.58796740 0.51309143 0.44381568
#> 28 0.4711538 0.15222775 0.13544964 0.15605402 0.15868232 0.10574096
#> 29 0.4711538 0.43138914 0.29576924 0.29706087 0.35294305 0.40257625
#> 30 0.4711538 0.13910581 0.26763382 0.10182481 0.12169881 0.13543560
#> 31 0.4711538 0.40295972 0.43810789 0.28684877 0.41632594 0.45388666
#> 32 0.4711538 0.58422149 0.44366239 0.16615851 0.15367980 0.18291151
#> 33 0.4711538 0.69889100 0.72592310 0.57845537 0.50185886 0.51841164
#> 34 0.4711538 0.35960908 0.24234167 0.09364940 0.08428214 0.10528276
#> 35 0.4711538 0.27914959 0.03731133 -0.08896074 -0.06232370 -0.08231459
#> 36 0.4711538 0.38865989 0.39024480 0.44138316 0.47508801 0.42329842
#> 37 0.4711538 0.62200134 0.42145828 0.38142396 0.29675933 0.28947211
#> 38 0.4711538 0.41311694 0.19970983 0.16702613 0.17059545 0.17073272
#> 39 0.4711538 0.31755422 0.28395547 0.17609314 0.23875966 0.25763504
#> 40 0.4711538 0.62628933 0.51627261 0.52025889 0.47789760 0.47304606
#> 41 0.4711538 0.14894845 0.14069540 0.13906223 0.05976750 0.13670893
#> 42 0.4711538 0.64041121 0.49727655 0.49380105 0.53239359 0.51394469
#> 43 0.4711538 0.38696544 0.54930653 0.62650411 0.65244562 0.56755351
#> 44 0.4711538 0.24204195 0.05825611 0.02230584 -0.01790809 -0.03785626
#> 45 0.4711538 0.10349021 0.14957660 0.16304594 0.15564790 0.17065395
#> 46 0.4711538 0.63322787 0.64625855 0.55541948 0.65203351 0.63670168
#> 47 0.4711538 0.20557889 0.23864853 0.24328712 0.13063078 0.09743813
#> 48 0.4711538 0.32352238 0.34894312 0.21162810 0.20487572 0.16461876
#> 49 0.4711538 0.64888519 0.52290405 0.50926772 0.62061797 0.59597941
#> 50 0.4711538 0.44153005 0.49754241 0.32749149 0.24840605 0.32456388
#> 51 0.4711538 0.32562433 0.23887414 0.26764033 0.24950898 0.30432045
#> 52 0.4711538 -0.23250098 -0.28713647 -0.09216174 -0.12709475 -0.18324647
#> 53 0.4711538 0.53388610 0.47710127 0.60836140 0.48273912 0.43334108
#> 54 0.4711538 0.64191356 0.44931093 0.46371798 0.45275305 0.46653696
#> 55 0.4711538 0.05279255 0.06829351 0.15306458 0.25200214 0.21249173
#> 56 0.4711538 0.59808020 0.64333345 0.53741245 0.64108173 0.57876914
#> 57 0.4711538 0.53093147 0.62138656 0.92046148 0.93004391 0.95130430
#> 58 0.4711538 0.64943097 0.57141374 0.66800038 0.64835800 0.65566321
#> 59 0.4711538 0.42541400 0.43027409 0.30117492 0.36183156 0.29992796
#> 60 0.4711538 0.24537249 0.29963849 0.42931558 0.51048830 0.58927966
#> 61 0.4711538 0.64269314 0.62785202 0.75163561 0.68045267 0.67000184
#> 62 0.4711538 0.51277761 0.60877778 0.75493489 0.66735142 0.63862193
#> 63 0.4711538 0.53377378 0.53228159 0.56245626 0.58414332 0.61176055
#> 64 0.4711538 0.79099666 0.90572246 0.92244949 0.93001276 0.93454809
#> 65 0.4711538 0.73768777 0.61339931 0.72362105 0.70536287 0.69970096
#> 66 0.4711538 0.70767466 0.53408924 0.50675818 0.52181506 0.54559559
#> 67 0.4711538 0.96312042 1.17012215 1.08116795 1.22497425 1.21728258
#> 68 0.4711538 0.31575995 0.57179559 0.77297374 0.78532935 0.78484987
#> 69 0.4711538 0.69505872 0.78176548 0.74300700 0.72711033 0.70750770
#> 70 0.4711538 0.72276362 0.90232185 0.89364576 0.84428623 0.92659977
#> 71 0.4711538 0.50950893 0.39503961 0.45591683 0.38297596 0.35086204
#> 72 0.4711538 0.14720074 0.13538571 -0.04473829 -0.05529233 0.02748516
#> 73 0.4711538 0.49275110 0.44937896 0.41856171 0.62470016 0.61654596
#> 74 0.4711538 0.65674324 0.69439259 0.75479685 0.88511667 0.92560996
#> 75 0.4711538 0.68716407 0.57541914 0.59945962 0.54581071 0.55228791
#> 76 0.4711538 0.54839542 0.50508123 0.52627725 0.55765709 0.52543838
#> 77 0.4711538 0.77317727 0.79812663 0.93073165 1.10301473 1.08723742
#> 78 0.4711538 0.85322027 0.76128342 0.81061207 0.85796753 0.87947603
#> 79 0.4711538 0.81659194 0.90228252 0.80744839 0.70383361 0.68468090
#> 80 0.4711538 0.55964651 0.44326524 0.39507689 0.36149039 0.32071350
#> 81 0.4711538 0.87105473 0.86695796 0.89177640 0.74816339 0.69831750
#> 82 0.4711538 0.47715869 0.68930595 0.71280202 0.73606020 0.78321326
#> 83 0.4711538 0.80974821 0.87138779 0.97466313 0.93082943 0.95560886
#> 84 0.4711538 0.67739807 0.85743609 0.98894432 0.96011041 0.90800271
#> 85 0.4711538 0.57131444 0.34250950 0.33855791 0.31118498 0.31383288
#> 86 0.4711538 0.84958765 0.97611051 0.93090902 0.91560248 0.86222031
#> 87 0.4711538 0.57644613 0.41449248 0.48714466 0.54811918 0.57041511
#> 88 0.4711538 0.75932310 0.71214369 0.52234742 0.59011684 0.59023780
#> 89 0.4711538 0.53031516 0.47090892 0.42433053 0.38847912 0.39218094
#> 90 0.4711538 0.76770402 1.07649866 1.00864429 1.06363018 1.09017457
#> 91 0.4711538 0.38643842 0.37696993 0.44452861 0.49450298 0.46628856
#> 92 0.4711538 0.92591633 1.03707888 0.96084369 0.95688931 0.93400393
#> 93 0.4711538 0.66726042 0.89247800 0.87390628 0.87335977 0.95801535
#> 94 0.4711538 0.32634752 0.41373057 0.48066349 0.67273089 0.62115180
#> 95 0.4711538 0.50472276 0.77159222 0.71730564 0.62350221 0.64335334
#> 96 0.4711538 0.34622269 0.33150717 0.49412629 0.44574013 0.46889514
#> 97 0.4711538 0.55805257 0.50280611 0.58541977 0.52239953 0.53556273
#> 98 0.4711538 0.78090964 0.73429355 0.79385683 0.86651416 0.88151677
#> 99 0.4711538 0.21116352 0.10917861 0.02565398 0.18342015 0.15222876
#> 100 0.4711538 0.66672702 0.78264411 0.86306662 0.75733969 0.77632472
#> 101 0.4711538 0.45317545 0.50149615 0.62617428 0.70904267 0.78134354
#> 102 0.4711538 0.74435376 0.66135006 0.72568147 0.70203564 0.77593538
#> 103 0.4711538 0.34690226 0.56605434 0.52782336 0.50951738 0.46795757
#> 104 0.4711538 0.69496014 0.80515138 0.78871059 0.78008789 0.78042831
#> [,7] [,8] [,9] [,10] [,11]
#> 1 0.64037279 0.627340571 0.651243676 0.65354280 0.65838797
#> 2 0.21304385 0.202666528 0.206463548 0.21046038 0.20470356
#> 3 -0.22444089 -0.193652144 -0.201652437 -0.20167289 -0.20081532
#> 4 0.58413761 0.600377920 0.608768219 0.60784745 0.60193905
#> 5 -0.26327049 -0.311781941 -0.310765976 -0.31066830 -0.31401382
#> 6 -0.10341096 -0.076840858 -0.080016598 -0.08436785 -0.08777135
#> 7 0.10261786 0.132750517 0.144750243 0.13944940 0.14173177
#> 8 0.04809780 0.063736599 0.063261540 0.07570783 0.07715150
#> 9 0.44543808 0.444943670 0.447021225 0.44582742 0.44748513
#> 10 0.43490588 0.407005593 0.413663760 0.41349216 0.41350336
#> 11 0.78695284 0.777623618 0.783734315 0.78262765 0.77949531
#> 12 0.65654818 0.642154505 0.633436560 0.63197252 0.62875264
#> 13 0.21708341 0.187509114 0.186533541 0.17822088 0.17842513
#> 14 0.28651410 0.260501290 0.279081223 0.27196942 0.26996735
#> 15 0.05784774 0.095949877 0.090894676 0.08865039 0.09080522
#> 16 -0.06239212 -0.039505632 -0.023469898 -0.02045198 -0.02715190
#> 17 0.33482409 0.336193547 0.335468481 0.33501592 0.33670840
#> 18 0.59257402 0.580678556 0.581449676 0.58013547 0.57927640
#> 19 0.24272344 0.246701307 0.240991178 0.23822863 0.23157123
#> 20 0.40555564 0.386074751 0.400419290 0.40843493 0.40860630
#> 21 0.53582205 0.549336181 0.539598759 0.54139679 0.54098845
#> 22 0.27214775 0.265323031 0.262889367 0.27124503 0.27372049
#> 23 0.26310951 0.254264842 0.244111736 0.24044626 0.24169731
#> 24 0.10789143 0.136298989 0.142908568 0.14863967 0.15404679
#> 25 0.62754156 0.650367844 0.644944061 0.64644697 0.64416177
#> 26 0.18477380 0.190402191 0.199245619 0.20152378 0.20582432
#> 27 0.44358238 0.454283166 0.446210009 0.43311399 0.43568840
#> 28 0.13769251 0.118081488 0.117589648 0.11048814 0.11155803
#> 29 0.42759376 0.424018002 0.417256036 0.42362830 0.42160066
#> 30 0.10952676 0.168692282 0.174041713 0.17387211 0.17480429
#> 31 0.45876287 0.432435790 0.425259491 0.43329412 0.43856907
#> 32 0.11742399 0.116981896 0.108778824 0.10636129 0.10689920
#> 33 0.47697376 0.450738829 0.452062165 0.44881973 0.44992624
#> 34 0.09863470 0.095862956 0.092253997 0.09980718 0.10084230
#> 35 -0.08390506 -0.085155814 -0.086690885 -0.08262604 -0.08272575
#> 36 0.45381739 0.433667887 0.449594388 0.44854107 0.44960414
#> 37 0.30022320 0.311627620 0.315020647 0.31958491 0.32067580
#> 38 0.15959719 0.160997289 0.151222415 0.15079738 0.14817778
#> 39 0.27800144 0.253643110 0.255071837 0.25875102 0.25674198
#> 40 0.51555833 0.530347073 0.528402618 0.52790558 0.52538704
#> 41 0.09275154 0.101869980 0.090604733 0.09445259 0.09150467
#> 42 0.50207194 0.483136866 0.487491071 0.48860245 0.49212211
#> 43 0.57336835 0.573091866 0.546609274 0.54001848 0.54366888
#> 44 -0.01451487 -0.004369241 -0.002647953 -0.00844687 -0.01073887
#> 45 0.19657318 0.164988597 0.170522098 0.16781405 0.16715155
#> 46 0.65287559 0.645084587 0.651535848 0.65177845 0.65178893
#> 47 0.12452036 0.119913760 0.117053912 0.11873700 0.11591426
#> 48 0.18275993 0.166998459 0.160605969 0.16869180 0.16855238
#> 49 0.58006784 0.613009102 0.608873759 0.60785525 0.61021103
#> 50 0.33208894 0.314978063 0.311974842 0.30517646 0.31174053
#> 51 0.32816749 0.318321881 0.320797741 0.31281691 0.31540371
#> 52 -0.19584259 -0.184768370 -0.177691131 -0.18225253 -0.18172040
#> 53 0.40794213 0.415136651 0.416044038 0.42408314 0.42075636
#> 54 0.46480524 0.479688395 0.471302624 0.46613648 0.46656474
#> 55 0.23097197 0.213772954 0.189358085 0.18930563 0.19050731
#> 56 0.57331393 0.574558380 0.579775660 0.57922184 0.57800858
#> 57 0.96183872 0.975414458 0.968855613 0.96385549 0.96028958
#> 58 0.64361788 0.631632631 0.641013340 0.63785489 0.64045306
#> 59 0.28643229 0.289148607 0.278791345 0.28784917 0.28782462
#> 60 0.55978204 0.559023840 0.561630138 0.55671889 0.55726966
#> 61 0.65787202 0.659412106 0.650588243 0.64930310 0.65091617
#> 62 0.60705201 0.603977438 0.589826600 0.58812271 0.58793743
#> 63 0.63813827 0.617717657 0.614454772 0.61166047 0.60985403
#> 64 1.00166279 1.008968255 1.008852814 1.01022555 1.00666729
#> 65 0.69297263 0.697694744 0.689810628 0.69214943 0.69038662
#> 66 0.53663407 0.532369158 0.535934708 0.53171176 0.53102146
#> 67 1.22111150 1.202569147 1.194030443 1.19310867 1.19228184
#> 68 0.80071187 0.812462410 0.796883689 0.80360414 0.80689017
#> 69 0.74791867 0.774669023 0.764357440 0.76435231 0.76730276
#> 70 0.93952180 0.926356875 0.916496158 0.91637035 0.92383169
#> 71 0.31179970 0.319584982 0.342996678 0.34334588 0.34349096
#> 72 0.08069763 0.064883087 0.053282640 0.04500807 0.04571864
#> 73 0.63914960 0.656024336 0.647841400 0.64971036 0.64930911
#> 74 0.94540783 0.945531101 0.947433351 0.95548576 0.95086945
#> 75 0.56609663 0.581051527 0.586510546 0.58350518 0.58195688
#> 76 0.49807985 0.507124137 0.503700114 0.50352891 0.50289031
#> 77 1.06463806 1.090636226 1.099163425 1.09692704 1.09684987
#> 78 0.88947890 0.914074686 0.921993535 0.92611779 0.92473772
#> 79 0.70672170 0.689699520 0.693322761 0.69306283 0.69031633
#> 80 0.30181332 0.296560012 0.282907508 0.28672758 0.28334638
#> 81 0.69871492 0.692603330 0.692711040 0.69448149 0.69353087
#> 82 0.73754433 0.755515607 0.753806256 0.76075515 0.76006115
#> 83 0.95554583 0.981114506 0.967899112 0.96789876 0.97167928
#> 84 0.92460814 0.928255751 0.934569121 0.93157477 0.93560641
#> 85 0.31932547 0.326702214 0.334191767 0.33780085 0.33863677
#> 86 0.82950069 0.806588554 0.823792983 0.82202715 0.81981455
#> 87 0.56750119 0.560439488 0.549720853 0.54609905 0.54656224
#> 88 0.57484476 0.588841816 0.582284530 0.57334028 0.57098492
#> 89 0.44028895 0.455790854 0.462215323 0.46149391 0.46635298
#> 90 1.08703587 1.113909884 1.123382027 1.12669615 1.12559691
#> 91 0.50591629 0.528734399 0.542033081 0.53789411 0.54025902
#> 92 0.95078882 0.944122848 0.933909143 0.93429933 0.92818920
#> 93 0.95048831 0.984993815 0.999870929 0.99916201 0.99970721
#> 94 0.63222931 0.617803323 0.604620965 0.60316670 0.59998131
#> 95 0.60173453 0.598838861 0.615665753 0.61062288 0.61003734
#> 96 0.42461082 0.393735123 0.382307431 0.38698306 0.38928062
#> 97 0.55493331 0.545341350 0.548945997 0.55196226 0.55110104
#> 98 0.84875293 0.849088124 0.833445596 0.82896512 0.82882885
#> 99 0.12817884 0.125184677 0.142524174 0.14250387 0.14467219
#> 100 0.76010896 0.740234308 0.744642249 0.75159300 0.75722807
#> 101 0.80270481 0.778624924 0.777761525 0.78102072 0.77766043
#> 102 0.77647730 0.755860583 0.764875857 0.76840548 0.77181270
#> 103 0.50588630 0.488855008 0.495423757 0.50188675 0.50526664
#> 104 0.81071639 0.804180721 0.825464815 0.81861016 0.81635531
#Truncated to [0;1] predicted values (true probabilities)
modpls.aze$Probs.trc
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> 1 0.4711538 0.46105744 0.63458141 0.67961627 0.69452246 0.64534767 0.64037279
#> 2 0.4711538 0.26911816 0.26581497 0.16989268 0.11760783 0.18096700 0.21304385
#> 3 0.4711538 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 4 0.4711538 0.36370490 0.54112657 0.50724821 0.55508565 0.57773785 0.58413761
#> 5 0.4711538 0.00000000 0.07399231 0.00000000 0.00000000 0.00000000 0.00000000
#> 6 0.4711538 0.00000000 0.17275288 0.01806190 0.00000000 0.00000000 0.00000000
#> 7 0.4711538 0.00000000 0.00000000 0.00000000 0.01116043 0.06506517 0.10261786
#> 8 0.4711538 0.27158233 0.24933653 0.11611522 0.12804487 0.04118115 0.04809780
#> 9 0.4711538 0.76949497 0.60296556 0.47237794 0.51581382 0.49885092 0.44543808
#> 10 0.4711538 0.22096539 0.34482052 0.34660816 0.38580378 0.43528451 0.43490588
#> 11 0.4711538 0.87147914 0.84865348 0.76372713 0.73582307 0.76725258 0.78695284
#> 12 0.4711538 0.79792975 0.67828859 0.73747065 0.67844373 0.67908585 0.65654818
#> 13 0.4711538 0.09432664 0.00000000 0.10780023 0.22488457 0.26144110 0.21708341
#> 14 0.4711538 0.28543133 0.29293086 0.37385135 0.37961001 0.30207755 0.28651410
#> 15 0.4711538 0.30637401 0.27816310 0.18074751 0.01510565 0.05074255 0.05784774
#> 16 0.4711538 0.12893721 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 17 0.4711538 0.59910292 0.41302582 0.40055026 0.32477692 0.32429673 0.33482409
#> 18 0.4711538 0.60665328 0.51461671 0.70351041 0.63093215 0.60232625 0.59257402
#> 19 0.4711538 0.18381206 0.36596047 0.33591603 0.25289460 0.21859872 0.24272344
#> 20 0.4711538 0.28422822 0.15202852 0.29980632 0.42075827 0.43463142 0.40555564
#> 21 0.4711538 0.35982960 0.40300075 0.63220247 0.58056075 0.55273462 0.53582205
#> 22 0.4711538 0.31574837 0.28422517 0.37116719 0.27156145 0.25529246 0.27214775
#> 23 0.4711538 0.41682757 0.36900849 0.23791176 0.25730930 0.24221472 0.26310951
#> 24 0.4711538 0.30288056 0.15972272 0.19362318 0.07194768 0.07250435 0.10789143
#> 25 0.4711538 0.29650015 0.48867070 0.61025747 0.59737342 0.67704212 0.62754156
#> 26 0.4711538 0.23008536 0.32001822 0.15862645 0.26312675 0.22513847 0.18477380
#> 27 0.4711538 0.67526360 0.68123526 0.58796740 0.51309143 0.44381568 0.44358238
#> 28 0.4711538 0.15222775 0.13544964 0.15605402 0.15868232 0.10574096 0.13769251
#> 29 0.4711538 0.43138914 0.29576924 0.29706087 0.35294305 0.40257625 0.42759376
#> 30 0.4711538 0.13910581 0.26763382 0.10182481 0.12169881 0.13543560 0.10952676
#> 31 0.4711538 0.40295972 0.43810789 0.28684877 0.41632594 0.45388666 0.45876287
#> 32 0.4711538 0.58422149 0.44366239 0.16615851 0.15367980 0.18291151 0.11742399
#> 33 0.4711538 0.69889100 0.72592310 0.57845537 0.50185886 0.51841164 0.47697376
#> 34 0.4711538 0.35960908 0.24234167 0.09364940 0.08428214 0.10528276 0.09863470
#> 35 0.4711538 0.27914959 0.03731133 0.00000000 0.00000000 0.00000000 0.00000000
#> 36 0.4711538 0.38865989 0.39024480 0.44138316 0.47508801 0.42329842 0.45381739
#> 37 0.4711538 0.62200134 0.42145828 0.38142396 0.29675933 0.28947211 0.30022320
#> 38 0.4711538 0.41311694 0.19970983 0.16702613 0.17059545 0.17073272 0.15959719
#> 39 0.4711538 0.31755422 0.28395547 0.17609314 0.23875966 0.25763504 0.27800144
#> 40 0.4711538 0.62628933 0.51627261 0.52025889 0.47789760 0.47304606 0.51555833
#> 41 0.4711538 0.14894845 0.14069540 0.13906223 0.05976750 0.13670893 0.09275154
#> 42 0.4711538 0.64041121 0.49727655 0.49380105 0.53239359 0.51394469 0.50207194
#> 43 0.4711538 0.38696544 0.54930653 0.62650411 0.65244562 0.56755351 0.57336835
#> 44 0.4711538 0.24204195 0.05825611 0.02230584 0.00000000 0.00000000 0.00000000
#> 45 0.4711538 0.10349021 0.14957660 0.16304594 0.15564790 0.17065395 0.19657318
#> 46 0.4711538 0.63322787 0.64625855 0.55541948 0.65203351 0.63670168 0.65287559
#> 47 0.4711538 0.20557889 0.23864853 0.24328712 0.13063078 0.09743813 0.12452036
#> 48 0.4711538 0.32352238 0.34894312 0.21162810 0.20487572 0.16461876 0.18275993
#> 49 0.4711538 0.64888519 0.52290405 0.50926772 0.62061797 0.59597941 0.58006784
#> 50 0.4711538 0.44153005 0.49754241 0.32749149 0.24840605 0.32456388 0.33208894
#> 51 0.4711538 0.32562433 0.23887414 0.26764033 0.24950898 0.30432045 0.32816749
#> 52 0.4711538 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 53 0.4711538 0.53388610 0.47710127 0.60836140 0.48273912 0.43334108 0.40794213
#> 54 0.4711538 0.64191356 0.44931093 0.46371798 0.45275305 0.46653696 0.46480524
#> 55 0.4711538 0.05279255 0.06829351 0.15306458 0.25200214 0.21249173 0.23097197
#> 56 0.4711538 0.59808020 0.64333345 0.53741245 0.64108173 0.57876914 0.57331393
#> 57 0.4711538 0.53093147 0.62138656 0.92046148 0.93004391 0.95130430 0.96183872
#> 58 0.4711538 0.64943097 0.57141374 0.66800038 0.64835800 0.65566321 0.64361788
#> 59 0.4711538 0.42541400 0.43027409 0.30117492 0.36183156 0.29992796 0.28643229
#> 60 0.4711538 0.24537249 0.29963849 0.42931558 0.51048830 0.58927966 0.55978204
#> 61 0.4711538 0.64269314 0.62785202 0.75163561 0.68045267 0.67000184 0.65787202
#> 62 0.4711538 0.51277761 0.60877778 0.75493489 0.66735142 0.63862193 0.60705201
#> 63 0.4711538 0.53377378 0.53228159 0.56245626 0.58414332 0.61176055 0.63813827
#> 64 0.4711538 0.79099666 0.90572246 0.92244949 0.93001276 0.93454809 1.00000000
#> 65 0.4711538 0.73768777 0.61339931 0.72362105 0.70536287 0.69970096 0.69297263
#> 66 0.4711538 0.70767466 0.53408924 0.50675818 0.52181506 0.54559559 0.53663407
#> 67 0.4711538 0.96312042 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
#> 68 0.4711538 0.31575995 0.57179559 0.77297374 0.78532935 0.78484987 0.80071187
#> 69 0.4711538 0.69505872 0.78176548 0.74300700 0.72711033 0.70750770 0.74791867
#> 70 0.4711538 0.72276362 0.90232185 0.89364576 0.84428623 0.92659977 0.93952180
#> 71 0.4711538 0.50950893 0.39503961 0.45591683 0.38297596 0.35086204 0.31179970
#> 72 0.4711538 0.14720074 0.13538571 0.00000000 0.00000000 0.02748516 0.08069763
#> 73 0.4711538 0.49275110 0.44937896 0.41856171 0.62470016 0.61654596 0.63914960
#> 74 0.4711538 0.65674324 0.69439259 0.75479685 0.88511667 0.92560996 0.94540783
#> 75 0.4711538 0.68716407 0.57541914 0.59945962 0.54581071 0.55228791 0.56609663
#> 76 0.4711538 0.54839542 0.50508123 0.52627725 0.55765709 0.52543838 0.49807985
#> 77 0.4711538 0.77317727 0.79812663 0.93073165 1.00000000 1.00000000 1.00000000
#> 78 0.4711538 0.85322027 0.76128342 0.81061207 0.85796753 0.87947603 0.88947890
#> 79 0.4711538 0.81659194 0.90228252 0.80744839 0.70383361 0.68468090 0.70672170
#> 80 0.4711538 0.55964651 0.44326524 0.39507689 0.36149039 0.32071350 0.30181332
#> 81 0.4711538 0.87105473 0.86695796 0.89177640 0.74816339 0.69831750 0.69871492
#> 82 0.4711538 0.47715869 0.68930595 0.71280202 0.73606020 0.78321326 0.73754433
#> 83 0.4711538 0.80974821 0.87138779 0.97466313 0.93082943 0.95560886 0.95554583
#> 84 0.4711538 0.67739807 0.85743609 0.98894432 0.96011041 0.90800271 0.92460814
#> 85 0.4711538 0.57131444 0.34250950 0.33855791 0.31118498 0.31383288 0.31932547
#> 86 0.4711538 0.84958765 0.97611051 0.93090902 0.91560248 0.86222031 0.82950069
#> 87 0.4711538 0.57644613 0.41449248 0.48714466 0.54811918 0.57041511 0.56750119
#> 88 0.4711538 0.75932310 0.71214369 0.52234742 0.59011684 0.59023780 0.57484476
#> 89 0.4711538 0.53031516 0.47090892 0.42433053 0.38847912 0.39218094 0.44028895
#> 90 0.4711538 0.76770402 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
#> 91 0.4711538 0.38643842 0.37696993 0.44452861 0.49450298 0.46628856 0.50591629
#> 92 0.4711538 0.92591633 1.00000000 0.96084369 0.95688931 0.93400393 0.95078882
#> 93 0.4711538 0.66726042 0.89247800 0.87390628 0.87335977 0.95801535 0.95048831
#> 94 0.4711538 0.32634752 0.41373057 0.48066349 0.67273089 0.62115180 0.63222931
#> 95 0.4711538 0.50472276 0.77159222 0.71730564 0.62350221 0.64335334 0.60173453
#> 96 0.4711538 0.34622269 0.33150717 0.49412629 0.44574013 0.46889514 0.42461082
#> 97 0.4711538 0.55805257 0.50280611 0.58541977 0.52239953 0.53556273 0.55493331
#> 98 0.4711538 0.78090964 0.73429355 0.79385683 0.86651416 0.88151677 0.84875293
#> 99 0.4711538 0.21116352 0.10917861 0.02565398 0.18342015 0.15222876 0.12817884
#> 100 0.4711538 0.66672702 0.78264411 0.86306662 0.75733969 0.77632472 0.76010896
#> 101 0.4711538 0.45317545 0.50149615 0.62617428 0.70904267 0.78134354 0.80270481
#> 102 0.4711538 0.74435376 0.66135006 0.72568147 0.70203564 0.77593538 0.77647730
#> 103 0.4711538 0.34690226 0.56605434 0.52782336 0.50951738 0.46795757 0.50588630
#> 104 0.4711538 0.69496014 0.80515138 0.78871059 0.78008789 0.78042831 0.81071639
#> [,8] [,9] [,10] [,11]
#> 1 0.62734057 0.65124368 0.65354280 0.65838797
#> 2 0.20266653 0.20646355 0.21046038 0.20470356
#> 3 0.00000000 0.00000000 0.00000000 0.00000000
#> 4 0.60037792 0.60876822 0.60784745 0.60193905
#> 5 0.00000000 0.00000000 0.00000000 0.00000000
#> 6 0.00000000 0.00000000 0.00000000 0.00000000
#> 7 0.13275052 0.14475024 0.13944940 0.14173177
#> 8 0.06373660 0.06326154 0.07570783 0.07715150
#> 9 0.44494367 0.44702123 0.44582742 0.44748513
#> 10 0.40700559 0.41366376 0.41349216 0.41350336
#> 11 0.77762362 0.78373432 0.78262765 0.77949531
#> 12 0.64215450 0.63343656 0.63197252 0.62875264
#> 13 0.18750911 0.18653354 0.17822088 0.17842513
#> 14 0.26050129 0.27908122 0.27196942 0.26996735
#> 15 0.09594988 0.09089468 0.08865039 0.09080522
#> 16 0.00000000 0.00000000 0.00000000 0.00000000
#> 17 0.33619355 0.33546848 0.33501592 0.33670840
#> 18 0.58067856 0.58144968 0.58013547 0.57927640
#> 19 0.24670131 0.24099118 0.23822863 0.23157123
#> 20 0.38607475 0.40041929 0.40843493 0.40860630
#> 21 0.54933618 0.53959876 0.54139679 0.54098845
#> 22 0.26532303 0.26288937 0.27124503 0.27372049
#> 23 0.25426484 0.24411174 0.24044626 0.24169731
#> 24 0.13629899 0.14290857 0.14863967 0.15404679
#> 25 0.65036784 0.64494406 0.64644697 0.64416177
#> 26 0.19040219 0.19924562 0.20152378 0.20582432
#> 27 0.45428317 0.44621001 0.43311399 0.43568840
#> 28 0.11808149 0.11758965 0.11048814 0.11155803
#> 29 0.42401800 0.41725604 0.42362830 0.42160066
#> 30 0.16869228 0.17404171 0.17387211 0.17480429
#> 31 0.43243579 0.42525949 0.43329412 0.43856907
#> 32 0.11698190 0.10877882 0.10636129 0.10689920
#> 33 0.45073883 0.45206217 0.44881973 0.44992624
#> 34 0.09586296 0.09225400 0.09980718 0.10084230
#> 35 0.00000000 0.00000000 0.00000000 0.00000000
#> 36 0.43366789 0.44959439 0.44854107 0.44960414
#> 37 0.31162762 0.31502065 0.31958491 0.32067580
#> 38 0.16099729 0.15122241 0.15079738 0.14817778
#> 39 0.25364311 0.25507184 0.25875102 0.25674198
#> 40 0.53034707 0.52840262 0.52790558 0.52538704
#> 41 0.10186998 0.09060473 0.09445259 0.09150467
#> 42 0.48313687 0.48749107 0.48860245 0.49212211
#> 43 0.57309187 0.54660927 0.54001848 0.54366888
#> 44 0.00000000 0.00000000 0.00000000 0.00000000
#> 45 0.16498860 0.17052210 0.16781405 0.16715155
#> 46 0.64508459 0.65153585 0.65177845 0.65178893
#> 47 0.11991376 0.11705391 0.11873700 0.11591426
#> 48 0.16699846 0.16060597 0.16869180 0.16855238
#> 49 0.61300910 0.60887376 0.60785525 0.61021103
#> 50 0.31497806 0.31197484 0.30517646 0.31174053
#> 51 0.31832188 0.32079774 0.31281691 0.31540371
#> 52 0.00000000 0.00000000 0.00000000 0.00000000
#> 53 0.41513665 0.41604404 0.42408314 0.42075636
#> 54 0.47968839 0.47130262 0.46613648 0.46656474
#> 55 0.21377295 0.18935809 0.18930563 0.19050731
#> 56 0.57455838 0.57977566 0.57922184 0.57800858
#> 57 0.97541446 0.96885561 0.96385549 0.96028958
#> 58 0.63163263 0.64101334 0.63785489 0.64045306
#> 59 0.28914861 0.27879135 0.28784917 0.28782462
#> 60 0.55902384 0.56163014 0.55671889 0.55726966
#> 61 0.65941211 0.65058824 0.64930310 0.65091617
#> 62 0.60397744 0.58982660 0.58812271 0.58793743
#> 63 0.61771766 0.61445477 0.61166047 0.60985403
#> 64 1.00000000 1.00000000 1.00000000 1.00000000
#> 65 0.69769474 0.68981063 0.69214943 0.69038662
#> 66 0.53236916 0.53593471 0.53171176 0.53102146
#> 67 1.00000000 1.00000000 1.00000000 1.00000000
#> 68 0.81246241 0.79688369 0.80360414 0.80689017
#> 69 0.77466902 0.76435744 0.76435231 0.76730276
#> 70 0.92635688 0.91649616 0.91637035 0.92383169
#> 71 0.31958498 0.34299668 0.34334588 0.34349096
#> 72 0.06488309 0.05328264 0.04500807 0.04571864
#> 73 0.65602434 0.64784140 0.64971036 0.64930911
#> 74 0.94553110 0.94743335 0.95548576 0.95086945
#> 75 0.58105153 0.58651055 0.58350518 0.58195688
#> 76 0.50712414 0.50370011 0.50352891 0.50289031
#> 77 1.00000000 1.00000000 1.00000000 1.00000000
#> 78 0.91407469 0.92199353 0.92611779 0.92473772
#> 79 0.68969952 0.69332276 0.69306283 0.69031633
#> 80 0.29656001 0.28290751 0.28672758 0.28334638
#> 81 0.69260333 0.69271104 0.69448149 0.69353087
#> 82 0.75551561 0.75380626 0.76075515 0.76006115
#> 83 0.98111451 0.96789911 0.96789876 0.97167928
#> 84 0.92825575 0.93456912 0.93157477 0.93560641
#> 85 0.32670221 0.33419177 0.33780085 0.33863677
#> 86 0.80658855 0.82379298 0.82202715 0.81981455
#> 87 0.56043949 0.54972085 0.54609905 0.54656224
#> 88 0.58884182 0.58228453 0.57334028 0.57098492
#> 89 0.45579085 0.46221532 0.46149391 0.46635298
#> 90 1.00000000 1.00000000 1.00000000 1.00000000
#> 91 0.52873440 0.54203308 0.53789411 0.54025902
#> 92 0.94412285 0.93390914 0.93429933 0.92818920
#> 93 0.98499381 0.99987093 0.99916201 0.99970721
#> 94 0.61780332 0.60462097 0.60316670 0.59998131
#> 95 0.59883886 0.61566575 0.61062288 0.61003734
#> 96 0.39373512 0.38230743 0.38698306 0.38928062
#> 97 0.54534135 0.54894600 0.55196226 0.55110104
#> 98 0.84908812 0.83344560 0.82896512 0.82882885
#> 99 0.12518468 0.14252417 0.14250387 0.14467219
#> 100 0.74023431 0.74464225 0.75159300 0.75722807
#> 101 0.77862492 0.77776152 0.78102072 0.77766043
#> 102 0.75586058 0.76487586 0.76840548 0.77181270
#> 103 0.48885501 0.49542376 0.50188675 0.50526664
#> 104 0.80418072 0.82546481 0.81861016 0.81635531
modpls.aze$Probs-modpls.aze$Probs.trc
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> 1 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 2 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 3 0 -0.09080494 -0.05104846 -0.171669164 -0.21455242 -0.21725391
#> 4 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 5 0 -0.04408124 0.00000000 -0.071299085 -0.24018962 -0.23445282
#> 6 0 -0.03776963 0.00000000 0.000000000 -0.02597539 -0.06284454
#> 7 0 -0.06930728 -0.19928456 -0.091372612 0.00000000 0.00000000
#> 8 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 9 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 10 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 11 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 12 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 13 0 0.00000000 -0.04344681 0.000000000 0.00000000 0.00000000
#> 14 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 15 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 16 0 0.00000000 -0.07276258 -0.051465557 -0.09988241 -0.06790398
#> 17 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 18 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 19 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 20 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 21 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 22 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 23 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 24 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 25 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 26 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 27 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 28 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 29 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 30 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 31 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 32 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 33 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 34 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 35 0 0.00000000 0.00000000 -0.088960742 -0.06232370 -0.08231459
#> 36 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 37 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 38 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 39 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 40 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 41 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 42 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 43 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 44 0 0.00000000 0.00000000 0.000000000 -0.01790809 -0.03785626
#> 45 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 46 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 47 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 48 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 49 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 50 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 51 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 52 0 -0.23250098 -0.28713647 -0.092161735 -0.12709475 -0.18324647
#> 53 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 54 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 55 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 56 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 57 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 58 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 59 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 60 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 61 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 62 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 63 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 64 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 65 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 66 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 67 0 0.00000000 0.17012215 0.081167947 0.22497425 0.21728258
#> 68 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 69 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 70 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 71 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 72 0 0.00000000 0.00000000 -0.044738287 -0.05529233 0.00000000
#> 73 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 74 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 75 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 76 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 77 0 0.00000000 0.00000000 0.000000000 0.10301473 0.08723742
#> 78 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 79 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 80 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 81 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 82 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 83 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 84 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 85 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 86 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 87 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 88 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 89 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 90 0 0.00000000 0.07649866 0.008644293 0.06363018 0.09017457
#> 91 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 92 0 0.00000000 0.03707888 0.000000000 0.00000000 0.00000000
#> 93 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 94 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 95 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 96 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 97 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 98 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 99 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 100 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 101 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 102 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 103 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> 104 0 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
#> [,7] [,8] [,9] [,10] [,11]
#> 1 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 2 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 3 -0.224440890 -0.193652144 -0.201652437 -0.20167289 -0.200815325
#> 4 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 5 -0.263270486 -0.311781941 -0.310765976 -0.31066830 -0.314013823
#> 6 -0.103410961 -0.076840858 -0.080016598 -0.08436785 -0.087771351
#> 7 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 8 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 9 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 10 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 11 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 12 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 13 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 14 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 15 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 16 -0.062392124 -0.039505632 -0.023469898 -0.02045198 -0.027151896
#> 17 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 18 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 19 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 20 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 21 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 22 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 23 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 24 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 25 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 26 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 27 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 28 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 29 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 30 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 31 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 32 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 33 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 34 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 35 -0.083905063 -0.085155814 -0.086690885 -0.08262604 -0.082725745
#> 36 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 37 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 38 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 39 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 40 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 41 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 42 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 43 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 44 -0.014514870 -0.004369241 -0.002647953 -0.00844687 -0.010738872
#> 45 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 46 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 47 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 48 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 49 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 50 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 51 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 52 -0.195842587 -0.184768370 -0.177691131 -0.18225253 -0.181720401
#> 53 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 54 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 55 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 56 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 57 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 58 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 59 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 60 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 61 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 62 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 63 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 64 0.001662791 0.008968255 0.008852814 0.01022555 0.006667285
#> 65 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 66 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 67 0.221111495 0.202569147 0.194030443 0.19310867 0.192281835
#> 68 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 69 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 70 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 71 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 72 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 73 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 74 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 75 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 76 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 77 0.064638063 0.090636226 0.099163425 0.09692704 0.096849873
#> 78 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 79 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 80 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 81 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 82 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 83 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 84 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 85 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 86 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 87 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 88 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 89 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 90 0.087035865 0.113909884 0.123382027 0.12669615 0.125596908
#> 91 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 92 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 93 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 94 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 95 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 96 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 97 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 98 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 99 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 100 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 101 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 102 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 103 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#> 104 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000
#Repeated cross validation of the model (NK=100 times)
cv.modpls.aze<-cv.plsR(y~.,data=aze_compl,10,NK=100, verbose=FALSE)
res.cv.modpls.aze<-cvtable(summary(cv.modpls.aze,MClassed=TRUE))
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
#> NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#> NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#> NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
#> NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
#> NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
#> NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
#> NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
#> NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
#> NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
#>
#> CV MissClassed criterion:
#> 1 2 3 4 5 6 7 8 9 10
#> 23 13 30 6 9 6 2 5 4 2
#>
#> CV Q2 criterion:
#> 0
#> 100
#>
#> CV Press criterion:
#> 1 2
#> 87 13
#High discrepancy in the number of component choice using repeated cross validation
#and missclassed criterion
plot(res.cv.modpls.aze)
rm(list=c("Xaze_compl","yaze_compl","modpls.aze","cv.modpls.aze","res.cv.modpls.aze"))
#24 predictors
dimX <- 24
#2 components
Astar <- 2
simul_data_UniYX(dimX,Astar)
#> Y X1 X2 X3 X4 X5 X6
#> -7.0771363 0.8422727 0.8221595 -3.4186086 0.8439223 0.8457026 -3.4213949
#> X7 X8 X9 X10 X11 X12 X13
#> 0.8353033 0.8429768 -3.4266111 0.8304896 0.8271263 -3.4174465 0.8170318
#> X14 X15 X16 X17 X18 X19 X20
#> 0.8304136 -3.4256475 0.8375112 0.8457752 -3.4016488 0.8212410 0.8198623
#> X21 X22 X23 X24
#> -3.4032862 0.8601173 0.8448719 -3.4101834
dataAstar2 <- data.frame(t(replicate(250,simul_data_UniYX(dimX,Astar))))
modpls.A2<- plsR(Y~.,data=dataAstar2,10,typeVC="standard")
#> ____************************************************____
#> ____TypeVC____ standard ____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
modpls.A2
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 10
#> Coefficients:
#> [,1]
#> Intercept -0.001658811
#> X1 -1.542319173
#> X2 0.350104546
#> X3 0.418754450
#> X4 0.980105835
#> X5 -0.812813040
#> X6 0.302657443
#> X7 -0.472185638
#> X8 0.604325621
#> X9 -0.266215837
#> X10 -0.264572641
#> X11 -0.075898950
#> X12 -0.428921137
#> X13 1.434394136
#> X14 0.383432708
#> X15 0.286621780
#> X16 -1.977600219
#> X17 0.518186755
#> X18 0.826830157
#> X19 0.804561127
#> X20 -0.778594055
#> X21 0.841879200
#> X22 1.158862847
#> X23 0.237582781
#> X24 0.294068913
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#> AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y
#> Nb_Comp_0 1731.9660 NA NA NA NA 14697.723737
#> Nb_Comp_1 1252.4481 0.8502904 0.0975 0.8502904 2200.389956 2141.745483
#> Nb_Comp_2 -176.0635 0.9995067 0.0975 0.9967049 7.057246 7.009945
#> Nb_Comp_3 -184.3281 0.9994557 0.0975 -0.1034300 7.734984 6.727957
#> Nb_Comp_4 -183.4386 0.9993626 0.0975 -0.1710557 7.878812 6.698136
#> Nb_Comp_5 -181.6015 0.9992525 0.0975 -0.1726275 7.854419 6.693775
#> Nb_Comp_6 -179.6245 0.9991440 0.0975 -0.1451351 7.665277 6.693158
#> Nb_Comp_7 -177.6289 0.9990237 0.0975 -0.1405602 7.633950 6.693041
#> Nb_Comp_8 -175.6298 0.9988939 0.0975 -0.1329286 7.582738 6.693016
#> Nb_Comp_9 -173.6300 0.9987543 0.0975 -0.1262950 7.538311 6.693012
#> Nb_Comp_10 -171.6300 0.9986071 0.0975 -0.1181394 7.483721 6.693012
#> R2_Y R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
#> Nb_Comp_0 NA NA 249.0000000 NA NA NA
#> Nb_Comp_1 0.8542805 0.8542805 36.2841645 37.2776839 0.8502904 0.0975
#> Nb_Comp_2 0.9995231 0.9995231 0.1187583 0.1195596 0.9967049 0.0975
#> Nb_Comp_3 0.9995422 0.9995422 0.1139810 0.1310414 -0.1034300 0.0975
#> Nb_Comp_4 0.9995443 0.9995443 0.1134758 0.1334781 -0.1710557 0.0975
#> Nb_Comp_5 0.9995446 0.9995446 0.1134019 0.1330648 -0.1726275 0.0975
#> Nb_Comp_6 0.9995446 0.9995446 0.1133915 0.1298605 -0.1451351 0.0975
#> Nb_Comp_7 0.9995446 0.9995446 0.1133895 0.1293298 -0.1405602 0.0975
#> Nb_Comp_8 0.9995446 0.9995446 0.1133891 0.1284622 -0.1329286 0.0975
#> Nb_Comp_9 0.9995446 0.9995446 0.1133890 0.1277095 -0.1262950 0.0975
#> Nb_Comp_10 0.9995446 0.9995446 0.1133890 0.1267847 -0.1181394 0.0975
#> Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof
#> Nb_Comp_0 NA 712.4673 1.000000 7.6829033 59.26311097
#> Nb_Comp_1 0.8502904 232.9494 2.785762 2.9374507 8.75928011
#> Nb_Comp_2 0.9995067 -1195.5623 3.000077 0.1681247 0.02871818
#> Nb_Comp_3 0.9994557 -1203.8268 20.734302 0.1709334 0.03175838
#> Nb_Comp_4 0.9993626 -1202.9374 19.062064 0.1699382 0.03119649
#> Nb_Comp_5 0.9992525 -1201.1002 17.741793 0.1694014 0.03084817
#> Nb_Comp_6 0.9991440 -1199.1233 18.006552 0.1694898 0.03091080
#> Nb_Comp_7 0.9990237 -1197.1276 18.377109 0.1696233 0.03100215
#> Nb_Comp_8 0.9988939 -1195.1286 18.814384 0.1697826 0.03111083
#> Nb_Comp_9 0.9987543 -1193.1287 19.087018 0.1698824 0.03117886
#> Nb_Comp_10 0.9986071 -1191.1287 19.372455 0.1699870 0.03125027
#> BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive
#> Nb_Comp_0 60.09455611 509.4990 1 7.6829033 59.26311097
#> Nb_Comp_1 9.09786536 280.8634 2 2.9387192 8.70515906
#> Nb_Comp_2 0.02991266 -424.9075 3 0.1684647 0.02872091
#> Nb_Comp_3 0.04029187 -334.1910 4 0.1653766 0.02778701
#> Nb_Comp_4 0.03895066 -343.1796 5 0.1653461 0.02788612
#> Nb_Comp_5 0.03801974 -350.0057 6 0.1656306 0.02809191
#> Nb_Comp_6 0.03819699 -348.6585 7 0.1659634 0.02831509
#> Nb_Comp_7 0.03845000 -346.7635 8 0.1663045 0.02854223
#> Nb_Comp_8 0.03875024 -344.5305 9 0.1666489 0.02877164
#> Nb_Comp_9 0.03893807 -343.1409 10 0.1669957 0.02900305
#> Nb_Comp_10 0.03913522 -341.6881 11 0.1673447 0.02923642
#> BIC.naive GMDL.naive
#> Nb_Comp_0 60.09455611 509.4990
#> Nb_Comp_1 8.94845174 278.8431
#> Nb_Comp_2 0.02992019 -424.4089
#> Nb_Comp_3 0.02932797 -423.5062
#> Nb_Comp_4 0.02981161 -418.2054
#> Nb_Comp_5 0.03041045 -412.5403
#> Nb_Comp_6 0.03103094 -406.8925
#> Nb_Comp_7 0.03165883 -401.3092
#> Nb_Comp_8 0.03229235 -395.7890
#> Nb_Comp_9 0.03293125 -390.3262
#> Nb_Comp_10 0.03357552 -384.9154
cv.modpls.A2<-cv.plsR(Y~.,data=dataAstar2,10,NK=100, verbose=FALSE)
res.cv.modpls.A2<-cvtable(summary(cv.modpls.A2,verbose=FALSE))
#> Error in is.data.frame(data): object 'dataAstar2' not found
#Perfect choice for the Q2 criterion in PLSR
plot(res.cv.modpls.A2)
#> Error in plot(res.cv.modpls.A2): object 'res.cv.modpls.A2' not found
#Binarized data.frame
simbin1 <- data.frame(dicho(dataAstar2))
modpls.B2 <- plsR(Y~.,data=simbin1,10,typeVC="standard",MClassed=TRUE, verbose=FALSE)
modpls.B2
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#> [,1]
#> Intercept -0.0019050038
#> X1 0.0005589827
#> X2 0.0019050038
#> X3 0.1104639451
#> X4 0.0005589827
#> X5 0.1181934433
#> X6 0.1104639451
#> X7 0.0005589827
#> X8 0.0005589827
#> X9 0.1104639451
#> X10 0.0107780812
#> X11 -0.0423555069
#> X12 0.1104639451
#> X13 0.0005589827
#> X14 -0.0423555069
#> X15 0.1104639451
#> X16 0.0537076810
#> X17 0.0005589827
#> X18 0.1104639451
#> X19 -0.0423555069
#> X20 0.0537076810
#> X21 0.1104639451
#> X22 0.0005589827
#> X23 0.0005589827
#> X24 0.1104639451
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#> AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y
#> Nb_Comp_0 365.869573 NA NA NA NA 62.24400
#> Nb_Comp_1 7.081875 0.7564387 0.0975 7.564387e-01 15.16023 14.70094
#> Nb_Comp_2 -52.059277 0.8063193 0.0975 2.047971e-01 11.69023 11.51150
#> Nb_Comp_3 -50.391747 0.8060248 0.0975 -1.520660e-03 11.52901 11.49620
#> Nb_Comp_4 -48.528869 0.8059478 0.0975 -3.970475e-04 11.50077 11.48990
#> Nb_Comp_5 -46.529028 0.8059368 0.0975 -5.685343e-05 11.49055 11.48989
#> Nb_Comp_6 -44.529028 0.8059292 0.0975 -3.885733e-05 11.49034 11.48989
#> R2_Y MissClassed R2_residY RSS_residY PRESS_residY Q2_residY
#> Nb_Comp_0 NA 117 NA 249.00000 NA NA
#> Nb_Comp_1 0.7638176 13 0.7638176 58.80942 60.64677 7.564387e-01
#> Nb_Comp_2 0.8150584 13 0.8150584 46.05045 46.76543 2.047971e-01
#> Nb_Comp_3 0.8153042 13 0.8153042 45.98925 46.12048 -1.520660e-03
#> Nb_Comp_4 0.8154055 13 0.8154055 45.96403 46.00751 -3.970475e-04
#> Nb_Comp_5 0.8154056 13 0.8154056 45.96400 45.96664 -5.685343e-05
#> Nb_Comp_6 0.8154056 13 0.8154056 45.96400 45.96579 -3.885733e-05
#> LimQ2 Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof
#> Nb_Comp_0 NA NA 712.4673 1.000000 0.4999759 0.25097581
#> Nb_Comp_1 0.0975 0.7564387 353.6796 3.426417 0.2436803 0.06043144
#> Nb_Comp_2 0.0975 0.8063193 294.5384 3.023454 0.2154570 0.04716884
#> Nb_Comp_3 0.0975 0.8060248 296.2059 6.969465 0.2170477 0.04861145
#> Nb_Comp_4 0.0975 0.8059478 298.0688 5.275624 0.2162390 0.04793308
#> Nb_Comp_5 0.0975 0.8059368 300.0687 7.094793 0.2170438 0.04863334
#> Nb_Comp_6 0.0975 0.8059292 302.0687 7.000011 0.2170017 0.04859660
#> BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
#> Nb_Comp_0 0.25449693 -167.8435 1 0.4999759 0.25097581 0.25449693
#> Nb_Comp_1 0.06329736 -339.5574 2 0.2434707 0.05975220 0.06142216
#> Nb_Comp_2 0.04914585 -370.9768 3 0.2158825 0.04716454 0.04913396
#> Nb_Comp_3 0.05323625 -359.0333 4 0.2161771 0.04748026 0.05011332
#> Nb_Comp_4 0.05140783 -364.1010 5 0.2165584 0.04783550 0.05113846
#> Nb_Comp_5 0.05334114 -358.7389 6 0.2170017 0.04821988 0.05219967
#> Nb_Comp_6 0.05323970 -359.0117 7 0.2174477 0.04860745 0.05326964
#> GMDL.naive
#> Nb_Comp_0 -167.8435
#> Nb_Comp_1 -343.6687
#> Nb_Comp_2 -370.5554
#> Nb_Comp_3 -367.4821
#> Nb_Comp_4 -364.4401
#> Nb_Comp_5 -361.4336
#> Nb_Comp_6 -358.5128
modpls.B2$Probs
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> 1 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 2 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 3 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 4 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 5 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 6 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 7 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 8 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 9 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 10 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 11 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 12 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 13 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 14 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 15 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 16 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 17 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 18 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 19 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 20 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 21 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 22 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 23 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 24 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 25 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 26 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 27 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 28 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 29 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 30 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 31 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 32 0.468 0.75561134 0.891646286 0.926500831 1.0005367069 1.000001e+00
#> 33 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 34 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 35 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 36 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 37 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 38 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 39 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 40 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 41 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 42 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 43 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 44 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 45 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 46 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 47 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 48 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 49 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 50 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 51 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 52 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 53 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 54 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 55 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 56 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 57 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 58 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 59 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 60 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 61 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 62 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 63 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 64 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 65 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 66 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 67 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 68 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 69 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 70 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 71 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 72 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 73 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 74 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 75 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 76 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 77 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 78 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 79 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 80 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 81 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 82 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 83 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 84 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 85 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 86 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 87 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 88 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 89 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 90 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 91 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 92 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 93 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 94 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 95 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 96 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 97 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 98 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 99 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 100 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 101 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 102 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 103 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 104 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 105 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 106 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 107 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 108 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 109 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 110 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 111 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 112 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 113 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 114 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 115 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 116 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 117 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 118 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 119 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 120 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 121 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 122 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 123 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 124 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 125 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 126 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 127 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 128 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 129 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 130 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 131 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 132 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 133 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 134 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 135 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 136 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 137 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 138 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 139 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 140 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 141 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 142 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 143 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 144 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 145 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 146 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 147 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 148 0.468 0.79848686 0.908451165 1.024465545 1.0001586238 9.999916e-01
#> 149 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 150 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 151 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 152 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 153 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 154 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 155 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 156 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 157 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 158 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 159 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 160 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 161 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 162 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 163 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 164 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 165 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 166 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 167 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 168 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 169 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 170 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 171 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 172 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 173 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 174 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 175 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 176 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 177 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 178 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 179 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 180 0.468 0.05050119 0.032030943 0.015554650 0.0025962533 -9.974582e-06
#> 181 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 182 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 183 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 184 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 185 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 186 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 187 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 188 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 189 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 190 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 191 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 192 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 193 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 194 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 195 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 196 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 197 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 198 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 199 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 200 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 201 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 202 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 203 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 204 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 205 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 206 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 207 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 208 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 209 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 210 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 211 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 212 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 213 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 214 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 215 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 216 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 217 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 218 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 219 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 220 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 221 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 222 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 223 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 224 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 225 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 226 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 227 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 228 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 229 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 230 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 231 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 232 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 233 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 234 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 235 0.468 1.06197635 0.998642087 0.997719534 0.9975010645 9.975036e-01
#> 236 0.468 0.73503222 0.884122543 0.882435920 0.8817973696 8.818069e-01
#> 237 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 238 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 239 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 240 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 241 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 242 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 243 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 244 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 245 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 246 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 247 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 248 0.468 -0.02999381 0.004637669 -0.006058995 -0.0004601449 -7.358273e-05
#> 249 0.468 0.27728193 0.112818236 0.113477510 0.1137795399 1.137926e-01
#> 250 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> [,7]
#> 1 -1.905004e-03
#> 2 1.137922e-01
#> 3 -1.905004e-03
#> 4 9.975038e-01
#> 5 1.137922e-01
#> 6 -1.905004e-03
#> 7 8.818066e-01
#> 8 9.975038e-01
#> 9 -1.905004e-03
#> 10 9.975038e-01
#> 11 8.818066e-01
#> 12 1.137922e-01
#> 13 -1.905004e-03
#> 14 1.137922e-01
#> 15 -1.905004e-03
#> 16 8.818066e-01
#> 17 -1.905004e-03
#> 18 1.137922e-01
#> 19 9.975038e-01
#> 20 9.975038e-01
#> 21 1.137922e-01
#> 22 -1.905004e-03
#> 23 -1.905004e-03
#> 24 8.818066e-01
#> 25 -1.905004e-03
#> 26 -1.905004e-03
#> 27 8.818066e-01
#> 28 8.818066e-01
#> 29 -1.905004e-03
#> 30 9.975038e-01
#> 31 8.818066e-01
#> 32 1.000000e+00
#> 33 8.818066e-01
#> 34 1.137922e-01
#> 35 1.137922e-01
#> 36 9.975038e-01
#> 37 9.975038e-01
#> 38 -1.905004e-03
#> 39 9.975038e-01
#> 40 9.975038e-01
#> 41 -1.905004e-03
#> 42 1.137922e-01
#> 43 8.818066e-01
#> 44 8.818066e-01
#> 45 9.975038e-01
#> 46 9.975038e-01
#> 47 -1.905004e-03
#> 48 1.137922e-01
#> 49 -1.905004e-03
#> 50 1.137922e-01
#> 51 9.975038e-01
#> 52 9.975038e-01
#> 53 9.975038e-01
#> 54 9.975038e-01
#> 55 9.975038e-01
#> 56 9.975038e-01
#> 57 9.975038e-01
#> 58 -1.905004e-03
#> 59 8.818066e-01
#> 60 8.818066e-01
#> 61 -1.905004e-03
#> 62 9.975038e-01
#> 63 8.818066e-01
#> 64 -1.905004e-03
#> 65 9.975038e-01
#> 66 -1.905004e-03
#> 67 1.137922e-01
#> 68 -1.905004e-03
#> 69 1.137922e-01
#> 70 1.137922e-01
#> 71 8.818066e-01
#> 72 1.137922e-01
#> 73 9.975038e-01
#> 74 9.975038e-01
#> 75 9.975038e-01
#> 76 -1.905004e-03
#> 77 -1.905004e-03
#> 78 1.137922e-01
#> 79 1.137922e-01
#> 80 9.975038e-01
#> 81 -1.905004e-03
#> 82 1.137922e-01
#> 83 9.975038e-01
#> 84 1.137922e-01
#> 85 1.137922e-01
#> 86 1.137922e-01
#> 87 1.137922e-01
#> 88 9.975038e-01
#> 89 -1.905004e-03
#> 90 8.818066e-01
#> 91 9.975038e-01
#> 92 8.818066e-01
#> 93 8.818066e-01
#> 94 8.818066e-01
#> 95 9.975038e-01
#> 96 9.975038e-01
#> 97 1.137922e-01
#> 98 -1.905004e-03
#> 99 -1.905004e-03
#> 100 8.818066e-01
#> 101 8.818066e-01
#> 102 -1.905004e-03
#> 103 -1.905004e-03
#> 104 8.818066e-01
#> 105 1.137922e-01
#> 106 8.818066e-01
#> 107 9.975038e-01
#> 108 -1.905004e-03
#> 109 8.818066e-01
#> 110 1.137922e-01
#> 111 -1.905004e-03
#> 112 8.818066e-01
#> 113 8.818066e-01
#> 114 -1.905004e-03
#> 115 -1.905004e-03
#> 116 1.137922e-01
#> 117 -1.905004e-03
#> 118 8.818066e-01
#> 119 -1.905004e-03
#> 120 8.818066e-01
#> 121 8.818066e-01
#> 122 8.818066e-01
#> 123 8.818066e-01
#> 124 -1.905004e-03
#> 125 9.975038e-01
#> 126 9.975038e-01
#> 127 8.818066e-01
#> 128 9.975038e-01
#> 129 1.137922e-01
#> 130 9.975038e-01
#> 131 -1.905004e-03
#> 132 9.975038e-01
#> 133 9.975038e-01
#> 134 8.818066e-01
#> 135 8.818066e-01
#> 136 9.975038e-01
#> 137 9.975038e-01
#> 138 9.975038e-01
#> 139 9.975038e-01
#> 140 8.818066e-01
#> 141 8.818066e-01
#> 142 -1.905004e-03
#> 143 9.975038e-01
#> 144 9.975038e-01
#> 145 9.975038e-01
#> 146 8.818066e-01
#> 147 -1.905004e-03
#> 148 1.000000e+00
#> 149 1.137922e-01
#> 150 1.137922e-01
#> 151 1.137922e-01
#> 152 -1.905004e-03
#> 153 1.137922e-01
#> 154 9.975038e-01
#> 155 -1.905004e-03
#> 156 8.818066e-01
#> 157 -1.905004e-03
#> 158 9.975038e-01
#> 159 9.975038e-01
#> 160 9.975038e-01
#> 161 1.137922e-01
#> 162 -1.905004e-03
#> 163 -1.905004e-03
#> 164 1.137922e-01
#> 165 -1.905004e-03
#> 166 9.975038e-01
#> 167 1.137922e-01
#> 168 9.975038e-01
#> 169 -1.905004e-03
#> 170 -1.905004e-03
#> 171 8.818066e-01
#> 172 -1.905004e-03
#> 173 9.975038e-01
#> 174 1.137922e-01
#> 175 -1.905004e-03
#> 176 1.137922e-01
#> 177 1.137922e-01
#> 178 1.137922e-01
#> 179 8.818066e-01
#> 180 9.992007e-16
#> 181 9.975038e-01
#> 182 9.975038e-01
#> 183 8.818066e-01
#> 184 8.818066e-01
#> 185 -1.905004e-03
#> 186 8.818066e-01
#> 187 8.818066e-01
#> 188 8.818066e-01
#> 189 1.137922e-01
#> 190 -1.905004e-03
#> 191 8.818066e-01
#> 192 8.818066e-01
#> 193 -1.905004e-03
#> 194 8.818066e-01
#> 195 8.818066e-01
#> 196 1.137922e-01
#> 197 -1.905004e-03
#> 198 -1.905004e-03
#> 199 1.137922e-01
#> 200 -1.905004e-03
#> 201 -1.905004e-03
#> 202 -1.905004e-03
#> 203 8.818066e-01
#> 204 9.975038e-01
#> 205 -1.905004e-03
#> 206 9.975038e-01
#> 207 -1.905004e-03
#> 208 -1.905004e-03
#> 209 8.818066e-01
#> 210 -1.905004e-03
#> 211 1.137922e-01
#> 212 -1.905004e-03
#> 213 -1.905004e-03
#> 214 8.818066e-01
#> 215 1.137922e-01
#> 216 -1.905004e-03
#> 217 -1.905004e-03
#> 218 -1.905004e-03
#> 219 1.137922e-01
#> 220 1.137922e-01
#> 221 -1.905004e-03
#> 222 8.818066e-01
#> 223 -1.905004e-03
#> 224 8.818066e-01
#> 225 9.975038e-01
#> 226 8.818066e-01
#> 227 8.818066e-01
#> 228 8.818066e-01
#> 229 8.818066e-01
#> 230 -1.905004e-03
#> 231 1.137922e-01
#> 232 1.137922e-01
#> 233 9.975038e-01
#> 234 1.137922e-01
#> 235 9.975038e-01
#> 236 8.818066e-01
#> 237 1.137922e-01
#> 238 1.137922e-01
#> 239 -1.905004e-03
#> 240 1.137922e-01
#> 241 -1.905004e-03
#> 242 -1.905004e-03
#> 243 -1.905004e-03
#> 244 1.137922e-01
#> 245 -1.905004e-03
#> 246 -1.905004e-03
#> 247 1.137922e-01
#> 248 1.276756e-15
#> 249 1.137922e-01
#> 250 -1.905004e-03
modpls.B2$Probs.trc
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> 1 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 2 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 3 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 4 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 5 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 6 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 7 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 8 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 9 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 10 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 11 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 12 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 13 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 14 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 15 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 16 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 17 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 18 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 19 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 20 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 21 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 22 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 23 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 24 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 25 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 26 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 27 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 28 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 29 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 30 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 31 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 32 0.468 0.75561134 0.891646286 0.92650083 1.000000000 1.0000000 1.000000e+00
#> 33 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 34 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 35 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 36 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 37 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 38 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 39 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 40 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 41 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 42 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 43 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 44 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 45 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 46 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 47 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 48 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 49 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 50 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 51 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 52 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 53 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 54 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 55 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 56 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 57 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 58 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 59 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 60 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 61 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 62 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 63 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 64 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 65 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 66 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 67 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 68 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 69 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 70 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 71 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 72 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 73 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 74 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 75 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 76 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 77 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 78 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 79 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 80 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 81 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 82 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 83 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 84 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 85 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 86 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 87 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 88 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 89 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 90 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 91 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 92 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 93 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 94 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 95 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 96 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 97 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 98 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 99 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 100 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 101 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 102 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 103 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 104 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 105 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 106 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 107 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 108 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 109 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 110 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 111 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 112 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 113 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 114 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 115 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 116 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 117 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 118 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 119 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 120 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 121 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 122 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 123 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 124 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 125 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 126 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 127 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 128 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 129 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 130 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 131 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 132 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 133 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 134 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 135 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 136 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 137 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 138 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 139 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 140 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 141 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 142 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 143 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 144 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 145 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 146 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 147 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 148 0.468 0.79848686 0.908451165 1.00000000 1.000000000 0.9999916 1.000000e+00
#> 149 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 150 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 151 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 152 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 153 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 154 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 155 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 156 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 157 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 158 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 159 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 160 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 161 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 162 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 163 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 164 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 165 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 166 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 167 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 168 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 169 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 170 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 171 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 172 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 173 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 174 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 175 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 176 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 177 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 178 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 179 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 180 0.468 0.05050119 0.032030943 0.01555465 0.002596253 0.0000000 9.992007e-16
#> 181 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 182 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 183 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 184 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 185 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 186 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 187 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 188 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 189 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 190 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 191 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 192 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 193 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 194 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 195 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 196 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 197 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 198 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 199 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 200 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 201 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 202 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 203 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 204 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 205 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 206 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 207 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 208 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 209 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 210 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 211 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 212 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 213 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 214 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 215 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 216 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 217 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 218 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 219 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 220 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 221 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 222 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 223 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 224 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 225 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 226 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 227 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 228 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 229 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 230 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 231 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 232 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 233 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 234 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 235 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 236 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 237 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 238 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 239 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 240 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 241 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 242 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 243 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 244 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 245 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 246 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 247 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 248 0.468 0.00000000 0.004637669 0.00000000 0.000000000 0.0000000 1.276756e-15
#> 249 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 250 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
modpls.B2$MissClassed
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 117 13 13 13 13 13 13
plsR(simbin1$Y,dataAstar2[,-1],10,typeVC="standard",MClassed=TRUE,verbose=FALSE)$InfCrit
#> AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y
#> Nb_Comp_0 365.8696 NA NA NA NA 62.24400
#> Nb_Comp_1 171.3970 0.537286214 0.0975 0.53728621 28.80116 28.36545
#> Nb_Comp_2 117.2123 0.627658494 0.0975 0.19530924 22.82541 22.65619
#> Nb_Comp_3 103.0629 0.604937339 0.0975 -0.06102235 24.03872 21.23892
#> Nb_Comp_4 103.6263 0.539226030 0.0975 -0.16633136 24.77162 21.11723
#> Nb_Comp_5 105.2450 0.458487555 0.0975 -0.17522360 24.81746 21.08504
#> Nb_Comp_6 107.2032 0.380940010 0.0975 -0.14320547 24.10453 21.08151
#> Nb_Comp_7 109.1994 0.294959971 0.0975 -0.13888806 24.00948 21.08120
#> Nb_Comp_8 111.1985 0.202224648 0.0975 -0.13153200 23.85405 21.08112
#> Nb_Comp_9 113.1984 0.103400634 0.0975 -0.12387449 23.69253 21.08111
#> Nb_Comp_10 115.1984 -0.002159955 0.0975 -0.11773440 23.56308 21.08111
#> R2_Y MissClassed R2_residY RSS_residY PRESS_residY Q2_residY
#> Nb_Comp_0 NA 117 NA 249.00000 NA NA
#> Nb_Comp_1 0.5442862 29 0.5442862 113.47273 115.21573 0.53728621
#> Nb_Comp_2 0.6360101 8 0.6360101 90.63349 91.31046 0.19530924
#> Nb_Comp_3 0.6587796 8 0.6587796 84.96388 96.16416 -0.06102235
#> Nb_Comp_4 0.6607347 9 0.6607347 84.47705 99.09603 -0.16633136
#> Nb_Comp_5 0.6612518 10 0.6612518 84.34829 99.27943 -0.17522360
#> Nb_Comp_6 0.6613085 10 0.6613085 84.33418 96.42743 -0.14320547
#> Nb_Comp_7 0.6613136 10 0.6613136 84.33292 96.04719 -0.13888806
#> Nb_Comp_8 0.6613148 10 0.6613148 84.33261 95.42540 -0.13153200
#> Nb_Comp_9 0.6613150 10 0.6613150 84.33257 94.77927 -0.12387449
#> Nb_Comp_10 0.6613150 10 0.6613150 84.33256 94.26141 -0.11773440
#> LimQ2 Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof
#> Nb_Comp_0 NA NA 712.4673 1.000000 0.4999759 0.25097581
#> Nb_Comp_1 0.0975 0.537286214 517.9947 2.806178 0.3380643 0.11602749
#> Nb_Comp_2 0.0975 0.627658494 463.8100 3.000077 0.3022509 0.09281734
#> Nb_Comp_3 0.0975 0.604937339 449.6606 18.693223 0.3023676 0.09862809
#> Nb_Comp_4 0.0975 0.539226030 450.2240 25.000000 0.3056780 0.10315672
#> Nb_Comp_5 0.0975 0.458487555 451.8427 24.919496 0.3053906 0.10293278
#> Nb_Comp_6 0.0975 0.380940010 453.8008 25.000000 0.3054194 0.10298226
#> Nb_Comp_7 0.0975 0.294959971 455.7971 25.000000 0.3054172 0.10298072
#> Nb_Comp_8 0.0975 0.202224648 457.7962 25.000000 0.3054166 0.10298034
#> Nb_Comp_9 0.0975 0.103400634 459.7961 25.000000 0.3054165 0.10298029
#> Nb_Comp_10 0.0975 -0.002159955 461.7961 25.000000 0.3054165 0.10298028
#> BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
#> Nb_Comp_0 0.2544969 -167.8435 1 0.4999759 0.25097581 0.25449693
#> Nb_Comp_1 0.1205450 -260.4812 2 0.3381964 0.11529183 0.11851401
#> Nb_Comp_2 0.0966779 -287.6015 3 0.3028621 0.09282616 0.09670225
#> Nb_Comp_3 0.1227015 -258.6385 4 0.2938317 0.08771847 0.09258300
#> Nb_Comp_4 0.1360609 -247.1113 5 0.2935860 0.08791662 0.09398711
#> Nb_Comp_5 0.1356694 -247.4282 6 0.2939628 0.08848804 0.09579133
#> Nb_Comp_6 0.1358308 -247.2971 7 0.2945424 0.08918434 0.09773848
#> Nb_Comp_7 0.1358288 -247.2987 8 0.2951481 0.08989998 0.09971640
#> Nb_Comp_8 0.1358283 -247.2991 9 0.2957592 0.09062258 0.10171182
#> Nb_Comp_9 0.1358282 -247.2992 10 0.2963747 0.09135148 0.10372419
#> Nb_Comp_10 0.1358282 -247.2992 11 0.2969941 0.09208652 0.10575345
#> GMDL.naive
#> Nb_Comp_0 -167.8435
#> Nb_Comp_1 -262.3118
#> Nb_Comp_2 -287.1028
#> Nb_Comp_3 -292.1762
#> Nb_Comp_4 -290.1233
#> Nb_Comp_5 -287.6539
#> Nb_Comp_6 -285.1045
#> Nb_Comp_7 -282.6103
#> Nb_Comp_8 -280.1795
#> Nb_Comp_9 -277.8061
#> Nb_Comp_10 -275.4847
cv.modpls.B2<-cv.plsR(Y~.,data=simbin1,2,NK=100,verbose=FALSE)
res.cv.modpls.B2<-cvtable(summary(cv.modpls.B2,MClassed=TRUE))
#> ____************************************************____
#> Error in is.data.frame(data): object 'simbin1' not found
#Only one component found by repeated CV missclassed criterion
plot(res.cv.modpls.B2)
#> Error in plot(res.cv.modpls.B2): object 'res.cv.modpls.B2' not found
rm(list=c("dimX","Astar","dataAstar2","modpls.A2","cv.modpls.A2",
"res.cv.modpls.A2","simbin1","modpls.B2","cv.modpls.B2","res.cv.modpls.B2"))
#> Warning: object 'res.cv.modpls.A2' not found
#> Warning: object 'res.cv.modpls.B2' not found
# }