This function implements Partial least squares Regression models with leave one out cross validation for complete or incomplete datasets.

plsR(object, ...)
# S3 method for default
plsRmodel(object, dataX, nt = 2, limQ2set = 0.0975, 
dataPredictY = dataX, modele = "pls", family = NULL, typeVC = "none", 
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE, 
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
sparse = FALSE, sparseStop = TRUE, naive = FALSE,verbose=TRUE,...)
# S3 method for formula
plsRmodel(object, data, nt = 2, limQ2set = 0.0975,
dataPredictY, modele = "pls", family = NULL, typeVC = "none",
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE, 
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
subset, contrasts = NULL, sparse = FALSE, sparseStop = TRUE, naive = FALSE,
verbose=TRUE,...)
PLS_lm(dataY, dataX, nt = 2, limQ2set = 0.0975, dataPredictY = dataX, 
modele = "pls", family = NULL, typeVC = "none", EstimXNA = FALSE, 
scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE, 
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12),
weights,sparse=FALSE,sparseStop=FALSE,naive=FALSE,verbose=TRUE)
PLS_lm_formula(formula,data=NULL,nt=2,limQ2set=.0975,dataPredictY=dataX,
modele="pls",family=NULL,typeVC="none",EstimXNA=FALSE,scaleX=TRUE,
scaleY=NULL,pvals.expli=FALSE,alpha.pvals.expli=.05,MClassed=FALSE,
tol_Xi=10^(-12),weights,subset,contrasts=NULL,sparse=FALSE,
sparseStop=FALSE,naive=FALSE,verbose=TRUE)

Arguments

object

response (training) dataset or an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

dataY

response (training) dataset

dataX

predictor(s) (training) dataset

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which plsR is called.

nt

number of components to be extracted

limQ2set

limit value for the Q2

dataPredictY

predictor(s) (testing) dataset

modele

name of the PLS model to be fitted, only ("pls" available for this fonction.

family

for the present moment the family argument is ignored and set thanks to the value of modele.

typeVC

type of leave one out cross validation. Several procedures are available. If cross validation is required, one needs to selects the way of predicting the response for left out observations. For complete rows, without any missing value, there are two different ways of computing these predictions. As a consequence, for mixed datasets, with complete and incomplete rows, there are two ways of computing prediction : either predicts any row as if there were missing values in it (missingdata) or selects the prediction method accordingly to the completeness of the row (adaptative).

none

no cross validation

standard

as in SIMCA for datasets without any missing value. For datasets with any missing value, it is the as using missingdata

missingdata

all values predicted as those with missing values for datasets with any missing values

adaptative

predict a response value for an x with any missing value as those with missing values and for an x without any missing value as those without missing values.

EstimXNA

only for modele="pls". Set whether the missing X values have to be estimated.

scaleX

scale the predictor(s) : must be set to TRUE for modele="pls" and should be for glms pls.

scaleY

scale the response : Yes/No. Ignored since non always possible for glm responses.

pvals.expli

should individual p-values be reported to tune model selection ?

alpha.pvals.expli

level of significance for predictors when pvals.expli=TRUE

MClassed

number of missclassified cases, should only be used for binary responses

tol_Xi

minimal value for Norm2(Xi) and \(\mathrm{det}(pp' \times pp)\) if there is any missing value in the dataX. It defaults to \(10^{-12}\)

weights

an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.

subset

an optional vector specifying a subset of observations to be used in the fitting process.

contrasts

an optional list. See the contrasts.arg of model.matrix.default.

sparse

should the coefficients of non-significant predictors (<alpha.pvals.expli) be set to 0

sparseStop

should component extraction stop when no significant predictors (<alpha.pvals.expli) are found

naive

Use the naive estimates for the Degrees of Freedom in plsR? Default is FALSE.

verbose

should info messages be displayed ?

...

arguments to pass to plsRmodel.default or to plsRmodel.formula

Details

There are several ways to deal with missing values that leads to different computations of leave one out cross validation criteria.

A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.

The default estimator for Degrees of Freedom is the Kramer and Sugiyama's one. Information criteria are computed accordingly to these estimations. Naive Degrees of Freedom and Information Criteria are also provided for comparison purposes. For more details, see N. Kraemer and M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association, 106(494), 697-705, 2011.

Value

nr

Number of observations

nc

Number of predictors

nt

Number of requested components

ww

raw weights (before L2-normalization)

wwnorm

L2 normed weights (to be used with deflated matrices of predictor variables)

wwetoile

modified weights (to be used with original matrix of predictor variables)

tt

PLS components

pp

loadings of the predictor variables

CoeffC

coefficients of the PLS components

uscores

scores of the response variable

YChapeau

predicted response values for the dataX set

residYChapeau

residuals of the deflated response on the standardized scale

RepY

scaled response vector

na.miss.Y

is there any NA value in the response vector

YNA

indicatrix vector of missing values in RepY

residY

deflated scaled response vector

ExpliX

scaled matrix of predictors

na.miss.X

is there any NA value in the predictor matrix

XXNA

indicator of non-NA values in the predictor matrix

residXX

deflated predictor matrix

PredictY

response values with NA replaced with 0

press.ind

individual PRESS value for each observation (scaled scale)

press.tot

total PRESS value for all observations (scaled scale)

family

glm family used to fit PLSGLR model

ttPredictY

PLS components for the dataset on which prediction was requested

typeVC

type of leave one out cross-validation used

dataX

predictor values

dataY

response values

computed_nt

number of components that were computed

CoeffCFull

matrix of the coefficients of the predictors

CoeffConstante

value of the intercept (scaled scale)

Std.Coeffs

Vector of standardized regression coefficients

press.ind2

individual PRESS value for each observation (original scale)

RSSresidY

residual sum of squares (scaled scale)

Coeffs

Vector of regression coefficients (used with the original data scale)

Yresidus

residuals of the PLS model

RSS

residual sum of squares (original scale)

residusY

residuals of the deflated response on the standardized scale

AIC.std

AIC.std vs number of components (AIC computed for the standardized model

AIC

AIC vs number of components

optional

If the response is assumed to be binary:
i.e. MClassed=TRUE.

MissClassed

Number of miss classed results

Probs

"Probability" predicted by the model. These are not true probabilities since they may lay outside of [0,1]

Probs.trc

Probability predicted by the model and constrained to belong to [0,1]

ttPredictFittedMissingY

Description of 'comp2'

optional

If cross validation was requested:
i.e. typeVC="standard", typeVC="missingdata" or typeVC="adaptative".

R2residY

R2 coefficient value on the standardized scale

R2

R2 coefficient value on the original scale

press.tot2

total PRESS value for all observations (original scale)

Q2

Q2 value (standardized scale)

limQ2

limit of the Q2 value

Q2_2

Q2 value (original scale)

Q2cum

cumulated Q2 (standardized scale)

Q2cum_2

cumulated Q2 (original scale)

InfCrit

table of Information Criteria

Std.ValsPredictY

predicted response values for supplementary dataset (standardized scale)

ValsPredictY

predicted response values for supplementary dataset (original scale)

Std.XChapeau

estimated values for missing values in the predictor matrix (standardized scale)

XXwotNA

predictor matrix with missing values replaced with 0

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47

Note

Use cv.plsR to cross-validate the plsRglm models and bootpls to bootstrap them.

See also

See also plsRglm to fit PLSGLR models.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

#maximum 6 components could be extracted from this dataset
#trying 10 to trigger automatic stopping criterion
modpls10<-plsR(yCornell,XCornell,10)
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> Warning : 1 2 3 4 5 6 7 < 10^{-12}
#> Warning only 6 components could thus be extracted
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls10
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#>                  [,1]
#> Intercept  88.7107982
#> X1        -54.3905712
#> X2         -2.7879678
#> X3         52.5411315
#> X4        -11.5306977
#> X5         -0.9605822
#> X6         11.5900307
#> X7         28.2104803
#> Information criteria and Fit statistics:
#>                AIC      RSS_Y      R2_Y R2_residY  RSS_residY    AIC.std
#> Nb_Comp_0 82.01205 467.796667        NA        NA 11.00000000  37.010388
#> Nb_Comp_1 53.15173  35.742486 0.9235940 0.9235940  0.84046633   8.150064
#> Nb_Comp_2 41.08283  11.066606 0.9763431 0.9763431  0.26022559  -3.918831
#> Nb_Comp_3 32.06411   4.418081 0.9905556 0.9905556  0.10388893 -12.937550
#> Nb_Comp_4 33.76477   4.309235 0.9907882 0.9907882  0.10132947 -11.236891
#> Nb_Comp_5 33.34373   3.521924 0.9924713 0.9924713  0.08281624 -11.657929
#> Nb_Comp_6 35.25533   3.496074 0.9925265 0.9925265  0.08220840  -9.746328
#>            DoF.dof sigmahat.dof    AIC.dof    BIC.dof GMDL.dof DoF.naive
#> Nb_Comp_0 1.000000    6.5212706 46.0708838 47.7893514 27.59461         1
#> Nb_Comp_1 2.740749    1.8665281  4.5699686  4.9558156 21.34020         2
#> Nb_Comp_2 5.085967    1.1825195  2.1075461  2.3949331 27.40202         3
#> Nb_Comp_3 5.121086    0.7488308  0.8467795  0.9628191 24.40842         4
#> Nb_Comp_4 5.103312    0.7387162  0.8232505  0.9357846 24.23105         5
#> Nb_Comp_5 6.006316    0.7096382  0.7976101  0.9198348 28.21184         6
#> Nb_Comp_6 7.000002    0.7633343  0.9711322  1.1359501 33.18348         7
#>           sigmahat.naive  AIC.naive  BIC.naive GMDL.naive
#> Nb_Comp_0      6.5212706 46.0708838 47.7893514   27.59461
#> Nb_Comp_1      1.8905683  4.1699567  4.4588195   18.37545
#> Nb_Comp_2      1.1088836  1.5370286  1.6860917   17.71117
#> Nb_Comp_3      0.7431421  0.7363469  0.8256118   19.01033
#> Nb_Comp_4      0.7846050  0.8721072  0.9964867   24.16510
#> Nb_Comp_5      0.7661509  0.8804809  1.0227979   28.64206
#> Nb_Comp_6      0.8361907  1.1070902  1.3048716   33.63927

#With iterated leave one out CV PRESS
modpls6cv<-plsR(Y~.,data=Cornell,6,typeVC="standard")
#> ____************************************************____
#> ____TypeVC____ standard ____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls6cv
#> Number of required components:
#> [1] 6
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#>                  [,1]
#> Intercept  88.7107982
#> X1        -54.3905712
#> X2         -2.7879678
#> X3         52.5411315
#> X4        -11.5306977
#> X5         -0.9605822
#> X6         11.5900307
#> X7         28.2104803
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#>                AIC   Q2cum_Y LimQ2_Y        Q2_Y   PRESS_Y      RSS_Y      R2_Y
#> Nb_Comp_0 82.01205        NA      NA          NA        NA 467.796667        NA
#> Nb_Comp_1 53.15173 0.8966556  0.0975  0.89665563 48.344150  35.742486 0.9235940
#> Nb_Comp_2 41.08283 0.9175426  0.0975  0.20210989 28.518576  11.066606 0.9763431
#> Nb_Comp_3 32.06411 0.9399676  0.0975  0.27195907  8.056942   4.418081 0.9905556
#> Nb_Comp_4 33.76477 0.9197009  0.0975 -0.33759604  5.909608   4.309235 0.9907882
#> Nb_Comp_5 33.34373 0.9281373  0.0975  0.10506161  3.856500   3.521924 0.9924713
#> Nb_Comp_6 35.25533 0.9232562  0.0975 -0.06792167  3.761138   3.496074 0.9925265
#>           R2_residY  RSS_residY PRESS_residY   Q2_residY  LimQ2 Q2cum_residY
#> Nb_Comp_0        NA 11.00000000           NA          NA     NA           NA
#> Nb_Comp_1 0.9235940  0.84046633   1.13678803  0.89665563 0.0975    0.8966556
#> Nb_Comp_2 0.9763431  0.26022559   0.67059977  0.20210989 0.0975    0.9175426
#> Nb_Comp_3 0.9905556  0.10388893   0.18945488  0.27195907 0.0975    0.9399676
#> Nb_Comp_4 0.9907882  0.10132947   0.13896142 -0.33759604 0.0975    0.9197009
#> Nb_Comp_5 0.9924713  0.08281624   0.09068364  0.10506161 0.0975    0.9281373
#> Nb_Comp_6 0.9925265  0.08220840   0.08844125 -0.06792167 0.0975    0.9232562
#>              AIC.std  DoF.dof sigmahat.dof    AIC.dof    BIC.dof GMDL.dof
#> Nb_Comp_0  37.010388 1.000000    6.5212706 46.0708838 47.7893514 27.59461
#> Nb_Comp_1   8.150064 2.740749    1.8665281  4.5699686  4.9558156 21.34020
#> Nb_Comp_2  -3.918831 5.085967    1.1825195  2.1075461  2.3949331 27.40202
#> Nb_Comp_3 -12.937550 5.121086    0.7488308  0.8467795  0.9628191 24.40842
#> Nb_Comp_4 -11.236891 5.103312    0.7387162  0.8232505  0.9357846 24.23105
#> Nb_Comp_5 -11.657929 6.006316    0.7096382  0.7976101  0.9198348 28.21184
#> Nb_Comp_6  -9.746328 7.000002    0.7633343  0.9711322  1.1359501 33.18348
#>           DoF.naive sigmahat.naive  AIC.naive  BIC.naive GMDL.naive
#> Nb_Comp_0         1      6.5212706 46.0708838 47.7893514   27.59461
#> Nb_Comp_1         2      1.8905683  4.1699567  4.4588195   18.37545
#> Nb_Comp_2         3      1.1088836  1.5370286  1.6860917   17.71117
#> Nb_Comp_3         4      0.7431421  0.7363469  0.8256118   19.01033
#> Nb_Comp_4         5      0.7846050  0.8721072  0.9964867   24.16510
#> Nb_Comp_5         6      0.7661509  0.8804809  1.0227979   28.64206
#> Nb_Comp_6         7      0.8361907  1.1070902  1.3048716   33.63927
cv.modpls<-cv.plsR(Y~.,data=Cornell,6,NK=100, verbose=FALSE)
res.cv.modpls<-cvtable(summary(cv.modpls))
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
#> 
#> NK: 1,  2,  3,  4,  5,  6,  7,  8,  9,  10
#> NK: 11,  12,  13,  14,  15,  16,  17,  18,  19,  20
#> NK: 21,  22,  23,  24,  25,  26,  27,  28,  29,  30
#> NK: 31,  32,  33,  34,  35,  36,  37,  38,  39,  40
#> NK: 41,  42,  43,  44,  45,  46,  47,  48,  49,  50
#> NK: 51,  52,  53,  54,  55,  56,  57,  58,  59,  60
#> NK: 61,  62,  63,  64,  65,  66,  67,  68,  69,  70
#> NK: 71,  72,  73,  74,  75,  76,  77,  78,  79,  80
#> NK: 81,  82,  83,  84,  85,  86,  87,  88,  89,  90
#> NK: 91,  92,  93,  94,  95,  96,  97,  98,  99,  100
#> 
#> CV Q2 criterion:
#>  0  1  2 
#>  0 77 23 
#> 
#> CV Press criterion:
#>  1  2  3  4  5 
#>  1  0 37 44 18 
plot(res.cv.modpls)


rm(list=c("XCornell","yCornell","modpls10","modpls6cv"))

# \donttest{
#A binary response example
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
modpls.aze <- plsR(yaze_compl,Xaze_compl,10,MClassed=TRUE,typeVC="standard")
#> ____************************************************____
#> ____TypeVC____ standard ____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls.aze
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 10
#> Coefficients:
#>                   [,1]
#> Intercept  0.308019808
#> D2S138    -0.131218617
#> D18S61     0.450219840
#> D16S422   -0.183848373
#> D17S794    0.269084083
#> D6S264     0.105061098
#> D14S65    -0.052837918
#> D18S53     0.008489326
#> D17S790   -0.213122117
#> D1S225     0.046277290
#> D3S1282   -0.095666162
#> D9S179     0.054547887
#> D5S430    -0.126491043
#> D8S283     0.106373432
#> D11S916    0.111623381
#> D2S159     0.056759714
#> D16S408    0.010288859
#> D5S346     0.233674850
#> D10S191    0.010715856
#> D13S173    0.074148740
#> D6S275    -0.123145693
#> D15S127    0.064566148
#> D1S305     0.190500469
#> D4S394    -0.142585807
#> D20S107   -0.184483600
#> D1S197    -0.284373695
#> D1S207     0.186728597
#> D10S192    0.195516079
#> D3S1283   -0.096309755
#> D4S414     0.017960975
#> D8S264     0.121051206
#> D22S928   -0.049091794
#> TP53      -0.391965015
#> D9S171    -0.012315197
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#>                 AIC      Q2cum_Y LimQ2_Y        Q2_Y  PRESS_Y    RSS_Y
#> Nb_Comp_0  154.6179           NA      NA          NA       NA 25.91346
#> Nb_Comp_1  126.4083  -0.09840016  0.0975 -0.09840016 28.46335 19.38086
#> Nb_Comp_2  119.3375  -0.19018163  0.0975 -0.08355923 21.00031 17.76209
#> Nb_Comp_3  114.2313  -0.77332918  0.0975 -0.48996518 26.46489 16.58896
#> Nb_Comp_4  112.3463  -1.64635954  0.0975 -0.49231150 24.75590 15.98071
#> Nb_Comp_5  113.2362  -2.74242209  0.0975 -0.41417749 22.59955 15.81104
#> Nb_Comp_6  114.7620  -4.46009228  0.0975 -0.45897286 23.06788 15.73910
#> Nb_Comp_7  116.5264  -7.36664482  0.0975 -0.53232663 24.11744 15.70350
#> Nb_Comp_8  118.4601 -11.80011367  0.0975 -0.52989806 24.02475 15.69348
#> Nb_Comp_9  120.4452 -17.90787273  0.0975 -0.47716444 23.18185 15.69123
#> Nb_Comp_10 122.4395 -26.50536212  0.0975 -0.45470421 22.82610 15.69037
#>                 R2_Y MissClassed R2_residY RSS_residY PRESS_residY   Q2_residY
#> Nb_Comp_0         NA          49        NA  103.00000           NA          NA
#> Nb_Comp_1  0.2520929          27 0.2520929   77.03443    113.13522 -0.09840016
#> Nb_Comp_2  0.3145613          25 0.3145613   70.60018     83.47137 -0.08355923
#> Nb_Comp_3  0.3598323          27 0.3598323   65.93728    105.19181 -0.48996518
#> Nb_Comp_4  0.3833049          23 0.3833049   63.51960     98.39895 -0.49231150
#> Nb_Comp_5  0.3898523          22 0.3898523   62.84522     89.82798 -0.41417749
#> Nb_Comp_6  0.3926285          21 0.3926285   62.55927     91.68947 -0.45897286
#> Nb_Comp_7  0.3940024          20 0.3940024   62.41775     95.86123 -0.53232663
#> Nb_Comp_8  0.3943888          20 0.3943888   62.37795     95.49280 -0.52989806
#> Nb_Comp_9  0.3944758          19 0.3944758   62.36900     92.14249 -0.47716444
#> Nb_Comp_10 0.3945088          19 0.3945088   62.36560     90.72844 -0.45470421
#>             LimQ2 Q2cum_residY  AIC.std  DoF.dof sigmahat.dof   AIC.dof
#> Nb_Comp_0      NA           NA 298.1344  1.00000    0.5015845 0.2540061
#> Nb_Comp_1  0.0975  -0.09840016 269.9248 22.55372    0.4848429 0.2883114
#> Nb_Comp_2  0.0975  -0.19018163 262.8540 27.31542    0.4781670 0.2908950
#> Nb_Comp_3  0.0975  -0.77332918 257.7478 30.52370    0.4719550 0.2902572
#> Nb_Comp_4  0.0975  -1.64635954 255.8628 34.00000    0.4744263 0.3008285
#> Nb_Comp_5  0.0975  -2.74242209 256.7527 34.00000    0.4719012 0.2976347
#> Nb_Comp_6  0.0975  -4.46009228 258.2785 34.00000    0.4708264 0.2962804
#> Nb_Comp_7  0.0975  -7.36664482 260.0429 33.71066    0.4693382 0.2937976
#> Nb_Comp_8  0.0975 -11.80011367 261.9766 34.00000    0.4701436 0.2954217
#> Nb_Comp_9  0.0975 -17.90787273 263.9617 33.87284    0.4696894 0.2945815
#> Nb_Comp_10 0.0975 -26.50536212 265.9560 34.00000    0.4700970 0.2953632
#>              BIC.dof  GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
#> Nb_Comp_0  0.2604032 -67.17645         1      0.5015845 0.2540061 0.2604032
#> Nb_Comp_1  0.4231184 -53.56607         2      0.4358996 0.1936625 0.2033251
#> Nb_Comp_2  0.4496983 -52.42272         3      0.4193593 0.1809352 0.1943501
#> Nb_Comp_3  0.4631316 -51.93343         4      0.4072955 0.1722700 0.1891422
#> Nb_Comp_4  0.4954133 -50.37079         5      0.4017727 0.1691819 0.1897041
#> Nb_Comp_5  0.4901536 -50.65724         6      0.4016679 0.1706451 0.1952588
#> Nb_Comp_6  0.4879234 -50.78005         7      0.4028135 0.1731800 0.2020601
#> Nb_Comp_7  0.4826103 -51.05525         8      0.4044479 0.1761610 0.2094352
#> Nb_Comp_8  0.4865092 -50.85833         9      0.4064413 0.1794902 0.2172936
#> Nb_Comp_9  0.4845867 -50.95616        10      0.4085682 0.1829787 0.2254232
#> Nb_Comp_10 0.4864128 -50.86368        11      0.4107477 0.1865584 0.2337468
#>            GMDL.naive
#> Nb_Comp_0   -67.17645
#> Nb_Comp_1   -79.67755
#> Nb_Comp_2   -81.93501
#> Nb_Comp_3   -83.31503
#> Nb_Comp_4   -83.23369
#> Nb_Comp_5   -81.93513
#> Nb_Comp_6   -80.42345
#> Nb_Comp_7   -78.87607
#> Nb_Comp_8   -77.31942
#> Nb_Comp_9   -75.80069
#> Nb_Comp_10  -74.33325

#Direct access to not cross-validated values
modpls.aze$AIC
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]    [,7]     [,8]
#> [1,] 154.6179 126.4083 119.3375 114.2313 112.3463 113.2362 114.762 116.5264
#>          [,9]    [,10]    [,11]
#> [1,] 118.4601 120.4452 122.4395
modpls.aze$AIC.std
#>          [,1]     [,2]    [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
#> [1,] 298.1344 269.9248 262.854 257.7478 255.8628 256.7527 258.2785 260.0429
#>          [,9]    [,10]   [,11]
#> [1,] 261.9766 263.9617 265.956
modpls.aze$MissClassed
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
#> [1,]   49   27   25   27   23   22   21   20   20    19    19

#Raw predicted values (not really probabily since not constrained in [0,1]
modpls.aze$Probs
#>          [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
#> 1   0.4711538  0.46105744  0.63458141  0.67961627  0.69452246  0.64534767
#> 2   0.4711538  0.26911816  0.26581497  0.16989268  0.11760783  0.18096700
#> 3   0.4711538 -0.09080494 -0.05104846 -0.17166916 -0.21455242 -0.21725391
#> 4   0.4711538  0.36370490  0.54112657  0.50724821  0.55508565  0.57773785
#> 5   0.4711538 -0.04408124  0.07399231 -0.07129909 -0.24018962 -0.23445282
#> 6   0.4711538 -0.03776963  0.17275288  0.01806190 -0.02597539 -0.06284454
#> 7   0.4711538 -0.06930728 -0.19928456 -0.09137261  0.01116043  0.06506517
#> 8   0.4711538  0.27158233  0.24933653  0.11611522  0.12804487  0.04118115
#> 9   0.4711538  0.76949497  0.60296556  0.47237794  0.51581382  0.49885092
#> 10  0.4711538  0.22096539  0.34482052  0.34660816  0.38580378  0.43528451
#> 11  0.4711538  0.87147914  0.84865348  0.76372713  0.73582307  0.76725258
#> 12  0.4711538  0.79792975  0.67828859  0.73747065  0.67844373  0.67908585
#> 13  0.4711538  0.09432664 -0.04344681  0.10780023  0.22488457  0.26144110
#> 14  0.4711538  0.28543133  0.29293086  0.37385135  0.37961001  0.30207755
#> 15  0.4711538  0.30637401  0.27816310  0.18074751  0.01510565  0.05074255
#> 16  0.4711538  0.12893721 -0.07276258 -0.05146556 -0.09988241 -0.06790398
#> 17  0.4711538  0.59910292  0.41302582  0.40055026  0.32477692  0.32429673
#> 18  0.4711538  0.60665328  0.51461671  0.70351041  0.63093215  0.60232625
#> 19  0.4711538  0.18381206  0.36596047  0.33591603  0.25289460  0.21859872
#> 20  0.4711538  0.28422822  0.15202852  0.29980632  0.42075827  0.43463142
#> 21  0.4711538  0.35982960  0.40300075  0.63220247  0.58056075  0.55273462
#> 22  0.4711538  0.31574837  0.28422517  0.37116719  0.27156145  0.25529246
#> 23  0.4711538  0.41682757  0.36900849  0.23791176  0.25730930  0.24221472
#> 24  0.4711538  0.30288056  0.15972272  0.19362318  0.07194768  0.07250435
#> 25  0.4711538  0.29650015  0.48867070  0.61025747  0.59737342  0.67704212
#> 26  0.4711538  0.23008536  0.32001822  0.15862645  0.26312675  0.22513847
#> 27  0.4711538  0.67526360  0.68123526  0.58796740  0.51309143  0.44381568
#> 28  0.4711538  0.15222775  0.13544964  0.15605402  0.15868232  0.10574096
#> 29  0.4711538  0.43138914  0.29576924  0.29706087  0.35294305  0.40257625
#> 30  0.4711538  0.13910581  0.26763382  0.10182481  0.12169881  0.13543560
#> 31  0.4711538  0.40295972  0.43810789  0.28684877  0.41632594  0.45388666
#> 32  0.4711538  0.58422149  0.44366239  0.16615851  0.15367980  0.18291151
#> 33  0.4711538  0.69889100  0.72592310  0.57845537  0.50185886  0.51841164
#> 34  0.4711538  0.35960908  0.24234167  0.09364940  0.08428214  0.10528276
#> 35  0.4711538  0.27914959  0.03731133 -0.08896074 -0.06232370 -0.08231459
#> 36  0.4711538  0.38865989  0.39024480  0.44138316  0.47508801  0.42329842
#> 37  0.4711538  0.62200134  0.42145828  0.38142396  0.29675933  0.28947211
#> 38  0.4711538  0.41311694  0.19970983  0.16702613  0.17059545  0.17073272
#> 39  0.4711538  0.31755422  0.28395547  0.17609314  0.23875966  0.25763504
#> 40  0.4711538  0.62628933  0.51627261  0.52025889  0.47789760  0.47304606
#> 41  0.4711538  0.14894845  0.14069540  0.13906223  0.05976750  0.13670893
#> 42  0.4711538  0.64041121  0.49727655  0.49380105  0.53239359  0.51394469
#> 43  0.4711538  0.38696544  0.54930653  0.62650411  0.65244562  0.56755351
#> 44  0.4711538  0.24204195  0.05825611  0.02230584 -0.01790809 -0.03785626
#> 45  0.4711538  0.10349021  0.14957660  0.16304594  0.15564790  0.17065395
#> 46  0.4711538  0.63322787  0.64625855  0.55541948  0.65203351  0.63670168
#> 47  0.4711538  0.20557889  0.23864853  0.24328712  0.13063078  0.09743813
#> 48  0.4711538  0.32352238  0.34894312  0.21162810  0.20487572  0.16461876
#> 49  0.4711538  0.64888519  0.52290405  0.50926772  0.62061797  0.59597941
#> 50  0.4711538  0.44153005  0.49754241  0.32749149  0.24840605  0.32456388
#> 51  0.4711538  0.32562433  0.23887414  0.26764033  0.24950898  0.30432045
#> 52  0.4711538 -0.23250098 -0.28713647 -0.09216174 -0.12709475 -0.18324647
#> 53  0.4711538  0.53388610  0.47710127  0.60836140  0.48273912  0.43334108
#> 54  0.4711538  0.64191356  0.44931093  0.46371798  0.45275305  0.46653696
#> 55  0.4711538  0.05279255  0.06829351  0.15306458  0.25200214  0.21249173
#> 56  0.4711538  0.59808020  0.64333345  0.53741245  0.64108173  0.57876914
#> 57  0.4711538  0.53093147  0.62138656  0.92046148  0.93004391  0.95130430
#> 58  0.4711538  0.64943097  0.57141374  0.66800038  0.64835800  0.65566321
#> 59  0.4711538  0.42541400  0.43027409  0.30117492  0.36183156  0.29992796
#> 60  0.4711538  0.24537249  0.29963849  0.42931558  0.51048830  0.58927966
#> 61  0.4711538  0.64269314  0.62785202  0.75163561  0.68045267  0.67000184
#> 62  0.4711538  0.51277761  0.60877778  0.75493489  0.66735142  0.63862193
#> 63  0.4711538  0.53377378  0.53228159  0.56245626  0.58414332  0.61176055
#> 64  0.4711538  0.79099666  0.90572246  0.92244949  0.93001276  0.93454809
#> 65  0.4711538  0.73768777  0.61339931  0.72362105  0.70536287  0.69970096
#> 66  0.4711538  0.70767466  0.53408924  0.50675818  0.52181506  0.54559559
#> 67  0.4711538  0.96312042  1.17012215  1.08116795  1.22497425  1.21728258
#> 68  0.4711538  0.31575995  0.57179559  0.77297374  0.78532935  0.78484987
#> 69  0.4711538  0.69505872  0.78176548  0.74300700  0.72711033  0.70750770
#> 70  0.4711538  0.72276362  0.90232185  0.89364576  0.84428623  0.92659977
#> 71  0.4711538  0.50950893  0.39503961  0.45591683  0.38297596  0.35086204
#> 72  0.4711538  0.14720074  0.13538571 -0.04473829 -0.05529233  0.02748516
#> 73  0.4711538  0.49275110  0.44937896  0.41856171  0.62470016  0.61654596
#> 74  0.4711538  0.65674324  0.69439259  0.75479685  0.88511667  0.92560996
#> 75  0.4711538  0.68716407  0.57541914  0.59945962  0.54581071  0.55228791
#> 76  0.4711538  0.54839542  0.50508123  0.52627725  0.55765709  0.52543838
#> 77  0.4711538  0.77317727  0.79812663  0.93073165  1.10301473  1.08723742
#> 78  0.4711538  0.85322027  0.76128342  0.81061207  0.85796753  0.87947603
#> 79  0.4711538  0.81659194  0.90228252  0.80744839  0.70383361  0.68468090
#> 80  0.4711538  0.55964651  0.44326524  0.39507689  0.36149039  0.32071350
#> 81  0.4711538  0.87105473  0.86695796  0.89177640  0.74816339  0.69831750
#> 82  0.4711538  0.47715869  0.68930595  0.71280202  0.73606020  0.78321326
#> 83  0.4711538  0.80974821  0.87138779  0.97466313  0.93082943  0.95560886
#> 84  0.4711538  0.67739807  0.85743609  0.98894432  0.96011041  0.90800271
#> 85  0.4711538  0.57131444  0.34250950  0.33855791  0.31118498  0.31383288
#> 86  0.4711538  0.84958765  0.97611051  0.93090902  0.91560248  0.86222031
#> 87  0.4711538  0.57644613  0.41449248  0.48714466  0.54811918  0.57041511
#> 88  0.4711538  0.75932310  0.71214369  0.52234742  0.59011684  0.59023780
#> 89  0.4711538  0.53031516  0.47090892  0.42433053  0.38847912  0.39218094
#> 90  0.4711538  0.76770402  1.07649866  1.00864429  1.06363018  1.09017457
#> 91  0.4711538  0.38643842  0.37696993  0.44452861  0.49450298  0.46628856
#> 92  0.4711538  0.92591633  1.03707888  0.96084369  0.95688931  0.93400393
#> 93  0.4711538  0.66726042  0.89247800  0.87390628  0.87335977  0.95801535
#> 94  0.4711538  0.32634752  0.41373057  0.48066349  0.67273089  0.62115180
#> 95  0.4711538  0.50472276  0.77159222  0.71730564  0.62350221  0.64335334
#> 96  0.4711538  0.34622269  0.33150717  0.49412629  0.44574013  0.46889514
#> 97  0.4711538  0.55805257  0.50280611  0.58541977  0.52239953  0.53556273
#> 98  0.4711538  0.78090964  0.73429355  0.79385683  0.86651416  0.88151677
#> 99  0.4711538  0.21116352  0.10917861  0.02565398  0.18342015  0.15222876
#> 100 0.4711538  0.66672702  0.78264411  0.86306662  0.75733969  0.77632472
#> 101 0.4711538  0.45317545  0.50149615  0.62617428  0.70904267  0.78134354
#> 102 0.4711538  0.74435376  0.66135006  0.72568147  0.70203564  0.77593538
#> 103 0.4711538  0.34690226  0.56605434  0.52782336  0.50951738  0.46795757
#> 104 0.4711538  0.69496014  0.80515138  0.78871059  0.78008789  0.78042831
#>            [,7]         [,8]         [,9]       [,10]       [,11]
#> 1    0.64037279  0.627340571  0.651243676  0.65354280  0.65838797
#> 2    0.21304385  0.202666528  0.206463548  0.21046038  0.20470356
#> 3   -0.22444089 -0.193652144 -0.201652437 -0.20167289 -0.20081532
#> 4    0.58413761  0.600377920  0.608768219  0.60784745  0.60193905
#> 5   -0.26327049 -0.311781941 -0.310765976 -0.31066830 -0.31401382
#> 6   -0.10341096 -0.076840858 -0.080016598 -0.08436785 -0.08777135
#> 7    0.10261786  0.132750517  0.144750243  0.13944940  0.14173177
#> 8    0.04809780  0.063736599  0.063261540  0.07570783  0.07715150
#> 9    0.44543808  0.444943670  0.447021225  0.44582742  0.44748513
#> 10   0.43490588  0.407005593  0.413663760  0.41349216  0.41350336
#> 11   0.78695284  0.777623618  0.783734315  0.78262765  0.77949531
#> 12   0.65654818  0.642154505  0.633436560  0.63197252  0.62875264
#> 13   0.21708341  0.187509114  0.186533541  0.17822088  0.17842513
#> 14   0.28651410  0.260501290  0.279081223  0.27196942  0.26996735
#> 15   0.05784774  0.095949877  0.090894676  0.08865039  0.09080522
#> 16  -0.06239212 -0.039505632 -0.023469898 -0.02045198 -0.02715190
#> 17   0.33482409  0.336193547  0.335468481  0.33501592  0.33670840
#> 18   0.59257402  0.580678556  0.581449676  0.58013547  0.57927640
#> 19   0.24272344  0.246701307  0.240991178  0.23822863  0.23157123
#> 20   0.40555564  0.386074751  0.400419290  0.40843493  0.40860630
#> 21   0.53582205  0.549336181  0.539598759  0.54139679  0.54098845
#> 22   0.27214775  0.265323031  0.262889367  0.27124503  0.27372049
#> 23   0.26310951  0.254264842  0.244111736  0.24044626  0.24169731
#> 24   0.10789143  0.136298989  0.142908568  0.14863967  0.15404679
#> 25   0.62754156  0.650367844  0.644944061  0.64644697  0.64416177
#> 26   0.18477380  0.190402191  0.199245619  0.20152378  0.20582432
#> 27   0.44358238  0.454283166  0.446210009  0.43311399  0.43568840
#> 28   0.13769251  0.118081488  0.117589648  0.11048814  0.11155803
#> 29   0.42759376  0.424018002  0.417256036  0.42362830  0.42160066
#> 30   0.10952676  0.168692282  0.174041713  0.17387211  0.17480429
#> 31   0.45876287  0.432435790  0.425259491  0.43329412  0.43856907
#> 32   0.11742399  0.116981896  0.108778824  0.10636129  0.10689920
#> 33   0.47697376  0.450738829  0.452062165  0.44881973  0.44992624
#> 34   0.09863470  0.095862956  0.092253997  0.09980718  0.10084230
#> 35  -0.08390506 -0.085155814 -0.086690885 -0.08262604 -0.08272575
#> 36   0.45381739  0.433667887  0.449594388  0.44854107  0.44960414
#> 37   0.30022320  0.311627620  0.315020647  0.31958491  0.32067580
#> 38   0.15959719  0.160997289  0.151222415  0.15079738  0.14817778
#> 39   0.27800144  0.253643110  0.255071837  0.25875102  0.25674198
#> 40   0.51555833  0.530347073  0.528402618  0.52790558  0.52538704
#> 41   0.09275154  0.101869980  0.090604733  0.09445259  0.09150467
#> 42   0.50207194  0.483136866  0.487491071  0.48860245  0.49212211
#> 43   0.57336835  0.573091866  0.546609274  0.54001848  0.54366888
#> 44  -0.01451487 -0.004369241 -0.002647953 -0.00844687 -0.01073887
#> 45   0.19657318  0.164988597  0.170522098  0.16781405  0.16715155
#> 46   0.65287559  0.645084587  0.651535848  0.65177845  0.65178893
#> 47   0.12452036  0.119913760  0.117053912  0.11873700  0.11591426
#> 48   0.18275993  0.166998459  0.160605969  0.16869180  0.16855238
#> 49   0.58006784  0.613009102  0.608873759  0.60785525  0.61021103
#> 50   0.33208894  0.314978063  0.311974842  0.30517646  0.31174053
#> 51   0.32816749  0.318321881  0.320797741  0.31281691  0.31540371
#> 52  -0.19584259 -0.184768370 -0.177691131 -0.18225253 -0.18172040
#> 53   0.40794213  0.415136651  0.416044038  0.42408314  0.42075636
#> 54   0.46480524  0.479688395  0.471302624  0.46613648  0.46656474
#> 55   0.23097197  0.213772954  0.189358085  0.18930563  0.19050731
#> 56   0.57331393  0.574558380  0.579775660  0.57922184  0.57800858
#> 57   0.96183872  0.975414458  0.968855613  0.96385549  0.96028958
#> 58   0.64361788  0.631632631  0.641013340  0.63785489  0.64045306
#> 59   0.28643229  0.289148607  0.278791345  0.28784917  0.28782462
#> 60   0.55978204  0.559023840  0.561630138  0.55671889  0.55726966
#> 61   0.65787202  0.659412106  0.650588243  0.64930310  0.65091617
#> 62   0.60705201  0.603977438  0.589826600  0.58812271  0.58793743
#> 63   0.63813827  0.617717657  0.614454772  0.61166047  0.60985403
#> 64   1.00166279  1.008968255  1.008852814  1.01022555  1.00666729
#> 65   0.69297263  0.697694744  0.689810628  0.69214943  0.69038662
#> 66   0.53663407  0.532369158  0.535934708  0.53171176  0.53102146
#> 67   1.22111150  1.202569147  1.194030443  1.19310867  1.19228184
#> 68   0.80071187  0.812462410  0.796883689  0.80360414  0.80689017
#> 69   0.74791867  0.774669023  0.764357440  0.76435231  0.76730276
#> 70   0.93952180  0.926356875  0.916496158  0.91637035  0.92383169
#> 71   0.31179970  0.319584982  0.342996678  0.34334588  0.34349096
#> 72   0.08069763  0.064883087  0.053282640  0.04500807  0.04571864
#> 73   0.63914960  0.656024336  0.647841400  0.64971036  0.64930911
#> 74   0.94540783  0.945531101  0.947433351  0.95548576  0.95086945
#> 75   0.56609663  0.581051527  0.586510546  0.58350518  0.58195688
#> 76   0.49807985  0.507124137  0.503700114  0.50352891  0.50289031
#> 77   1.06463806  1.090636226  1.099163425  1.09692704  1.09684987
#> 78   0.88947890  0.914074686  0.921993535  0.92611779  0.92473772
#> 79   0.70672170  0.689699520  0.693322761  0.69306283  0.69031633
#> 80   0.30181332  0.296560012  0.282907508  0.28672758  0.28334638
#> 81   0.69871492  0.692603330  0.692711040  0.69448149  0.69353087
#> 82   0.73754433  0.755515607  0.753806256  0.76075515  0.76006115
#> 83   0.95554583  0.981114506  0.967899112  0.96789876  0.97167928
#> 84   0.92460814  0.928255751  0.934569121  0.93157477  0.93560641
#> 85   0.31932547  0.326702214  0.334191767  0.33780085  0.33863677
#> 86   0.82950069  0.806588554  0.823792983  0.82202715  0.81981455
#> 87   0.56750119  0.560439488  0.549720853  0.54609905  0.54656224
#> 88   0.57484476  0.588841816  0.582284530  0.57334028  0.57098492
#> 89   0.44028895  0.455790854  0.462215323  0.46149391  0.46635298
#> 90   1.08703587  1.113909884  1.123382027  1.12669615  1.12559691
#> 91   0.50591629  0.528734399  0.542033081  0.53789411  0.54025902
#> 92   0.95078882  0.944122848  0.933909143  0.93429933  0.92818920
#> 93   0.95048831  0.984993815  0.999870929  0.99916201  0.99970721
#> 94   0.63222931  0.617803323  0.604620965  0.60316670  0.59998131
#> 95   0.60173453  0.598838861  0.615665753  0.61062288  0.61003734
#> 96   0.42461082  0.393735123  0.382307431  0.38698306  0.38928062
#> 97   0.55493331  0.545341350  0.548945997  0.55196226  0.55110104
#> 98   0.84875293  0.849088124  0.833445596  0.82896512  0.82882885
#> 99   0.12817884  0.125184677  0.142524174  0.14250387  0.14467219
#> 100  0.76010896  0.740234308  0.744642249  0.75159300  0.75722807
#> 101  0.80270481  0.778624924  0.777761525  0.78102072  0.77766043
#> 102  0.77647730  0.755860583  0.764875857  0.76840548  0.77181270
#> 103  0.50588630  0.488855008  0.495423757  0.50188675  0.50526664
#> 104  0.81071639  0.804180721  0.825464815  0.81861016  0.81635531
#Truncated to [0;1] predicted values (true probabilities)
modpls.aze$Probs.trc
#>          [,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]
#> 1   0.4711538 0.46105744 0.63458141 0.67961627 0.69452246 0.64534767 0.64037279
#> 2   0.4711538 0.26911816 0.26581497 0.16989268 0.11760783 0.18096700 0.21304385
#> 3   0.4711538 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 4   0.4711538 0.36370490 0.54112657 0.50724821 0.55508565 0.57773785 0.58413761
#> 5   0.4711538 0.00000000 0.07399231 0.00000000 0.00000000 0.00000000 0.00000000
#> 6   0.4711538 0.00000000 0.17275288 0.01806190 0.00000000 0.00000000 0.00000000
#> 7   0.4711538 0.00000000 0.00000000 0.00000000 0.01116043 0.06506517 0.10261786
#> 8   0.4711538 0.27158233 0.24933653 0.11611522 0.12804487 0.04118115 0.04809780
#> 9   0.4711538 0.76949497 0.60296556 0.47237794 0.51581382 0.49885092 0.44543808
#> 10  0.4711538 0.22096539 0.34482052 0.34660816 0.38580378 0.43528451 0.43490588
#> 11  0.4711538 0.87147914 0.84865348 0.76372713 0.73582307 0.76725258 0.78695284
#> 12  0.4711538 0.79792975 0.67828859 0.73747065 0.67844373 0.67908585 0.65654818
#> 13  0.4711538 0.09432664 0.00000000 0.10780023 0.22488457 0.26144110 0.21708341
#> 14  0.4711538 0.28543133 0.29293086 0.37385135 0.37961001 0.30207755 0.28651410
#> 15  0.4711538 0.30637401 0.27816310 0.18074751 0.01510565 0.05074255 0.05784774
#> 16  0.4711538 0.12893721 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 17  0.4711538 0.59910292 0.41302582 0.40055026 0.32477692 0.32429673 0.33482409
#> 18  0.4711538 0.60665328 0.51461671 0.70351041 0.63093215 0.60232625 0.59257402
#> 19  0.4711538 0.18381206 0.36596047 0.33591603 0.25289460 0.21859872 0.24272344
#> 20  0.4711538 0.28422822 0.15202852 0.29980632 0.42075827 0.43463142 0.40555564
#> 21  0.4711538 0.35982960 0.40300075 0.63220247 0.58056075 0.55273462 0.53582205
#> 22  0.4711538 0.31574837 0.28422517 0.37116719 0.27156145 0.25529246 0.27214775
#> 23  0.4711538 0.41682757 0.36900849 0.23791176 0.25730930 0.24221472 0.26310951
#> 24  0.4711538 0.30288056 0.15972272 0.19362318 0.07194768 0.07250435 0.10789143
#> 25  0.4711538 0.29650015 0.48867070 0.61025747 0.59737342 0.67704212 0.62754156
#> 26  0.4711538 0.23008536 0.32001822 0.15862645 0.26312675 0.22513847 0.18477380
#> 27  0.4711538 0.67526360 0.68123526 0.58796740 0.51309143 0.44381568 0.44358238
#> 28  0.4711538 0.15222775 0.13544964 0.15605402 0.15868232 0.10574096 0.13769251
#> 29  0.4711538 0.43138914 0.29576924 0.29706087 0.35294305 0.40257625 0.42759376
#> 30  0.4711538 0.13910581 0.26763382 0.10182481 0.12169881 0.13543560 0.10952676
#> 31  0.4711538 0.40295972 0.43810789 0.28684877 0.41632594 0.45388666 0.45876287
#> 32  0.4711538 0.58422149 0.44366239 0.16615851 0.15367980 0.18291151 0.11742399
#> 33  0.4711538 0.69889100 0.72592310 0.57845537 0.50185886 0.51841164 0.47697376
#> 34  0.4711538 0.35960908 0.24234167 0.09364940 0.08428214 0.10528276 0.09863470
#> 35  0.4711538 0.27914959 0.03731133 0.00000000 0.00000000 0.00000000 0.00000000
#> 36  0.4711538 0.38865989 0.39024480 0.44138316 0.47508801 0.42329842 0.45381739
#> 37  0.4711538 0.62200134 0.42145828 0.38142396 0.29675933 0.28947211 0.30022320
#> 38  0.4711538 0.41311694 0.19970983 0.16702613 0.17059545 0.17073272 0.15959719
#> 39  0.4711538 0.31755422 0.28395547 0.17609314 0.23875966 0.25763504 0.27800144
#> 40  0.4711538 0.62628933 0.51627261 0.52025889 0.47789760 0.47304606 0.51555833
#> 41  0.4711538 0.14894845 0.14069540 0.13906223 0.05976750 0.13670893 0.09275154
#> 42  0.4711538 0.64041121 0.49727655 0.49380105 0.53239359 0.51394469 0.50207194
#> 43  0.4711538 0.38696544 0.54930653 0.62650411 0.65244562 0.56755351 0.57336835
#> 44  0.4711538 0.24204195 0.05825611 0.02230584 0.00000000 0.00000000 0.00000000
#> 45  0.4711538 0.10349021 0.14957660 0.16304594 0.15564790 0.17065395 0.19657318
#> 46  0.4711538 0.63322787 0.64625855 0.55541948 0.65203351 0.63670168 0.65287559
#> 47  0.4711538 0.20557889 0.23864853 0.24328712 0.13063078 0.09743813 0.12452036
#> 48  0.4711538 0.32352238 0.34894312 0.21162810 0.20487572 0.16461876 0.18275993
#> 49  0.4711538 0.64888519 0.52290405 0.50926772 0.62061797 0.59597941 0.58006784
#> 50  0.4711538 0.44153005 0.49754241 0.32749149 0.24840605 0.32456388 0.33208894
#> 51  0.4711538 0.32562433 0.23887414 0.26764033 0.24950898 0.30432045 0.32816749
#> 52  0.4711538 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 53  0.4711538 0.53388610 0.47710127 0.60836140 0.48273912 0.43334108 0.40794213
#> 54  0.4711538 0.64191356 0.44931093 0.46371798 0.45275305 0.46653696 0.46480524
#> 55  0.4711538 0.05279255 0.06829351 0.15306458 0.25200214 0.21249173 0.23097197
#> 56  0.4711538 0.59808020 0.64333345 0.53741245 0.64108173 0.57876914 0.57331393
#> 57  0.4711538 0.53093147 0.62138656 0.92046148 0.93004391 0.95130430 0.96183872
#> 58  0.4711538 0.64943097 0.57141374 0.66800038 0.64835800 0.65566321 0.64361788
#> 59  0.4711538 0.42541400 0.43027409 0.30117492 0.36183156 0.29992796 0.28643229
#> 60  0.4711538 0.24537249 0.29963849 0.42931558 0.51048830 0.58927966 0.55978204
#> 61  0.4711538 0.64269314 0.62785202 0.75163561 0.68045267 0.67000184 0.65787202
#> 62  0.4711538 0.51277761 0.60877778 0.75493489 0.66735142 0.63862193 0.60705201
#> 63  0.4711538 0.53377378 0.53228159 0.56245626 0.58414332 0.61176055 0.63813827
#> 64  0.4711538 0.79099666 0.90572246 0.92244949 0.93001276 0.93454809 1.00000000
#> 65  0.4711538 0.73768777 0.61339931 0.72362105 0.70536287 0.69970096 0.69297263
#> 66  0.4711538 0.70767466 0.53408924 0.50675818 0.52181506 0.54559559 0.53663407
#> 67  0.4711538 0.96312042 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
#> 68  0.4711538 0.31575995 0.57179559 0.77297374 0.78532935 0.78484987 0.80071187
#> 69  0.4711538 0.69505872 0.78176548 0.74300700 0.72711033 0.70750770 0.74791867
#> 70  0.4711538 0.72276362 0.90232185 0.89364576 0.84428623 0.92659977 0.93952180
#> 71  0.4711538 0.50950893 0.39503961 0.45591683 0.38297596 0.35086204 0.31179970
#> 72  0.4711538 0.14720074 0.13538571 0.00000000 0.00000000 0.02748516 0.08069763
#> 73  0.4711538 0.49275110 0.44937896 0.41856171 0.62470016 0.61654596 0.63914960
#> 74  0.4711538 0.65674324 0.69439259 0.75479685 0.88511667 0.92560996 0.94540783
#> 75  0.4711538 0.68716407 0.57541914 0.59945962 0.54581071 0.55228791 0.56609663
#> 76  0.4711538 0.54839542 0.50508123 0.52627725 0.55765709 0.52543838 0.49807985
#> 77  0.4711538 0.77317727 0.79812663 0.93073165 1.00000000 1.00000000 1.00000000
#> 78  0.4711538 0.85322027 0.76128342 0.81061207 0.85796753 0.87947603 0.88947890
#> 79  0.4711538 0.81659194 0.90228252 0.80744839 0.70383361 0.68468090 0.70672170
#> 80  0.4711538 0.55964651 0.44326524 0.39507689 0.36149039 0.32071350 0.30181332
#> 81  0.4711538 0.87105473 0.86695796 0.89177640 0.74816339 0.69831750 0.69871492
#> 82  0.4711538 0.47715869 0.68930595 0.71280202 0.73606020 0.78321326 0.73754433
#> 83  0.4711538 0.80974821 0.87138779 0.97466313 0.93082943 0.95560886 0.95554583
#> 84  0.4711538 0.67739807 0.85743609 0.98894432 0.96011041 0.90800271 0.92460814
#> 85  0.4711538 0.57131444 0.34250950 0.33855791 0.31118498 0.31383288 0.31932547
#> 86  0.4711538 0.84958765 0.97611051 0.93090902 0.91560248 0.86222031 0.82950069
#> 87  0.4711538 0.57644613 0.41449248 0.48714466 0.54811918 0.57041511 0.56750119
#> 88  0.4711538 0.75932310 0.71214369 0.52234742 0.59011684 0.59023780 0.57484476
#> 89  0.4711538 0.53031516 0.47090892 0.42433053 0.38847912 0.39218094 0.44028895
#> 90  0.4711538 0.76770402 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
#> 91  0.4711538 0.38643842 0.37696993 0.44452861 0.49450298 0.46628856 0.50591629
#> 92  0.4711538 0.92591633 1.00000000 0.96084369 0.95688931 0.93400393 0.95078882
#> 93  0.4711538 0.66726042 0.89247800 0.87390628 0.87335977 0.95801535 0.95048831
#> 94  0.4711538 0.32634752 0.41373057 0.48066349 0.67273089 0.62115180 0.63222931
#> 95  0.4711538 0.50472276 0.77159222 0.71730564 0.62350221 0.64335334 0.60173453
#> 96  0.4711538 0.34622269 0.33150717 0.49412629 0.44574013 0.46889514 0.42461082
#> 97  0.4711538 0.55805257 0.50280611 0.58541977 0.52239953 0.53556273 0.55493331
#> 98  0.4711538 0.78090964 0.73429355 0.79385683 0.86651416 0.88151677 0.84875293
#> 99  0.4711538 0.21116352 0.10917861 0.02565398 0.18342015 0.15222876 0.12817884
#> 100 0.4711538 0.66672702 0.78264411 0.86306662 0.75733969 0.77632472 0.76010896
#> 101 0.4711538 0.45317545 0.50149615 0.62617428 0.70904267 0.78134354 0.80270481
#> 102 0.4711538 0.74435376 0.66135006 0.72568147 0.70203564 0.77593538 0.77647730
#> 103 0.4711538 0.34690226 0.56605434 0.52782336 0.50951738 0.46795757 0.50588630
#> 104 0.4711538 0.69496014 0.80515138 0.78871059 0.78008789 0.78042831 0.81071639
#>           [,8]       [,9]      [,10]      [,11]
#> 1   0.62734057 0.65124368 0.65354280 0.65838797
#> 2   0.20266653 0.20646355 0.21046038 0.20470356
#> 3   0.00000000 0.00000000 0.00000000 0.00000000
#> 4   0.60037792 0.60876822 0.60784745 0.60193905
#> 5   0.00000000 0.00000000 0.00000000 0.00000000
#> 6   0.00000000 0.00000000 0.00000000 0.00000000
#> 7   0.13275052 0.14475024 0.13944940 0.14173177
#> 8   0.06373660 0.06326154 0.07570783 0.07715150
#> 9   0.44494367 0.44702123 0.44582742 0.44748513
#> 10  0.40700559 0.41366376 0.41349216 0.41350336
#> 11  0.77762362 0.78373432 0.78262765 0.77949531
#> 12  0.64215450 0.63343656 0.63197252 0.62875264
#> 13  0.18750911 0.18653354 0.17822088 0.17842513
#> 14  0.26050129 0.27908122 0.27196942 0.26996735
#> 15  0.09594988 0.09089468 0.08865039 0.09080522
#> 16  0.00000000 0.00000000 0.00000000 0.00000000
#> 17  0.33619355 0.33546848 0.33501592 0.33670840
#> 18  0.58067856 0.58144968 0.58013547 0.57927640
#> 19  0.24670131 0.24099118 0.23822863 0.23157123
#> 20  0.38607475 0.40041929 0.40843493 0.40860630
#> 21  0.54933618 0.53959876 0.54139679 0.54098845
#> 22  0.26532303 0.26288937 0.27124503 0.27372049
#> 23  0.25426484 0.24411174 0.24044626 0.24169731
#> 24  0.13629899 0.14290857 0.14863967 0.15404679
#> 25  0.65036784 0.64494406 0.64644697 0.64416177
#> 26  0.19040219 0.19924562 0.20152378 0.20582432
#> 27  0.45428317 0.44621001 0.43311399 0.43568840
#> 28  0.11808149 0.11758965 0.11048814 0.11155803
#> 29  0.42401800 0.41725604 0.42362830 0.42160066
#> 30  0.16869228 0.17404171 0.17387211 0.17480429
#> 31  0.43243579 0.42525949 0.43329412 0.43856907
#> 32  0.11698190 0.10877882 0.10636129 0.10689920
#> 33  0.45073883 0.45206217 0.44881973 0.44992624
#> 34  0.09586296 0.09225400 0.09980718 0.10084230
#> 35  0.00000000 0.00000000 0.00000000 0.00000000
#> 36  0.43366789 0.44959439 0.44854107 0.44960414
#> 37  0.31162762 0.31502065 0.31958491 0.32067580
#> 38  0.16099729 0.15122241 0.15079738 0.14817778
#> 39  0.25364311 0.25507184 0.25875102 0.25674198
#> 40  0.53034707 0.52840262 0.52790558 0.52538704
#> 41  0.10186998 0.09060473 0.09445259 0.09150467
#> 42  0.48313687 0.48749107 0.48860245 0.49212211
#> 43  0.57309187 0.54660927 0.54001848 0.54366888
#> 44  0.00000000 0.00000000 0.00000000 0.00000000
#> 45  0.16498860 0.17052210 0.16781405 0.16715155
#> 46  0.64508459 0.65153585 0.65177845 0.65178893
#> 47  0.11991376 0.11705391 0.11873700 0.11591426
#> 48  0.16699846 0.16060597 0.16869180 0.16855238
#> 49  0.61300910 0.60887376 0.60785525 0.61021103
#> 50  0.31497806 0.31197484 0.30517646 0.31174053
#> 51  0.31832188 0.32079774 0.31281691 0.31540371
#> 52  0.00000000 0.00000000 0.00000000 0.00000000
#> 53  0.41513665 0.41604404 0.42408314 0.42075636
#> 54  0.47968839 0.47130262 0.46613648 0.46656474
#> 55  0.21377295 0.18935809 0.18930563 0.19050731
#> 56  0.57455838 0.57977566 0.57922184 0.57800858
#> 57  0.97541446 0.96885561 0.96385549 0.96028958
#> 58  0.63163263 0.64101334 0.63785489 0.64045306
#> 59  0.28914861 0.27879135 0.28784917 0.28782462
#> 60  0.55902384 0.56163014 0.55671889 0.55726966
#> 61  0.65941211 0.65058824 0.64930310 0.65091617
#> 62  0.60397744 0.58982660 0.58812271 0.58793743
#> 63  0.61771766 0.61445477 0.61166047 0.60985403
#> 64  1.00000000 1.00000000 1.00000000 1.00000000
#> 65  0.69769474 0.68981063 0.69214943 0.69038662
#> 66  0.53236916 0.53593471 0.53171176 0.53102146
#> 67  1.00000000 1.00000000 1.00000000 1.00000000
#> 68  0.81246241 0.79688369 0.80360414 0.80689017
#> 69  0.77466902 0.76435744 0.76435231 0.76730276
#> 70  0.92635688 0.91649616 0.91637035 0.92383169
#> 71  0.31958498 0.34299668 0.34334588 0.34349096
#> 72  0.06488309 0.05328264 0.04500807 0.04571864
#> 73  0.65602434 0.64784140 0.64971036 0.64930911
#> 74  0.94553110 0.94743335 0.95548576 0.95086945
#> 75  0.58105153 0.58651055 0.58350518 0.58195688
#> 76  0.50712414 0.50370011 0.50352891 0.50289031
#> 77  1.00000000 1.00000000 1.00000000 1.00000000
#> 78  0.91407469 0.92199353 0.92611779 0.92473772
#> 79  0.68969952 0.69332276 0.69306283 0.69031633
#> 80  0.29656001 0.28290751 0.28672758 0.28334638
#> 81  0.69260333 0.69271104 0.69448149 0.69353087
#> 82  0.75551561 0.75380626 0.76075515 0.76006115
#> 83  0.98111451 0.96789911 0.96789876 0.97167928
#> 84  0.92825575 0.93456912 0.93157477 0.93560641
#> 85  0.32670221 0.33419177 0.33780085 0.33863677
#> 86  0.80658855 0.82379298 0.82202715 0.81981455
#> 87  0.56043949 0.54972085 0.54609905 0.54656224
#> 88  0.58884182 0.58228453 0.57334028 0.57098492
#> 89  0.45579085 0.46221532 0.46149391 0.46635298
#> 90  1.00000000 1.00000000 1.00000000 1.00000000
#> 91  0.52873440 0.54203308 0.53789411 0.54025902
#> 92  0.94412285 0.93390914 0.93429933 0.92818920
#> 93  0.98499381 0.99987093 0.99916201 0.99970721
#> 94  0.61780332 0.60462097 0.60316670 0.59998131
#> 95  0.59883886 0.61566575 0.61062288 0.61003734
#> 96  0.39373512 0.38230743 0.38698306 0.38928062
#> 97  0.54534135 0.54894600 0.55196226 0.55110104
#> 98  0.84908812 0.83344560 0.82896512 0.82882885
#> 99  0.12518468 0.14252417 0.14250387 0.14467219
#> 100 0.74023431 0.74464225 0.75159300 0.75722807
#> 101 0.77862492 0.77776152 0.78102072 0.77766043
#> 102 0.75586058 0.76487586 0.76840548 0.77181270
#> 103 0.48885501 0.49542376 0.50188675 0.50526664
#> 104 0.80418072 0.82546481 0.81861016 0.81635531
modpls.aze$Probs-modpls.aze$Probs.trc
#>     [,1]        [,2]        [,3]         [,4]        [,5]        [,6]
#> 1      0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 2      0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 3      0 -0.09080494 -0.05104846 -0.171669164 -0.21455242 -0.21725391
#> 4      0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 5      0 -0.04408124  0.00000000 -0.071299085 -0.24018962 -0.23445282
#> 6      0 -0.03776963  0.00000000  0.000000000 -0.02597539 -0.06284454
#> 7      0 -0.06930728 -0.19928456 -0.091372612  0.00000000  0.00000000
#> 8      0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 9      0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 10     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 11     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 12     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 13     0  0.00000000 -0.04344681  0.000000000  0.00000000  0.00000000
#> 14     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 15     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 16     0  0.00000000 -0.07276258 -0.051465557 -0.09988241 -0.06790398
#> 17     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 18     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 19     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 20     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 21     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 22     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 23     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 24     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 25     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 26     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 27     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 28     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 29     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 30     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 31     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 32     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 33     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 34     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 35     0  0.00000000  0.00000000 -0.088960742 -0.06232370 -0.08231459
#> 36     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 37     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 38     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 39     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 40     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 41     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 42     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 43     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 44     0  0.00000000  0.00000000  0.000000000 -0.01790809 -0.03785626
#> 45     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 46     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 47     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 48     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 49     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 50     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 51     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 52     0 -0.23250098 -0.28713647 -0.092161735 -0.12709475 -0.18324647
#> 53     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 54     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 55     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 56     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 57     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 58     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 59     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 60     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 61     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 62     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 63     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 64     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 65     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 66     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 67     0  0.00000000  0.17012215  0.081167947  0.22497425  0.21728258
#> 68     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 69     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 70     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 71     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 72     0  0.00000000  0.00000000 -0.044738287 -0.05529233  0.00000000
#> 73     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 74     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 75     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 76     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 77     0  0.00000000  0.00000000  0.000000000  0.10301473  0.08723742
#> 78     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 79     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 80     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 81     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 82     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 83     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 84     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 85     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 86     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 87     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 88     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 89     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 90     0  0.00000000  0.07649866  0.008644293  0.06363018  0.09017457
#> 91     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 92     0  0.00000000  0.03707888  0.000000000  0.00000000  0.00000000
#> 93     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 94     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 95     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 96     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 97     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 98     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 99     0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 100    0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 101    0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 102    0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 103    0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#> 104    0  0.00000000  0.00000000  0.000000000  0.00000000  0.00000000
#>             [,7]         [,8]         [,9]       [,10]        [,11]
#> 1    0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 2    0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 3   -0.224440890 -0.193652144 -0.201652437 -0.20167289 -0.200815325
#> 4    0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 5   -0.263270486 -0.311781941 -0.310765976 -0.31066830 -0.314013823
#> 6   -0.103410961 -0.076840858 -0.080016598 -0.08436785 -0.087771351
#> 7    0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 8    0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 9    0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 10   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 11   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 12   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 13   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 14   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 15   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 16  -0.062392124 -0.039505632 -0.023469898 -0.02045198 -0.027151896
#> 17   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 18   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 19   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 20   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 21   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 22   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 23   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 24   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 25   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 26   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 27   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 28   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 29   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 30   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 31   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 32   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 33   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 34   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 35  -0.083905063 -0.085155814 -0.086690885 -0.08262604 -0.082725745
#> 36   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 37   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 38   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 39   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 40   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 41   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 42   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 43   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 44  -0.014514870 -0.004369241 -0.002647953 -0.00844687 -0.010738872
#> 45   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 46   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 47   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 48   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 49   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 50   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 51   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 52  -0.195842587 -0.184768370 -0.177691131 -0.18225253 -0.181720401
#> 53   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 54   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 55   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 56   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 57   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 58   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 59   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 60   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 61   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 62   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 63   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 64   0.001662791  0.008968255  0.008852814  0.01022555  0.006667285
#> 65   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 66   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 67   0.221111495  0.202569147  0.194030443  0.19310867  0.192281835
#> 68   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 69   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 70   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 71   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 72   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 73   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 74   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 75   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 76   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 77   0.064638063  0.090636226  0.099163425  0.09692704  0.096849873
#> 78   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 79   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 80   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 81   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 82   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 83   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 84   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 85   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 86   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 87   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 88   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 89   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 90   0.087035865  0.113909884  0.123382027  0.12669615  0.125596908
#> 91   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 92   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 93   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 94   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 95   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 96   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 97   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 98   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 99   0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 100  0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 101  0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 102  0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 103  0.000000000  0.000000000  0.000000000  0.00000000  0.000000000
#> 104  0.000000000  0.000000000  0.000000000  0.00000000  0.000000000

#Repeated cross validation of the model (NK=100 times)
cv.modpls.aze<-cv.plsR(y~.,data=aze_compl,10,NK=100, verbose=FALSE)
res.cv.modpls.aze<-cvtable(summary(cv.modpls.aze,MClassed=TRUE))
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
#> 
#> NK: 1,  2,  3,  4,  5,  6,  7,  8,  9,  10
#> NK: 11,  12,  13,  14,  15,  16,  17,  18,  19,  20
#> NK: 21,  22,  23,  24,  25,  26,  27,  28,  29,  30
#> NK: 31,  32,  33,  34,  35,  36,  37,  38,  39,  40
#> NK: 41,  42,  43,  44,  45,  46,  47,  48,  49,  50
#> NK: 51,  52,  53,  54,  55,  56,  57,  58,  59,  60
#> NK: 61,  62,  63,  64,  65,  66,  67,  68,  69,  70
#> NK: 71,  72,  73,  74,  75,  76,  77,  78,  79,  80
#> NK: 81,  82,  83,  84,  85,  86,  87,  88,  89,  90
#> NK: 91,  92,  93,  94,  95,  96,  97,  98,  99,  100
#> 
#> CV MissClassed criterion:
#>  1  2  3  4  5  6  7  8  9 10 
#> 23 13 30  6  9  6  2  5  4  2 
#> 
#> CV Q2 criterion:
#>   0 
#> 100 
#> 
#> CV Press criterion:
#>  1  2 
#> 87 13 
#High discrepancy in the number of component choice using repeated cross validation
#and missclassed criterion
plot(res.cv.modpls.aze)


rm(list=c("Xaze_compl","yaze_compl","modpls.aze","cv.modpls.aze","res.cv.modpls.aze"))

#24 predictors
dimX <- 24
#2 components
Astar <- 2
simul_data_UniYX(dimX,Astar)
#>          Y         X1         X2         X3         X4         X5         X6 
#> -7.0771363  0.8422727  0.8221595 -3.4186086  0.8439223  0.8457026 -3.4213949 
#>         X7         X8         X9        X10        X11        X12        X13 
#>  0.8353033  0.8429768 -3.4266111  0.8304896  0.8271263 -3.4174465  0.8170318 
#>        X14        X15        X16        X17        X18        X19        X20 
#>  0.8304136 -3.4256475  0.8375112  0.8457752 -3.4016488  0.8212410  0.8198623 
#>        X21        X22        X23        X24 
#> -3.4032862  0.8601173  0.8448719 -3.4101834 
dataAstar2 <- data.frame(t(replicate(250,simul_data_UniYX(dimX,Astar))))
modpls.A2<- plsR(Y~.,data=dataAstar2,10,typeVC="standard")
#> ____************************************************____
#> ____TypeVC____ standard ____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls.A2
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 10
#> Coefficients:
#>                   [,1]
#> Intercept -0.001658811
#> X1        -1.542319173
#> X2         0.350104546
#> X3         0.418754450
#> X4         0.980105835
#> X5        -0.812813040
#> X6         0.302657443
#> X7        -0.472185638
#> X8         0.604325621
#> X9        -0.266215837
#> X10       -0.264572641
#> X11       -0.075898950
#> X12       -0.428921137
#> X13        1.434394136
#> X14        0.383432708
#> X15        0.286621780
#> X16       -1.977600219
#> X17        0.518186755
#> X18        0.826830157
#> X19        0.804561127
#> X20       -0.778594055
#> X21        0.841879200
#> X22        1.158862847
#> X23        0.237582781
#> X24        0.294068913
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#>                  AIC   Q2cum_Y LimQ2_Y       Q2_Y     PRESS_Y        RSS_Y
#> Nb_Comp_0  1731.9660        NA      NA         NA          NA 14697.723737
#> Nb_Comp_1  1252.4481 0.8502904  0.0975  0.8502904 2200.389956  2141.745483
#> Nb_Comp_2  -176.0635 0.9995067  0.0975  0.9967049    7.057246     7.009945
#> Nb_Comp_3  -184.3281 0.9994557  0.0975 -0.1034300    7.734984     6.727957
#> Nb_Comp_4  -183.4386 0.9993626  0.0975 -0.1710557    7.878812     6.698136
#> Nb_Comp_5  -181.6015 0.9992525  0.0975 -0.1726275    7.854419     6.693775
#> Nb_Comp_6  -179.6245 0.9991440  0.0975 -0.1451351    7.665277     6.693158
#> Nb_Comp_7  -177.6289 0.9990237  0.0975 -0.1405602    7.633950     6.693041
#> Nb_Comp_8  -175.6298 0.9988939  0.0975 -0.1329286    7.582738     6.693016
#> Nb_Comp_9  -173.6300 0.9987543  0.0975 -0.1262950    7.538311     6.693012
#> Nb_Comp_10 -171.6300 0.9986071  0.0975 -0.1181394    7.483721     6.693012
#>                 R2_Y R2_residY  RSS_residY PRESS_residY  Q2_residY  LimQ2
#> Nb_Comp_0         NA        NA 249.0000000           NA         NA     NA
#> Nb_Comp_1  0.8542805 0.8542805  36.2841645   37.2776839  0.8502904 0.0975
#> Nb_Comp_2  0.9995231 0.9995231   0.1187583    0.1195596  0.9967049 0.0975
#> Nb_Comp_3  0.9995422 0.9995422   0.1139810    0.1310414 -0.1034300 0.0975
#> Nb_Comp_4  0.9995443 0.9995443   0.1134758    0.1334781 -0.1710557 0.0975
#> Nb_Comp_5  0.9995446 0.9995446   0.1134019    0.1330648 -0.1726275 0.0975
#> Nb_Comp_6  0.9995446 0.9995446   0.1133915    0.1298605 -0.1451351 0.0975
#> Nb_Comp_7  0.9995446 0.9995446   0.1133895    0.1293298 -0.1405602 0.0975
#> Nb_Comp_8  0.9995446 0.9995446   0.1133891    0.1284622 -0.1329286 0.0975
#> Nb_Comp_9  0.9995446 0.9995446   0.1133890    0.1277095 -0.1262950 0.0975
#> Nb_Comp_10 0.9995446 0.9995446   0.1133890    0.1267847 -0.1181394 0.0975
#>            Q2cum_residY    AIC.std   DoF.dof sigmahat.dof     AIC.dof
#> Nb_Comp_0            NA   712.4673  1.000000    7.6829033 59.26311097
#> Nb_Comp_1     0.8502904   232.9494  2.785762    2.9374507  8.75928011
#> Nb_Comp_2     0.9995067 -1195.5623  3.000077    0.1681247  0.02871818
#> Nb_Comp_3     0.9994557 -1203.8268 20.734302    0.1709334  0.03175838
#> Nb_Comp_4     0.9993626 -1202.9374 19.062064    0.1699382  0.03119649
#> Nb_Comp_5     0.9992525 -1201.1002 17.741793    0.1694014  0.03084817
#> Nb_Comp_6     0.9991440 -1199.1233 18.006552    0.1694898  0.03091080
#> Nb_Comp_7     0.9990237 -1197.1276 18.377109    0.1696233  0.03100215
#> Nb_Comp_8     0.9988939 -1195.1286 18.814384    0.1697826  0.03111083
#> Nb_Comp_9     0.9987543 -1193.1287 19.087018    0.1698824  0.03117886
#> Nb_Comp_10    0.9986071 -1191.1287 19.372455    0.1699870  0.03125027
#>                BIC.dof  GMDL.dof DoF.naive sigmahat.naive   AIC.naive
#> Nb_Comp_0  60.09455611  509.4990         1      7.6829033 59.26311097
#> Nb_Comp_1   9.09786536  280.8634         2      2.9387192  8.70515906
#> Nb_Comp_2   0.02991266 -424.9075         3      0.1684647  0.02872091
#> Nb_Comp_3   0.04029187 -334.1910         4      0.1653766  0.02778701
#> Nb_Comp_4   0.03895066 -343.1796         5      0.1653461  0.02788612
#> Nb_Comp_5   0.03801974 -350.0057         6      0.1656306  0.02809191
#> Nb_Comp_6   0.03819699 -348.6585         7      0.1659634  0.02831509
#> Nb_Comp_7   0.03845000 -346.7635         8      0.1663045  0.02854223
#> Nb_Comp_8   0.03875024 -344.5305         9      0.1666489  0.02877164
#> Nb_Comp_9   0.03893807 -343.1409        10      0.1669957  0.02900305
#> Nb_Comp_10  0.03913522 -341.6881        11      0.1673447  0.02923642
#>              BIC.naive GMDL.naive
#> Nb_Comp_0  60.09455611   509.4990
#> Nb_Comp_1   8.94845174   278.8431
#> Nb_Comp_2   0.02992019  -424.4089
#> Nb_Comp_3   0.02932797  -423.5062
#> Nb_Comp_4   0.02981161  -418.2054
#> Nb_Comp_5   0.03041045  -412.5403
#> Nb_Comp_6   0.03103094  -406.8925
#> Nb_Comp_7   0.03165883  -401.3092
#> Nb_Comp_8   0.03229235  -395.7890
#> Nb_Comp_9   0.03293125  -390.3262
#> Nb_Comp_10  0.03357552  -384.9154
cv.modpls.A2<-cv.plsR(Y~.,data=dataAstar2,10,NK=100, verbose=FALSE)
res.cv.modpls.A2<-cvtable(summary(cv.modpls.A2,verbose=FALSE))
#> Error in is.data.frame(data): object 'dataAstar2' not found
#Perfect choice for the Q2 criterion in PLSR
plot(res.cv.modpls.A2)
#> Error in plot(res.cv.modpls.A2): object 'res.cv.modpls.A2' not found

#Binarized data.frame
simbin1 <- data.frame(dicho(dataAstar2))
modpls.B2 <- plsR(Y~.,data=simbin1,10,typeVC="standard",MClassed=TRUE, verbose=FALSE)
modpls.B2
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#>                    [,1]
#> Intercept -0.0019050038
#> X1         0.0005589827
#> X2         0.0019050038
#> X3         0.1104639451
#> X4         0.0005589827
#> X5         0.1181934433
#> X6         0.1104639451
#> X7         0.0005589827
#> X8         0.0005589827
#> X9         0.1104639451
#> X10        0.0107780812
#> X11       -0.0423555069
#> X12        0.1104639451
#> X13        0.0005589827
#> X14       -0.0423555069
#> X15        0.1104639451
#> X16        0.0537076810
#> X17        0.0005589827
#> X18        0.1104639451
#> X19       -0.0423555069
#> X20        0.0537076810
#> X21        0.1104639451
#> X22        0.0005589827
#> X23        0.0005589827
#> X24        0.1104639451
#> Leave one out cross validated PRESS, Information criteria and Fit statistics:
#>                  AIC   Q2cum_Y LimQ2_Y          Q2_Y  PRESS_Y    RSS_Y
#> Nb_Comp_0 365.869573        NA      NA            NA       NA 62.24400
#> Nb_Comp_1   7.081875 0.7564387  0.0975  7.564387e-01 15.16023 14.70094
#> Nb_Comp_2 -52.059277 0.8063193  0.0975  2.047971e-01 11.69023 11.51150
#> Nb_Comp_3 -50.391747 0.8060248  0.0975 -1.520660e-03 11.52901 11.49620
#> Nb_Comp_4 -48.528869 0.8059478  0.0975 -3.970475e-04 11.50077 11.48990
#> Nb_Comp_5 -46.529028 0.8059368  0.0975 -5.685343e-05 11.49055 11.48989
#> Nb_Comp_6 -44.529028 0.8059292  0.0975 -3.885733e-05 11.49034 11.48989
#>                R2_Y MissClassed R2_residY RSS_residY PRESS_residY     Q2_residY
#> Nb_Comp_0        NA         117        NA  249.00000           NA            NA
#> Nb_Comp_1 0.7638176          13 0.7638176   58.80942     60.64677  7.564387e-01
#> Nb_Comp_2 0.8150584          13 0.8150584   46.05045     46.76543  2.047971e-01
#> Nb_Comp_3 0.8153042          13 0.8153042   45.98925     46.12048 -1.520660e-03
#> Nb_Comp_4 0.8154055          13 0.8154055   45.96403     46.00751 -3.970475e-04
#> Nb_Comp_5 0.8154056          13 0.8154056   45.96400     45.96664 -5.685343e-05
#> Nb_Comp_6 0.8154056          13 0.8154056   45.96400     45.96579 -3.885733e-05
#>            LimQ2 Q2cum_residY  AIC.std  DoF.dof sigmahat.dof    AIC.dof
#> Nb_Comp_0     NA           NA 712.4673 1.000000    0.4999759 0.25097581
#> Nb_Comp_1 0.0975    0.7564387 353.6796 3.426417    0.2436803 0.06043144
#> Nb_Comp_2 0.0975    0.8063193 294.5384 3.023454    0.2154570 0.04716884
#> Nb_Comp_3 0.0975    0.8060248 296.2059 6.969465    0.2170477 0.04861145
#> Nb_Comp_4 0.0975    0.8059478 298.0688 5.275624    0.2162390 0.04793308
#> Nb_Comp_5 0.0975    0.8059368 300.0687 7.094793    0.2170438 0.04863334
#> Nb_Comp_6 0.0975    0.8059292 302.0687 7.000011    0.2170017 0.04859660
#>              BIC.dof  GMDL.dof DoF.naive sigmahat.naive  AIC.naive  BIC.naive
#> Nb_Comp_0 0.25449693 -167.8435         1      0.4999759 0.25097581 0.25449693
#> Nb_Comp_1 0.06329736 -339.5574         2      0.2434707 0.05975220 0.06142216
#> Nb_Comp_2 0.04914585 -370.9768         3      0.2158825 0.04716454 0.04913396
#> Nb_Comp_3 0.05323625 -359.0333         4      0.2161771 0.04748026 0.05011332
#> Nb_Comp_4 0.05140783 -364.1010         5      0.2165584 0.04783550 0.05113846
#> Nb_Comp_5 0.05334114 -358.7389         6      0.2170017 0.04821988 0.05219967
#> Nb_Comp_6 0.05323970 -359.0117         7      0.2174477 0.04860745 0.05326964
#>           GMDL.naive
#> Nb_Comp_0  -167.8435
#> Nb_Comp_1  -343.6687
#> Nb_Comp_2  -370.5554
#> Nb_Comp_3  -367.4821
#> Nb_Comp_4  -364.4401
#> Nb_Comp_5  -361.4336
#> Nb_Comp_6  -358.5128
modpls.B2$Probs
#>      [,1]        [,2]         [,3]         [,4]          [,5]          [,6]
#> 1   0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 2   0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 3   0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 4   0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 5   0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 6   0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 7   0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 8   0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 9   0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 10  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 11  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 12  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 13  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 14  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 15  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 16  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 17  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 18  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 19  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 20  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 21  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 22  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 23  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 24  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 25  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 26  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 27  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 28  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 29  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 30  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 31  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 32  0.468  0.75561134  0.891646286  0.926500831  1.0005367069  1.000001e+00
#> 33  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 34  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 35  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 36  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 37  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 38  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 39  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 40  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 41  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 42  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 43  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 44  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 45  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 46  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 47  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 48  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 49  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 50  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 51  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 52  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 53  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 54  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 55  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 56  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 57  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 58  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 59  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 60  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 61  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 62  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 63  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 64  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 65  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 66  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 67  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 68  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 69  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 70  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 71  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 72  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 73  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 74  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 75  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 76  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 77  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 78  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 79  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 80  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 81  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 82  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 83  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 84  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 85  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 86  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 87  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 88  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 89  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 90  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 91  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 92  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 93  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 94  0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 95  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 96  0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 97  0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 98  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 99  0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 100 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 101 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 102 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 103 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 104 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 105 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 106 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 107 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 108 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 109 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 110 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 111 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 112 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 113 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 114 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 115 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 116 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 117 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 118 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 119 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 120 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 121 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 122 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 123 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 124 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 125 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 126 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 127 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 128 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 129 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 130 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 131 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 132 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 133 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 134 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 135 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 136 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 137 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 138 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 139 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 140 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 141 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 142 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 143 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 144 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 145 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 146 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 147 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 148 0.468  0.79848686  0.908451165  1.024465545  1.0001586238  9.999916e-01
#> 149 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 150 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 151 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 152 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 153 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 154 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 155 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 156 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 157 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 158 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 159 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 160 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 161 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 162 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 163 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 164 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 165 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 166 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 167 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 168 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 169 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 170 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 171 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 172 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 173 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 174 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 175 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 176 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 177 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 178 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 179 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 180 0.468  0.05050119  0.032030943  0.015554650  0.0025962533 -9.974582e-06
#> 181 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 182 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 183 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 184 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 185 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 186 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 187 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 188 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 189 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 190 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 191 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 192 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 193 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 194 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 195 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 196 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 197 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 198 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 199 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 200 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 201 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 202 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 203 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 204 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 205 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 206 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 207 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 208 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 209 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 210 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 211 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 212 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 213 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 214 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 215 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 216 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 217 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 218 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 219 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 220 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 221 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 222 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 223 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 224 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 225 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 226 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 227 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 228 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 229 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 230 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 231 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 232 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 233 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 234 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 235 0.468  1.06197635  0.998642087  0.997719534  0.9975010645  9.975036e-01
#> 236 0.468  0.73503222  0.884122543  0.882435920  0.8817973696  8.818069e-01
#> 237 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 238 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 239 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 240 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 241 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 242 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 243 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 244 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 245 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 246 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#> 247 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 248 0.468 -0.02999381  0.004637669 -0.006058995 -0.0004601449 -7.358273e-05
#> 249 0.468  0.27728193  0.112818236  0.113477510  0.1137795399  1.137926e-01
#> 250 0.468 -0.04966220 -0.001701308 -0.001806104 -0.0019241549 -1.904161e-03
#>              [,7]
#> 1   -1.905004e-03
#> 2    1.137922e-01
#> 3   -1.905004e-03
#> 4    9.975038e-01
#> 5    1.137922e-01
#> 6   -1.905004e-03
#> 7    8.818066e-01
#> 8    9.975038e-01
#> 9   -1.905004e-03
#> 10   9.975038e-01
#> 11   8.818066e-01
#> 12   1.137922e-01
#> 13  -1.905004e-03
#> 14   1.137922e-01
#> 15  -1.905004e-03
#> 16   8.818066e-01
#> 17  -1.905004e-03
#> 18   1.137922e-01
#> 19   9.975038e-01
#> 20   9.975038e-01
#> 21   1.137922e-01
#> 22  -1.905004e-03
#> 23  -1.905004e-03
#> 24   8.818066e-01
#> 25  -1.905004e-03
#> 26  -1.905004e-03
#> 27   8.818066e-01
#> 28   8.818066e-01
#> 29  -1.905004e-03
#> 30   9.975038e-01
#> 31   8.818066e-01
#> 32   1.000000e+00
#> 33   8.818066e-01
#> 34   1.137922e-01
#> 35   1.137922e-01
#> 36   9.975038e-01
#> 37   9.975038e-01
#> 38  -1.905004e-03
#> 39   9.975038e-01
#> 40   9.975038e-01
#> 41  -1.905004e-03
#> 42   1.137922e-01
#> 43   8.818066e-01
#> 44   8.818066e-01
#> 45   9.975038e-01
#> 46   9.975038e-01
#> 47  -1.905004e-03
#> 48   1.137922e-01
#> 49  -1.905004e-03
#> 50   1.137922e-01
#> 51   9.975038e-01
#> 52   9.975038e-01
#> 53   9.975038e-01
#> 54   9.975038e-01
#> 55   9.975038e-01
#> 56   9.975038e-01
#> 57   9.975038e-01
#> 58  -1.905004e-03
#> 59   8.818066e-01
#> 60   8.818066e-01
#> 61  -1.905004e-03
#> 62   9.975038e-01
#> 63   8.818066e-01
#> 64  -1.905004e-03
#> 65   9.975038e-01
#> 66  -1.905004e-03
#> 67   1.137922e-01
#> 68  -1.905004e-03
#> 69   1.137922e-01
#> 70   1.137922e-01
#> 71   8.818066e-01
#> 72   1.137922e-01
#> 73   9.975038e-01
#> 74   9.975038e-01
#> 75   9.975038e-01
#> 76  -1.905004e-03
#> 77  -1.905004e-03
#> 78   1.137922e-01
#> 79   1.137922e-01
#> 80   9.975038e-01
#> 81  -1.905004e-03
#> 82   1.137922e-01
#> 83   9.975038e-01
#> 84   1.137922e-01
#> 85   1.137922e-01
#> 86   1.137922e-01
#> 87   1.137922e-01
#> 88   9.975038e-01
#> 89  -1.905004e-03
#> 90   8.818066e-01
#> 91   9.975038e-01
#> 92   8.818066e-01
#> 93   8.818066e-01
#> 94   8.818066e-01
#> 95   9.975038e-01
#> 96   9.975038e-01
#> 97   1.137922e-01
#> 98  -1.905004e-03
#> 99  -1.905004e-03
#> 100  8.818066e-01
#> 101  8.818066e-01
#> 102 -1.905004e-03
#> 103 -1.905004e-03
#> 104  8.818066e-01
#> 105  1.137922e-01
#> 106  8.818066e-01
#> 107  9.975038e-01
#> 108 -1.905004e-03
#> 109  8.818066e-01
#> 110  1.137922e-01
#> 111 -1.905004e-03
#> 112  8.818066e-01
#> 113  8.818066e-01
#> 114 -1.905004e-03
#> 115 -1.905004e-03
#> 116  1.137922e-01
#> 117 -1.905004e-03
#> 118  8.818066e-01
#> 119 -1.905004e-03
#> 120  8.818066e-01
#> 121  8.818066e-01
#> 122  8.818066e-01
#> 123  8.818066e-01
#> 124 -1.905004e-03
#> 125  9.975038e-01
#> 126  9.975038e-01
#> 127  8.818066e-01
#> 128  9.975038e-01
#> 129  1.137922e-01
#> 130  9.975038e-01
#> 131 -1.905004e-03
#> 132  9.975038e-01
#> 133  9.975038e-01
#> 134  8.818066e-01
#> 135  8.818066e-01
#> 136  9.975038e-01
#> 137  9.975038e-01
#> 138  9.975038e-01
#> 139  9.975038e-01
#> 140  8.818066e-01
#> 141  8.818066e-01
#> 142 -1.905004e-03
#> 143  9.975038e-01
#> 144  9.975038e-01
#> 145  9.975038e-01
#> 146  8.818066e-01
#> 147 -1.905004e-03
#> 148  1.000000e+00
#> 149  1.137922e-01
#> 150  1.137922e-01
#> 151  1.137922e-01
#> 152 -1.905004e-03
#> 153  1.137922e-01
#> 154  9.975038e-01
#> 155 -1.905004e-03
#> 156  8.818066e-01
#> 157 -1.905004e-03
#> 158  9.975038e-01
#> 159  9.975038e-01
#> 160  9.975038e-01
#> 161  1.137922e-01
#> 162 -1.905004e-03
#> 163 -1.905004e-03
#> 164  1.137922e-01
#> 165 -1.905004e-03
#> 166  9.975038e-01
#> 167  1.137922e-01
#> 168  9.975038e-01
#> 169 -1.905004e-03
#> 170 -1.905004e-03
#> 171  8.818066e-01
#> 172 -1.905004e-03
#> 173  9.975038e-01
#> 174  1.137922e-01
#> 175 -1.905004e-03
#> 176  1.137922e-01
#> 177  1.137922e-01
#> 178  1.137922e-01
#> 179  8.818066e-01
#> 180  9.992007e-16
#> 181  9.975038e-01
#> 182  9.975038e-01
#> 183  8.818066e-01
#> 184  8.818066e-01
#> 185 -1.905004e-03
#> 186  8.818066e-01
#> 187  8.818066e-01
#> 188  8.818066e-01
#> 189  1.137922e-01
#> 190 -1.905004e-03
#> 191  8.818066e-01
#> 192  8.818066e-01
#> 193 -1.905004e-03
#> 194  8.818066e-01
#> 195  8.818066e-01
#> 196  1.137922e-01
#> 197 -1.905004e-03
#> 198 -1.905004e-03
#> 199  1.137922e-01
#> 200 -1.905004e-03
#> 201 -1.905004e-03
#> 202 -1.905004e-03
#> 203  8.818066e-01
#> 204  9.975038e-01
#> 205 -1.905004e-03
#> 206  9.975038e-01
#> 207 -1.905004e-03
#> 208 -1.905004e-03
#> 209  8.818066e-01
#> 210 -1.905004e-03
#> 211  1.137922e-01
#> 212 -1.905004e-03
#> 213 -1.905004e-03
#> 214  8.818066e-01
#> 215  1.137922e-01
#> 216 -1.905004e-03
#> 217 -1.905004e-03
#> 218 -1.905004e-03
#> 219  1.137922e-01
#> 220  1.137922e-01
#> 221 -1.905004e-03
#> 222  8.818066e-01
#> 223 -1.905004e-03
#> 224  8.818066e-01
#> 225  9.975038e-01
#> 226  8.818066e-01
#> 227  8.818066e-01
#> 228  8.818066e-01
#> 229  8.818066e-01
#> 230 -1.905004e-03
#> 231  1.137922e-01
#> 232  1.137922e-01
#> 233  9.975038e-01
#> 234  1.137922e-01
#> 235  9.975038e-01
#> 236  8.818066e-01
#> 237  1.137922e-01
#> 238  1.137922e-01
#> 239 -1.905004e-03
#> 240  1.137922e-01
#> 241 -1.905004e-03
#> 242 -1.905004e-03
#> 243 -1.905004e-03
#> 244  1.137922e-01
#> 245 -1.905004e-03
#> 246 -1.905004e-03
#> 247  1.137922e-01
#> 248  1.276756e-15
#> 249  1.137922e-01
#> 250 -1.905004e-03
modpls.B2$Probs.trc
#>      [,1]       [,2]        [,3]       [,4]        [,5]      [,6]         [,7]
#> 1   0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 2   0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 3   0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 4   0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 5   0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 6   0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 7   0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 8   0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 9   0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 10  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 11  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 12  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 13  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 14  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 15  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 16  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 17  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 18  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 19  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 20  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 21  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 22  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 23  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 24  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 25  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 26  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 27  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 28  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 29  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 30  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 31  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 32  0.468 0.75561134 0.891646286 0.92650083 1.000000000 1.0000000 1.000000e+00
#> 33  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 34  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 35  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 36  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 37  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 38  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 39  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 40  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 41  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 42  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 43  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 44  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 45  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 46  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 47  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 48  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 49  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 50  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 51  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 52  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 53  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 54  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 55  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 56  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 57  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 58  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 59  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 60  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 61  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 62  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 63  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 64  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 65  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 66  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 67  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 68  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 69  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 70  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 71  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 72  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 73  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 74  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 75  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 76  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 77  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 78  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 79  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 80  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 81  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 82  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 83  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 84  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 85  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 86  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 87  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 88  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 89  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 90  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 91  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 92  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 93  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 94  0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 95  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 96  0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 97  0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 98  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 99  0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 100 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 101 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 102 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 103 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 104 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 105 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 106 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 107 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 108 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 109 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 110 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 111 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 112 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 113 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 114 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 115 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 116 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 117 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 118 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 119 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 120 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 121 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 122 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 123 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 124 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 125 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 126 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 127 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 128 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 129 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 130 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 131 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 132 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 133 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 134 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 135 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 136 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 137 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 138 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 139 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 140 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 141 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 142 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 143 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 144 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 145 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 146 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 147 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 148 0.468 0.79848686 0.908451165 1.00000000 1.000000000 0.9999916 1.000000e+00
#> 149 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 150 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 151 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 152 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 153 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 154 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 155 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 156 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 157 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 158 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 159 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 160 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 161 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 162 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 163 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 164 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 165 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 166 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 167 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 168 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 169 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 170 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 171 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 172 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 173 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 174 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 175 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 176 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 177 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 178 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 179 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 180 0.468 0.05050119 0.032030943 0.01555465 0.002596253 0.0000000 9.992007e-16
#> 181 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 182 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 183 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 184 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 185 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 186 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 187 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 188 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 189 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 190 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 191 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 192 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 193 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 194 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 195 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 196 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 197 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 198 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 199 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 200 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 201 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 202 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 203 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 204 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 205 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 206 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 207 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 208 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 209 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 210 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 211 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 212 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 213 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 214 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 215 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 216 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 217 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 218 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 219 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 220 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 221 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 222 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 223 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 224 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 225 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 226 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 227 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 228 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 229 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 230 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 231 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 232 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 233 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 234 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 235 0.468 1.00000000 0.998642087 0.99771953 0.997501064 0.9975036 9.975038e-01
#> 236 0.468 0.73503222 0.884122543 0.88243592 0.881797370 0.8818069 8.818066e-01
#> 237 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 238 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 239 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 240 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 241 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 242 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 243 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 244 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 245 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 246 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
#> 247 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 248 0.468 0.00000000 0.004637669 0.00000000 0.000000000 0.0000000 1.276756e-15
#> 249 0.468 0.27728193 0.112818236 0.11347751 0.113779540 0.1137926 1.137922e-01
#> 250 0.468 0.00000000 0.000000000 0.00000000 0.000000000 0.0000000 0.000000e+00
modpls.B2$MissClassed
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,]  117   13   13   13   13   13   13
plsR(simbin1$Y,dataAstar2[,-1],10,typeVC="standard",MClassed=TRUE,verbose=FALSE)$InfCrit
#>                 AIC      Q2cum_Y LimQ2_Y        Q2_Y  PRESS_Y    RSS_Y
#> Nb_Comp_0  365.8696           NA      NA          NA       NA 62.24400
#> Nb_Comp_1  171.3970  0.537286214  0.0975  0.53728621 28.80116 28.36545
#> Nb_Comp_2  117.2123  0.627658494  0.0975  0.19530924 22.82541 22.65619
#> Nb_Comp_3  103.0629  0.604937339  0.0975 -0.06102235 24.03872 21.23892
#> Nb_Comp_4  103.6263  0.539226030  0.0975 -0.16633136 24.77162 21.11723
#> Nb_Comp_5  105.2450  0.458487555  0.0975 -0.17522360 24.81746 21.08504
#> Nb_Comp_6  107.2032  0.380940010  0.0975 -0.14320547 24.10453 21.08151
#> Nb_Comp_7  109.1994  0.294959971  0.0975 -0.13888806 24.00948 21.08120
#> Nb_Comp_8  111.1985  0.202224648  0.0975 -0.13153200 23.85405 21.08112
#> Nb_Comp_9  113.1984  0.103400634  0.0975 -0.12387449 23.69253 21.08111
#> Nb_Comp_10 115.1984 -0.002159955  0.0975 -0.11773440 23.56308 21.08111
#>                 R2_Y MissClassed R2_residY RSS_residY PRESS_residY   Q2_residY
#> Nb_Comp_0         NA         117        NA  249.00000           NA          NA
#> Nb_Comp_1  0.5442862          29 0.5442862  113.47273    115.21573  0.53728621
#> Nb_Comp_2  0.6360101           8 0.6360101   90.63349     91.31046  0.19530924
#> Nb_Comp_3  0.6587796           8 0.6587796   84.96388     96.16416 -0.06102235
#> Nb_Comp_4  0.6607347           9 0.6607347   84.47705     99.09603 -0.16633136
#> Nb_Comp_5  0.6612518          10 0.6612518   84.34829     99.27943 -0.17522360
#> Nb_Comp_6  0.6613085          10 0.6613085   84.33418     96.42743 -0.14320547
#> Nb_Comp_7  0.6613136          10 0.6613136   84.33292     96.04719 -0.13888806
#> Nb_Comp_8  0.6613148          10 0.6613148   84.33261     95.42540 -0.13153200
#> Nb_Comp_9  0.6613150          10 0.6613150   84.33257     94.77927 -0.12387449
#> Nb_Comp_10 0.6613150          10 0.6613150   84.33256     94.26141 -0.11773440
#>             LimQ2 Q2cum_residY  AIC.std   DoF.dof sigmahat.dof    AIC.dof
#> Nb_Comp_0      NA           NA 712.4673  1.000000    0.4999759 0.25097581
#> Nb_Comp_1  0.0975  0.537286214 517.9947  2.806178    0.3380643 0.11602749
#> Nb_Comp_2  0.0975  0.627658494 463.8100  3.000077    0.3022509 0.09281734
#> Nb_Comp_3  0.0975  0.604937339 449.6606 18.693223    0.3023676 0.09862809
#> Nb_Comp_4  0.0975  0.539226030 450.2240 25.000000    0.3056780 0.10315672
#> Nb_Comp_5  0.0975  0.458487555 451.8427 24.919496    0.3053906 0.10293278
#> Nb_Comp_6  0.0975  0.380940010 453.8008 25.000000    0.3054194 0.10298226
#> Nb_Comp_7  0.0975  0.294959971 455.7971 25.000000    0.3054172 0.10298072
#> Nb_Comp_8  0.0975  0.202224648 457.7962 25.000000    0.3054166 0.10298034
#> Nb_Comp_9  0.0975  0.103400634 459.7961 25.000000    0.3054165 0.10298029
#> Nb_Comp_10 0.0975 -0.002159955 461.7961 25.000000    0.3054165 0.10298028
#>              BIC.dof  GMDL.dof DoF.naive sigmahat.naive  AIC.naive  BIC.naive
#> Nb_Comp_0  0.2544969 -167.8435         1      0.4999759 0.25097581 0.25449693
#> Nb_Comp_1  0.1205450 -260.4812         2      0.3381964 0.11529183 0.11851401
#> Nb_Comp_2  0.0966779 -287.6015         3      0.3028621 0.09282616 0.09670225
#> Nb_Comp_3  0.1227015 -258.6385         4      0.2938317 0.08771847 0.09258300
#> Nb_Comp_4  0.1360609 -247.1113         5      0.2935860 0.08791662 0.09398711
#> Nb_Comp_5  0.1356694 -247.4282         6      0.2939628 0.08848804 0.09579133
#> Nb_Comp_6  0.1358308 -247.2971         7      0.2945424 0.08918434 0.09773848
#> Nb_Comp_7  0.1358288 -247.2987         8      0.2951481 0.08989998 0.09971640
#> Nb_Comp_8  0.1358283 -247.2991         9      0.2957592 0.09062258 0.10171182
#> Nb_Comp_9  0.1358282 -247.2992        10      0.2963747 0.09135148 0.10372419
#> Nb_Comp_10 0.1358282 -247.2992        11      0.2969941 0.09208652 0.10575345
#>            GMDL.naive
#> Nb_Comp_0   -167.8435
#> Nb_Comp_1   -262.3118
#> Nb_Comp_2   -287.1028
#> Nb_Comp_3   -292.1762
#> Nb_Comp_4   -290.1233
#> Nb_Comp_5   -287.6539
#> Nb_Comp_6   -285.1045
#> Nb_Comp_7   -282.6103
#> Nb_Comp_8   -280.1795
#> Nb_Comp_9   -277.8061
#> Nb_Comp_10  -275.4847
cv.modpls.B2<-cv.plsR(Y~.,data=simbin1,2,NK=100,verbose=FALSE)
res.cv.modpls.B2<-cvtable(summary(cv.modpls.B2,MClassed=TRUE))
#> ____************************************************____
#> Error in is.data.frame(data): object 'simbin1' not found
#Only one component found by repeated CV missclassed criterion
plot(res.cv.modpls.B2)
#> Error in plot(res.cv.modpls.B2): object 'res.cv.modpls.B2' not found

rm(list=c("dimX","Astar","dataAstar2","modpls.A2","cv.modpls.A2",
"res.cv.modpls.A2","simbin1","modpls.B2","cv.modpls.B2","res.cv.modpls.B2"))
#> Warning: object 'res.cv.modpls.A2' not found
#> Warning: object 'res.cv.modpls.B2' not found
# }