This function implements Partial least squares Regression generalized linear models complete or incomplete datasets.

plsRglm(object, ...)
# S3 method for default
plsRglmmodel(object,dataX,nt=2,limQ2set=.0975,
dataPredictY=dataX,modele="pls",family=NULL,typeVC="none",
EstimXNA=FALSE,scaleX=TRUE,scaleY=NULL,pvals.expli=FALSE,
alpha.pvals.expli=.05,MClassed=FALSE,tol_Xi=10^(-12),weights,
sparse=FALSE,sparseStop=TRUE,naive=FALSE,verbose=TRUE,...)
# S3 method for formula
plsRglmmodel(object,data=NULL,nt=2,limQ2set=.0975,
dataPredictY,modele="pls",family=NULL,typeVC="none",
EstimXNA=FALSE,scaleX=TRUE,scaleY=NULL,pvals.expli=FALSE,
alpha.pvals.expli=.05,MClassed=FALSE,tol_Xi=10^(-12),weights,subset,
start=NULL,etastart,mustart,offset,method="glm.fit",control= list(),
contrasts=NULL,sparse=FALSE,sparseStop=TRUE,naive=FALSE,verbose=TRUE,...)
PLS_glm(dataY, dataX, nt = 2, limQ2set = 0.0975, dataPredictY = dataX, 
modele = "pls", family = NULL, typeVC = "none", EstimXNA = FALSE, 
scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE, 
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights, 
method, sparse = FALSE, sparseStop=FALSE, naive=FALSE,verbose=TRUE)
PLS_glm_formula(formula,data=NULL,nt=2,limQ2set=.0975,dataPredictY=dataX,
modele="pls",family=NULL,typeVC="none",EstimXNA=FALSE,scaleX=TRUE,
scaleY=NULL,pvals.expli=FALSE,alpha.pvals.expli=.05,MClassed=FALSE,
tol_Xi=10^(-12),weights,subset,start=NULL,etastart,mustart,offset,method,
control= list(),contrasts=NULL,sparse=FALSE,sparseStop=FALSE,naive=FALSE,verbose=TRUE)

Arguments

object

response (training) dataset or an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

dataY

response (training) dataset

dataX

predictor(s) (training) dataset

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which plsRglm is called.

nt

number of components to be extracted

limQ2set

limit value for the Q2

dataPredictY

predictor(s) (testing) dataset

modele

name of the PLS glm model to be fitted ("pls", "pls-glm-Gamma", "pls-glm-gaussian", "pls-glm-inverse.gaussian", "pls-glm-logistic", "pls-glm-poisson", "pls-glm-polr"). Use "modele=pls-glm-family" to enable the family option.

family

a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.) To use the family option, please set modele="pls-glm-family". User defined families can also be defined. See details.

typeVC

type of leave one out cross validation. For back compatibility purpose.

none

no cross validation

EstimXNA

only for modele="pls". Set whether the missing X values have to be estimated.

scaleX

scale the predictor(s) : must be set to TRUE for modele="pls" and should be for glms pls.

scaleY

scale the response : Yes/No. Ignored since non always possible for glm responses.

pvals.expli

should individual p-values be reported to tune model selection ?

alpha.pvals.expli

level of significance for predictors when pvals.expli=TRUE

MClassed

number of missclassified cases, should only be used for binary responses

tol_Xi

minimal value for Norm2(Xi) and \(\mathrm{det}(pp' \times pp)\) if there is any missing value in the dataX. It defaults to \(10^{-12}\)

weights

an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.

subset

an optional vector specifying a subset of observations to be used in the fitting process.

start

starting values for the parameters in the linear predictor.

etastart

starting values for the linear predictor.

mustart

starting values for the vector of means.

offset

this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See model.offset.

method

For a glm model (modele="pls-glm-family"), the method to be used in fitting the model. The default method "glm.fit" uses iteratively reweighted least squares (IWLS). User-supplied fitting functions can be supplied either as a function or a character string naming a function, with a function which takes the same arguments as glm.fit. For a polr model (modele="pls-glm-polr"), logistic or probit or (complementary) log-log (loglog or cloglog) or cauchit (corresponding to a Cauchy latent variable).

control

a list of parameters for controlling the fitting process. For glm.fit this is passed to glm.control.

contrasts

an optional list. See the contrasts.arg of model.matrix.default.

sparse

should the coefficients of non-significant predictors (<alpha.pvals.expli) be set to 0

sparseStop

should component extraction stop when no significant predictors (<alpha.pvals.expli) are found

naive

Use the naive estimates for the Degrees of Freedom in plsR? Default is FALSE.

verbose

Should details be displayed ?

...

arguments to pass to plsRmodel.default or to plsRmodel.formula

Details

There are seven different predefined models with predefined link functions available :

"pls"

ordinary pls models

"pls-glm-Gamma"

glm gaussian with inverse link pls models

"pls-glm-gaussian"

glm gaussian with identity link pls models

"pls-glm-inverse-gamma"

glm binomial with square inverse link pls models

"pls-glm-logistic"

glm binomial with logit link pls models

"pls-glm-poisson"

glm poisson with log link pls models

"pls-glm-polr"

glm polr with logit link pls models

Using the "family=" option and setting "modele=pls-glm-family" allows changing the family and link function the same way as for the glm function. As a consequence user-specified families can also be used.

The gaussian family

accepts the links (as names) identity, log and inverse.

The binomial family

accepts the links logit, probit, cauchit, (corresponding to logistic, normal and Cauchy CDFs respectively) log and cloglog (complementary log-log).

The Gamma family

accepts the links inverse, identity and log.

The poisson family

accepts the links log, identity, and sqrt.

The inverse.gaussian family

accepts the links 1/mu^2, inverse, identity and log.

The quasi family

accepts the links logit, probit, cloglog, identity, inverse, log, 1/mu^2 and sqrt.

The function power

can be used to create a power link function.

A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.

The default estimator for Degrees of Freedom is the Kramer and Sugiyama's one which only works for classical plsR models. For these models, Information criteria are computed accordingly to these estimations. Naive Degrees of Freedom and Information Criteria are also provided for comparison purposes. For more details, see N. Kraemer and M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association, 106(494), 697-705, 2011.

Value

Depends on the model that was used to fit the model. You can generally at least find these items.

nr

Number of observations

nc

Number of predictors

nt

Number of requested components

ww

raw weights (before L2-normalization)

wwnorm

L2 normed weights (to be used with deflated matrices of predictor variables)

wwetoile

modified weights (to be used with original matrix of predictor variables)

tt

PLS components

pp

loadings of the predictor variables

CoeffC

coefficients of the PLS components

uscores

scores of the response variable

YChapeau

predicted response values for the dataX set

residYChapeau

residuals of the deflated response on the standardized scale

RepY

scaled response vector

na.miss.Y

is there any NA value in the response vector

YNA

indicatrix vector of missing values in RepY

residY

deflated scaled response vector

ExpliX

scaled matrix of predictors

na.miss.X

is there any NA value in the predictor matrix

XXNA

indicator of non-NA values in the predictor matrix

residXX

deflated predictor matrix

PredictY

response values with NA replaced with 0

RSS

residual sum of squares (original scale)

RSSresidY

residual sum of squares (scaled scale)

R2residY

R2 coefficient value on the standardized scale

R2

R2 coefficient value on the original scale

press.ind

individual PRESS value for each observation (scaled scale)

press.tot

total PRESS value for all observations (scaled scale)

Q2cum

cumulated Q2 (standardized scale)

family

glm family used to fit PLSGLR model

ttPredictY

PLS components for the dataset on which prediction was requested

typeVC

type of leave one out cross-validation used

dataX

predictor values

dataY

response values

weights

weights of the observations

computed_nt

number of components that were computed

AIC

AIC vs number of components

BIC

BIC vs number of components

Coeffsmodel_vals
ChisqPearson
CoeffCFull

matrix of the coefficients of the predictors

CoeffConstante

value of the intercept (scaled scale)

Std.Coeffs

Vector of standardized regression coefficients

Coeffs

Vector of regression coefficients (used with the original data scale)

Yresidus

residuals of the PLS model

residusY

residuals of the deflated response on the standardized scale

InfCrit

table of Information Criteria:

AIC

AIC vs number of components

BIC

BIC vs number of components

MissClassed

Number of miss classed results

Chi2_Pearson_Y

Q2 value (standardized scale)

RSS

residual sum of squares (original scale)

R2

R2 coefficient value on the original scale

R2residY

R2 coefficient value on the standardized scale

RSSresidY

residual sum of squares (scaled scale)

Std.ValsPredictY

predicted response values for supplementary dataset (standardized scale)

ValsPredictY

predicted response values for supplementary dataset (original scale)

Std.XChapeau

estimated values for missing values in the predictor matrix (standardized scale)

FinalModel

final GLR model on the PLS components

XXwotNA

predictor matrix with missing values replaced with 0

call

call

AIC.std

AIC.std vs number of components (AIC computed for the standardized model

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparaison de la regression PLS et de la regression logistique PLS : application aux donnees d'allelotypage. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47

Note

Use cv.plsRglm to cross-validate the plsRglm models and bootplsglm to bootstrap them.

See also

See also plsR.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

modplsglm <- plsRglm(yCornell,XCornell,10,modele="pls-glm-gaussian")
#> ____************************************************____
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> Warning : 1 2 3 4 5 6 7 < 10^{-12}
#> Warning only 6 components could thus be extracted
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 

#To retrieve the final GLR model on the PLS components
finalmod <- modplsglm$FinalModel
#It is a glm object.
plot(finalmod)
#> Warning: not plotting observations with leverage one:
#>   11





# \donttest{
#Cross validation
cv.modplsglm<-cv.plsRglm(Y~.,data=Cornell,6,NK=100,modele="pls-glm-gaussian", verbose=FALSE)
res.cv.modplsglm<-cvtable(summary(cv.modplsglm))
#> ____************************************************____
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X or Y____
#> ****________________________________________________****
#> 
#> 
#> NK: 1,  2,  3,  4,  5,  6,  7,  8,  9,  10
#> NK: 11,  12,  13,  14,  15,  16,  17,  18,  19,  20
#> NK: 21,  22,  23,  24,  25,  26,  27,  28,  29,  30
#> NK: 31,  32,  33,  34,  35,  36,  37,  38,  39,  40
#> NK: 41,  42,  43,  44,  45,  46,  47,  48,  49,  50
#> NK: 51,  52,  53,  54,  55,  56,  57,  58,  59,  60
#> NK: 61,  62,  63,  64,  65,  66,  67,  68,  69,  70
#> NK: 71,  72,  73,  74,  75,  76,  77,  78,  79,  80
#> NK: 81,  82,  83,  84,  85,  86,  87,  88,  89,  90
#> NK: 91,  92,  93,  94,  95,  96,  97,  98,  99,  100
#> 
#> CV Q2Chi2 criterion:
#>  0  1  2 
#>  0 21 79 
#> 
#> CV PreChi2 criterion:
#>  1  2  3  4  5 
#>  0 24 54 18  4 
plot(res.cv.modplsglm)


#If no model specified, classic PLSR model
modpls <- plsRglm(Y~.,data=Cornell,6)
#> ____************************************************____
#> 
#> Model: pls 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X or Y____
#> ****________________________________________________****
#> 
modpls
#> Number of required components:
#> [1] 6
#> Number of successfully computed components:
#> [1] 6
#> Coefficients:
#>                  [,1]
#> Intercept  88.7107982
#> X1        -54.3905712
#> X2         -2.7879678
#> X3         52.5411315
#> X4        -11.5306977
#> X5         -0.9605822
#> X6         11.5900307
#> X7         28.2104803
#> Information criteria and Fit statistics:
#>                AIC      RSS_Y      R2_Y R2_residY  RSS_residY    AIC.std
#> Nb_Comp_0 82.01205 467.796667        NA        NA 11.00000000  37.010388
#> Nb_Comp_1 53.15173  35.742486 0.9235940 0.9235940  0.84046633   8.150064
#> Nb_Comp_2 41.08283  11.066606 0.9763431 0.9763431  0.26022559  -3.918831
#> Nb_Comp_3 32.06411   4.418081 0.9905556 0.9905556  0.10388893 -12.937550
#> Nb_Comp_4 33.76477   4.309235 0.9907882 0.9907882  0.10132947 -11.236891
#> Nb_Comp_5 33.34373   3.521924 0.9924713 0.9924713  0.08281624 -11.657929
#> Nb_Comp_6 35.25533   3.496074 0.9925265 0.9925265  0.08220840  -9.746328
#>            DoF.dof sigmahat.dof    AIC.dof    BIC.dof GMDL.dof DoF.naive
#> Nb_Comp_0 1.000000    6.5212706 46.0708838 47.7893514 27.59461         1
#> Nb_Comp_1 2.740749    1.8665281  4.5699686  4.9558156 21.34020         2
#> Nb_Comp_2 5.085967    1.1825195  2.1075461  2.3949331 27.40202         3
#> Nb_Comp_3 5.121086    0.7488308  0.8467795  0.9628191 24.40842         4
#> Nb_Comp_4 5.103312    0.7387162  0.8232505  0.9357846 24.23105         5
#> Nb_Comp_5 6.006316    0.7096382  0.7976101  0.9198348 28.21184         6
#> Nb_Comp_6 7.000002    0.7633343  0.9711322  1.1359501 33.18348         7
#>           sigmahat.naive  AIC.naive  BIC.naive GMDL.naive
#> Nb_Comp_0      6.5212706 46.0708838 47.7893514   27.59461
#> Nb_Comp_1      1.8905683  4.1699567  4.4588195   18.37545
#> Nb_Comp_2      1.1088836  1.5370286  1.6860917   17.71117
#> Nb_Comp_3      0.7431421  0.7363469  0.8256118   19.01033
#> Nb_Comp_4      0.7846050  0.8721072  0.9964867   24.16510
#> Nb_Comp_5      0.7661509  0.8804809  1.0227979   28.64206
#> Nb_Comp_6      0.8361907  1.1070902  1.3048716   33.63927
modpls$tt
#>         Comp_1     Comp_2     Comp_3      Comp_4      Comp_5        Comp_6
#> 1   2.05131893  0.8217956  1.5820453 -0.61853330  0.01484108 -0.0004847062
#> 2   2.47466082  0.6488170  0.1093962  0.86769742  0.17352091 -0.0102365260
#> 3   2.33108430  0.9267035 -0.1729233  0.62591457 -0.21889565  0.0099484391
#> 4   2.03715457 -1.5957365 -0.5015374  0.52325099  0.10077311 -0.0020048043
#> 5  -0.06810714 -0.2178157 -2.9559035 -0.16013960 -0.08723778 -0.0005266324
#> 6   1.61381268 -1.4227579  0.9711117 -0.96297973 -0.05790672  0.0077470155
#> 7  -2.20425338 -0.1781166  0.2375256  0.05862843  0.16192611  0.0009678124
#> 8  -1.99354688  0.1006045  0.1184228  0.29283911  0.04069929  0.0069439383
#> 9  -2.08759464  0.1485897  0.3546081  0.06867502  0.06838481  0.0055358177
#> 10 -1.91577439  0.3184087  0.1964777  0.29953683 -0.02166158  0.0099892751
#> 11 -2.07628408 -0.4606368  1.0311837  0.30917216 -0.23179633 -0.0192401473
#> 12 -0.16247078  0.9101447 -0.9704071 -1.30406190  0.05735276 -0.0086394819
modpls$uscores
#>          [,1]        [,2]       [,3]       [,4]        [,5]        [,6]
#> 1   3.2182907  2.05967331  3.2801365  7.5269739  0.60581642  0.22391305
#> 2   2.9319848  0.80716434  0.4195899  1.3749676  0.03772786 -0.05145026
#> 3   2.5502436  0.38681011 -1.4306130 -5.5748469 -0.46117731 -0.09179745
#> 4   1.0869021 -1.67716952 -0.2157816  1.2666436  0.05528931 -0.01723324
#> 5  -0.6309334 -0.99337301 -2.0550769  3.9930120  0.30888775  0.15008693
#> 6   0.8324080 -1.37915791  0.1155316 -3.7924524 -0.21044006 -0.05779295
#> 7  -2.1260866  0.13796217  0.8375477  2.6596630  0.19345013  0.01194405
#> 8  -1.7443454  0.43983381  0.8988921  3.4595151  0.23551932  0.07381483
#> 9  -1.9670278  0.21279720  0.1701376 -0.8176856 -0.06592246 -0.05088731
#> 10 -1.7125336  0.35871439  0.1068023 -0.3974961 -0.05184134 -0.01143473
#> 11 -2.2851455 -0.36863467  0.2437879 -3.4902180 -0.28257699 -0.01924015
#> 12 -0.1537569  0.01537978 -2.3709538 -6.2080761 -0.36473264 -0.15992279
modpls$pp
#>         Comp_1      Comp_2     Comp_3       Comp_4      Comp_5       Comp_6
#> X1 -0.45356016 -0.04251297  0.2729702  0.428653916 -0.35971989 -0.681738989
#> X2  0.03168571 -1.00322825  0.4493175 -0.166401110  0.36073990  0.004457454
#> X3 -0.45436193 -0.03899701  0.2707321  0.428071834 -0.28257532  0.725647289
#> X4 -0.35604722  0.27807191 -0.5331693 -0.375162994 -0.17744550  0.062078406
#> X5  0.29430620 -0.04543850 -0.4952981  0.868097080 -0.31806417  0.006305311
#> X6  0.46197139  0.43955413  0.1054092  0.018156887  0.05700168  0.034656940
#> X7 -0.41254369  0.47679210 -0.3389256  0.007896449  0.72448143 -0.059611275
modpls$Coeffs
#>                  [,1]
#> Intercept  88.7107982
#> X1        -54.3905712
#> X2         -2.7879678
#> X3         52.5411315
#> X4        -11.5306977
#> X5         -0.9605822
#> X6         11.5900307
#> X7         28.2104803

#rm(list=c("XCornell","yCornell",modpls,cv.modplsglm,res.cv.modplsglm))
# }

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls",MClassed=TRUE, verbose=FALSE)$InfCrit
#>                 AIC    RSS_Y      R2_Y MissClassed R2_residY RSS_residY
#> Nb_Comp_0  154.6179 25.91346        NA          49        NA  103.00000
#> Nb_Comp_1  126.4083 19.38086 0.2520929          27 0.2520929   77.03443
#> Nb_Comp_2  119.3375 17.76209 0.3145613          25 0.3145613   70.60018
#> Nb_Comp_3  114.2313 16.58896 0.3598323          27 0.3598323   65.93728
#> Nb_Comp_4  112.3463 15.98071 0.3833049          23 0.3833049   63.51960
#> Nb_Comp_5  113.2362 15.81104 0.3898523          22 0.3898523   62.84522
#> Nb_Comp_6  114.7620 15.73910 0.3926285          21 0.3926285   62.55927
#> Nb_Comp_7  116.5264 15.70350 0.3940024          20 0.3940024   62.41775
#> Nb_Comp_8  118.4601 15.69348 0.3943888          20 0.3943888   62.37795
#> Nb_Comp_9  120.4452 15.69123 0.3944758          19 0.3944758   62.36900
#> Nb_Comp_10 122.4395 15.69037 0.3945088          19 0.3945088   62.36560
#>             AIC.std  DoF.dof sigmahat.dof   AIC.dof   BIC.dof  GMDL.dof
#> Nb_Comp_0  298.1344  1.00000    0.5015845 0.2540061 0.2604032 -67.17645
#> Nb_Comp_1  269.9248 22.55372    0.4848429 0.2883114 0.4231184 -53.56607
#> Nb_Comp_2  262.8540 27.31542    0.4781670 0.2908950 0.4496983 -52.42272
#> Nb_Comp_3  257.7478 30.52370    0.4719550 0.2902572 0.4631316 -51.93343
#> Nb_Comp_4  255.8628 34.00000    0.4744263 0.3008285 0.4954133 -50.37079
#> Nb_Comp_5  256.7527 34.00000    0.4719012 0.2976347 0.4901536 -50.65724
#> Nb_Comp_6  258.2785 34.00000    0.4708264 0.2962804 0.4879234 -50.78005
#> Nb_Comp_7  260.0429 33.71066    0.4693382 0.2937976 0.4826103 -51.05525
#> Nb_Comp_8  261.9766 34.00000    0.4701436 0.2954217 0.4865092 -50.85833
#> Nb_Comp_9  263.9617 33.87284    0.4696894 0.2945815 0.4845867 -50.95616
#> Nb_Comp_10 265.9560 34.00000    0.4700970 0.2953632 0.4864128 -50.86368
#>            DoF.naive sigmahat.naive AIC.naive BIC.naive GMDL.naive
#> Nb_Comp_0          1      0.5015845 0.2540061 0.2604032  -67.17645
#> Nb_Comp_1          2      0.4358996 0.1936625 0.2033251  -79.67755
#> Nb_Comp_2          3      0.4193593 0.1809352 0.1943501  -81.93501
#> Nb_Comp_3          4      0.4072955 0.1722700 0.1891422  -83.31503
#> Nb_Comp_4          5      0.4017727 0.1691819 0.1897041  -83.23369
#> Nb_Comp_5          6      0.4016679 0.1706451 0.1952588  -81.93513
#> Nb_Comp_6          7      0.4028135 0.1731800 0.2020601  -80.42345
#> Nb_Comp_7          8      0.4044479 0.1761610 0.2094352  -78.87607
#> Nb_Comp_8          9      0.4064413 0.1794902 0.2172936  -77.31942
#> Nb_Comp_9         10      0.4085682 0.1829787 0.2254232  -75.80069
#> Nb_Comp_10        11      0.4107477 0.1865584 0.2337468  -74.33325
modpls <- plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls-glm-logistic",
MClassed=TRUE,pvals.expli=TRUE, verbose=FALSE)
modpls
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 10
#> Coefficients:
#>                   [,1]
#> Intercept -2.276982302
#> D2S138    -1.068275295
#> D18S61     3.509231595
#> D16S422   -1.651869135
#> D17S794    2.207538418
#> D6S264     0.568523938
#> D14S65    -0.059691869
#> D18S53    -0.214529856
#> D17S790   -1.405223273
#> D1S225     0.396973880
#> D3S1282   -0.782167532
#> D9S179     0.677591817
#> D5S430    -0.972259676
#> D8S283     0.650745841
#> D11S916    0.723667343
#> D2S159     0.477540145
#> D16S408    0.638755948
#> D5S346     1.666070158
#> D10S191   -0.005938234
#> D13S173    0.482766293
#> D6S275    -0.904425334
#> D15S127    0.300460249
#> D1S305     1.367992779
#> D4S394    -1.201977825
#> D20S107   -1.536120691
#> D1S197    -1.983144986
#> D1S207     1.544435411
#> D10S192    1.410302156
#> D3S1283   -0.495400138
#> D4S414     0.454129717
#> D8S264     1.240250301
#> D22S928   -0.222933455
#> TP53      -2.822712745
#> D9S171     0.026369914
#> Information criteria and Fit statistics:
#>                 AIC      BIC Missclassed Chi2_Pearson_Y    RSS_Y      R2_Y
#> Nb_Comp_0  145.8283 148.4727          49      104.00000 25.91346        NA
#> Nb_Comp_1  118.1398 123.4285          28      100.53823 19.32272 0.2543365
#> Nb_Comp_2  109.9553 117.8885          26       99.17955 17.33735 0.3309519
#> Nb_Comp_3  105.1591 115.7366          22      123.37836 15.58198 0.3986915
#> Nb_Comp_4  103.8382 117.0601          21      114.77551 15.14046 0.4157299
#> Nb_Comp_5  104.7338 120.6001          21      105.35382 15.08411 0.4179043
#> Nb_Comp_6  105.6770 124.1878          21       98.87767 14.93200 0.4237744
#> Nb_Comp_7  107.2828 128.4380          20       97.04072 14.87506 0.4259715
#> Nb_Comp_8  109.0172 132.8167          22       98.90110 14.84925 0.4269676
#> Nb_Comp_9  110.9354 137.3793          21      100.35563 14.84317 0.4272022
#> Nb_Comp_10 112.9021 141.9904          20      102.85214 14.79133 0.4292027
#>             R2_residY RSS_residY
#> Nb_Comp_0          NA   25.91346
#> Nb_Comp_1   -6.004879  181.52066
#> Nb_Comp_2   -9.617595  275.13865
#> Nb_Comp_3  -12.332217  345.48389
#> Nb_Comp_4  -15.496383  427.47839
#> Nb_Comp_5  -15.937183  438.90105
#> Nb_Comp_6  -16.700929  458.69233
#> Nb_Comp_7  -16.908851  464.08033
#> Nb_Comp_8  -17.555867  480.84675
#> Nb_Comp_9  -17.834439  488.06552
#> Nb_Comp_10 -17.999267  492.33678
#> Model with all the required components:
#> 
#> Call:  glm(formula = YwotNA ~ ., family = family, data = tttrain)
#> 
#> Coefficients:
#> (Intercept)         tt.1         tt.2         tt.3         tt.4         tt.5  
#>    -0.24597      1.54105      0.47489      0.89142      0.51153      0.33475  
#>        tt.6         tt.7         tt.8         tt.9        tt.10  
#>     0.35595      0.23350      0.21274      0.09192      0.06302  
#> 
#> Degrees of Freedom: 103 Total (i.e. Null);  93 Residual
#> Null Deviance:	    143.8 
#> Residual Deviance: 90.9 	AIC: 112.9
colSums(modpls$pvalstep)
#> temppvalstep temppvalstep temppvalstep temppvalstep temppvalstep temppvalstep 
#>            2            1            0            0            0            0 
#> temppvalstep temppvalstep temppvalstep temppvalstep 
#>            0            0            0            0 
modpls$Coeffsmodel_vals
#>               Estimate Std. Error    z value  Pr(>|z|)   Estimate Std. Error
#> (Intercept) -0.1155129  0.1964432 -0.5880218 0.5565177 -0.1916697  0.2303635
#>                     NA         NA         NA        NA  1.0860661  0.2374093
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                     NA         NA         NA        NA         NA         NA
#>                z value     Pr(>|z|)   Estimate Std. Error    z value
#> (Intercept) -0.8320314 4.053912e-01 -0.1780926  0.2422018 -0.7353066
#>              4.5746567 4.770016e-06  1.2611189  0.2751714  4.5830296
#>                     NA           NA  0.4491918  0.1525562  2.9444352
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                 Pr(>|z|)   Estimate Std. Error    z value     Pr(>|z|)
#> (Intercept) 4.621528e-01 -0.2296856  0.2551324 -0.9002602 3.679818e-01
#>             4.582872e-06  1.3603921  0.2991217  4.5479546 5.416983e-06
#>             3.235447e-03  0.4513946  0.1577291  2.8618340 4.211975e-03
#>                       NA  0.7351530  0.2969651  2.4755532 1.330299e-02
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>               Estimate Std. Error   z value     Pr(>|z|)   Estimate Std. Error
#> (Intercept) -0.2631783  0.2622355 -1.003595 3.155738e-01 -0.2598139  0.2644378
#>              1.4806072  0.3244631  4.563253 5.036706e-06  1.4929412  0.3299548
#>              0.4747033  0.1624087  2.922894 3.467946e-03  0.4774613  0.1631709
#>              0.8168174  0.3055562  2.673215 7.512815e-03  0.8198024  0.3065426
#>              0.4468736  0.2530751  1.765775 7.743367e-02  0.4534822  0.2507909
#>                     NA         NA        NA           NA  0.2427411  0.2336729
#>                     NA         NA        NA           NA         NA         NA
#>                     NA         NA        NA           NA         NA         NA
#>                     NA         NA        NA           NA         NA         NA
#>                     NA         NA        NA           NA         NA         NA
#>                     NA         NA        NA           NA         NA         NA
#>                z value     Pr(>|z|)   Estimate Std. Error    z value
#> (Intercept) -0.9825141 3.258466e-01 -0.2591151  0.2659184 -0.9744157
#>              4.5246846 6.048563e-06  1.5079215  0.3316435  4.5468147
#>              2.9261429 3.431933e-03  0.4740832  0.1639150  2.8922506
#>              2.6743507 7.487410e-03  0.8488272  0.3138940  2.7041841
#>              1.8082086 7.057404e-02  0.4750095  0.2529611  1.8777963
#>              1.0388072 2.988944e-01  0.2926709  0.2405633  1.2166065
#>                     NA           NA  0.3152581  0.3086154  1.0215244
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                     NA           NA         NA         NA         NA
#>                 Pr(>|z|)   Estimate Std. Error    z value     Pr(>|z|)
#> (Intercept) 3.298502e-01 -0.2511020  0.2665107 -0.9421836 3.460986e-01
#>             5.446390e-06  1.5066928  0.3286117  4.5850242 4.539339e-06
#>             3.824927e-03  0.4695250  0.1636168  2.8696632 4.109093e-03
#>             6.847234e-03  0.8655113  0.3167212  2.7327230 6.281313e-03
#>             6.040904e-02  0.4869181  0.2569742  1.8948132 5.811715e-02
#>             2.237540e-01  0.3127604  0.2432912  1.2855395 1.986038e-01
#>             3.070060e-01  0.3414775  0.3071860  1.1116313 2.662967e-01
#>                       NA  0.1759267  0.2823982  0.6229738 5.333017e-01
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>                       NA         NA         NA         NA           NA
#>               Estimate Std. Error    z value     Pr(>|z|)    Estimate
#> (Intercept) -0.2384005  0.2677851 -0.8902678 3.733221e-01 -0.24302353
#>              1.5260550  0.3332262  4.5796371 4.657834e-06  1.53551302
#>              0.4751856  0.1647356  2.8845352 3.919920e-03  0.47435732
#>              0.8833506  0.3211506  2.7505809 5.948970e-03  0.88832250
#>              0.5051588  0.2602702  1.9409013 5.227026e-02  0.51143914
#>              0.3266900  0.2457243  1.3294979 1.836838e-01  0.33288203
#>              0.3553735  0.3066020  1.1590710 2.464272e-01  0.35367508
#>              0.2190251  0.2960578  0.7398053 4.594182e-01  0.22974545
#>              0.1958595  0.3804306  0.5148364 6.066673e-01  0.20542758
#>                     NA         NA         NA           NA  0.08025328
#>                     NA         NA         NA           NA          NA
#>             Std. Error    z value     Pr(>|z|)    Estimate Std. Error
#> (Intercept)  0.2687971 -0.9041150 3.659344e-01 -0.24597264  0.2694749
#>              0.3374570  4.5502475 5.358285e-06  1.54105173  0.3404396
#>              0.1649223  2.8762474 4.024342e-03  0.47489173  0.1650133
#>              0.3223046  2.7561583 5.848469e-03  0.89142494  0.3238360
#>              0.2617010  1.9542883 5.066714e-02  0.51152578  0.2616836
#>              0.2471900  1.3466648 1.780882e-01  0.33475232  0.2480448
#>              0.3066587  1.1533184 2.487797e-01  0.35595360  0.3067304
#>              0.2980235  0.7708970 4.407680e-01  0.23349638  0.2986792
#>              0.3822961  0.5373521 5.910244e-01  0.21273736  0.3839796
#>              0.2813259  0.2852680 7.754388e-01  0.09192325  0.2880633
#>                     NA         NA           NA  0.06301759  0.3456878
#>                z value     Pr(>|z|)
#> (Intercept) -0.9127851 3.613556e-01
#>              4.5266528 5.992528e-06
#>              2.8779001 4.003319e-03
#>              2.7527047 5.910518e-03
#>              1.9547488 5.061273e-02
#>              1.3495639 1.771559e-01
#>              1.1604769 2.458547e-01
#>              0.7817631 4.343538e-01
#>              0.5540330 5.795563e-01
#>              0.3191079 7.496447e-01
#>              0.1822962 8.553502e-01

plot(plsRglm(yaze_compl,Xaze_compl,4,modele="pls-glm-logistic")$FinalModel)
#> ____************************************************____
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 




plsRglm(yaze_compl[-c(99,72)],Xaze_compl[-c(99,72),],4,
modele="pls-glm-logistic",pvals.expli=TRUE)$pvalstep
#> ____************************************************____
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
#>       temppvalstep temppvalstep temppvalstep temppvalstep
#>  [1,]            0            0            0            0
#>  [2,]            1            0            0            0
#>  [3,]            0            0            0            0
#>  [4,]            0            0            0            0
#>  [5,]            0            0            0            0
#>  [6,]            0            0            0            0
#>  [7,]            0            0            0            0
#>  [8,]            0            0            0            0
#>  [9,]            0            0            0            0
#> [10,]            0            0            0            0
#> [11,]            0            0            0            0
#> [12,]            0            0            0            0
#> [13,]            0            0            0            0
#> [14,]            1            0            0            0
#> [15,]            0            0            0            0
#> [16,]            0            0            0            0
#> [17,]            1            0            0            0
#> [18,]            0            0            0            0
#> [19,]            0            0            0            0
#> [20,]            0            0            0            0
#> [21,]            0            0            0            0
#> [22,]            0            0            0            0
#> [23,]            0            0            0            0
#> [24,]            0            0            0            0
#> [25,]            0            1            0            0
#> [26,]            0            0            0            0
#> [27,]            0            0            0            0
#> [28,]            0            0            0            0
#> [29,]            0            0            0            0
#> [30,]            0            0            0            0
#> [31,]            0            0            0            0
#> [32,]            0            1            0            0
#> [33,]            0            0            0            0
plot(plsRglm(yaze_compl[-c(99,72)],Xaze_compl[-c(99,72),],4,
modele="pls-glm-logistic",pvals.expli=TRUE)$FinalModel)
#> ____************************************************____
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 




rm(list=c("Xaze_compl","yaze_compl","modpls"))


data(bordeaux)
Xbordeaux<-bordeaux[,1:4]
ybordeaux<-factor(bordeaux$Quality,ordered=TRUE)
modpls <- plsRglm(ybordeaux,Xbordeaux,10,modele="pls-glm-polr",pvals.expli=TRUE)
#> ____************************************************____
#> 
#> Model: pls-glm-polr 
#> Method: logistic 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> Warning : 1 2 3 4 < 10^{-12}
#> Warning only 4 components could thus be extracted
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 4
#> Coefficients:
#>                     [,1]
#> 1|2         -85.50956454
#> 2|3         -80.55155990
#> Temperature   0.02427235
#> Sunshine      0.01379029
#> Heat         -0.08876364
#> Rain         -0.02589509
#> Information criteria and Fit statistics:
#>                AIC      BIC Missclassed Chi2_Pearson_Y
#> Nb_Comp_0 78.64736 81.70009          22      62.333333
#> Nb_Comp_1 36.50286 41.08194           6       9.356521
#> Nb_Comp_2 35.58058 41.68602           6       8.568956
#> Nb_Comp_3 36.26588 43.89768           7       8.281011
#> Nb_Comp_4 38.15799 47.31616           7       8.321689
colSums(modpls$pvalstep)
#> temppvalstep temppvalstep temppvalstep temppvalstep 
#>            4            0            0            0 


XbordeauxNA<-Xbordeaux
XbordeauxNA[1,1] <- NA
modplsNA <- plsRglm(ybordeaux,XbordeauxNA,10,modele="pls-glm-polr",pvals.expli=TRUE)
#> ____************************************************____
#> Only naive DoF can be used with missing data
#> 
#> Model: pls-glm-polr 
#> Method: logistic 
#> 
#> ____There are some NAs in X but not in Y____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> Warning : reciprocal condition number of t(cbind(res$pp,temppp)[XXNA[1,],,drop=FALSE])%*%cbind(res$pp,temppp)[XXNA[1,],,drop=FALSE] < 10^{-12}
#> Warning only 3 components could thus be extracted
#> ____Predicting X with NA in X and not in Y____
#> ****________________________________________________****
#> 
modpls
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 4
#> Coefficients:
#>                     [,1]
#> 1|2         -85.50956454
#> 2|3         -80.55155990
#> Temperature   0.02427235
#> Sunshine      0.01379029
#> Heat         -0.08876364
#> Rain         -0.02589509
#> Information criteria and Fit statistics:
#>                AIC      BIC Missclassed Chi2_Pearson_Y
#> Nb_Comp_0 78.64736 81.70009          22      62.333333
#> Nb_Comp_1 36.50286 41.08194           6       9.356521
#> Nb_Comp_2 35.58058 41.68602           6       8.568956
#> Nb_Comp_3 36.26588 43.89768           7       8.281011
#> Nb_Comp_4 38.15799 47.31616           7       8.321689
colSums(modpls$pvalstep)
#> temppvalstep temppvalstep temppvalstep temppvalstep 
#>            4            0            0            0 
rm(list=c("Xbordeaux","XbordeauxNA","ybordeaux","modplsNA"))

# \donttest{
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
modpls1 <- plsRglm(ypine,Xpine,1)
#> ____************************************************____
#> 
#> Model: pls 
#> 
#> ____Component____ 1 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls1$Std.Coeffs
#>                  [,1]
#> Intercept  0.00000000
#> x1        -0.12075822
#> x2        -0.10373136
#> x3        -0.12842935
#> x4        -0.08151265
#> x5        -0.03593266
#> x6        -0.12987323
#> x7        -0.04822603
#> x8        -0.12552116
#> x9        -0.14482083
#> x10       -0.02820877
modpls1$Coeffs
#>                    [,1]
#> Intercept  4.1382956708
#> x1        -0.0007545026
#> x2        -0.0114506575
#> x3        -0.0108576908
#> x4        -0.0631435196
#> x5        -0.0067331994
#> x6        -0.1459627512
#> x7        -0.2077725998
#> x8        -0.0430293759
#> x9        -0.2061096267
#> x10       -0.0887273019
modpls4 <- plsRglm(ypine,Xpine,4)
#> ____************************************************____
#> 
#> Model: pls 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls4$Std.Coeffs
#>                 [,1]
#> Intercept  0.0000000
#> x1        -0.4420109
#> x2        -0.3440382
#> x3         0.2638393
#> x4        -0.2948914
#> x5         0.3931541
#> x6         0.2227973
#> x7        -0.1176200
#> x8        -0.2582013
#> x9        -0.5091120
#> x10       -0.1219269
modpls4$Coeffs
#>                   [,1]
#> Intercept  8.350613628
#> x1        -0.002761704
#> x2        -0.037977559
#> x3         0.022305538
#> x4        -0.228436678
#> x5         0.073670736
#> x6         0.250398830
#> x7        -0.506743287
#> x8        -0.088512880
#> x9        -0.724570373
#> x10       -0.383506358
modpls4$PredictY[1,]
#>         x1         x2         x3         x4         x5         x6         x7 
#> -0.8938006 -0.9625784 -1.0962764 -0.4338283 -0.1049413 -1.1025308 -2.9795617 
#>         x8         x9        x10 
#> -0.6970648 -1.0270611 -1.3713833 
plsRglm(ypine,Xpine,4,dataPredictY=Xpine[1,])$PredictY[1,]
#> ____************************************************____
#> 
#> Model: pls 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
#>         x1         x2         x3         x4         x5         x6         x7 
#> -0.8938006 -0.9625784 -1.0962764 -0.4338283 -0.1049413 -1.1025308 -2.9795617 
#>         x8         x9        x10 
#> -0.6970648 -1.0270611 -1.3713833 

XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
modpls4NA <- plsRglm(ypine,XpineNAX21,4)
#> ____************************************************____
#> Only naive DoF can be used with missing data
#> 
#> Model: pls 
#> 
#> ____There are some NAs in X but not in Y____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X with NA in X and not in Y____
#> ****________________________________________________****
#> 
modpls4NA$Std.Coeffs
#>                 [,1]
#> Intercept  0.0000000
#> x1        -0.4482129
#> x2        -0.3419468
#> x3         0.2639767
#> x4        -0.2976908
#> x5         0.3980568
#> x6         0.2227265
#> x7        -0.1003291
#> x8        -0.2630762
#> x9        -0.5134822
#> x10       -0.1155765
modpls4NA$YChapeau[1,]
#>        1 
#> 2.063442 
modpls4$YChapeau[1,]
#>        1 
#> 2.019396 
modpls4NA$CoeffC
#> Coeff_Comp_Reg 1 Coeff_Comp_Reg 2 Coeff_Comp_Reg 3 Coeff_Comp_Reg 4 
#>        0.3259018        0.3206317        0.2795367        0.3837106 
plsRglm(ypine,XpineNAX21,4,EstimXNA=TRUE)$XChapeau
#> ____************************************************____
#> Only naive DoF can be used with missing data
#> 
#> Model: pls 
#> 
#> ____There are some NAs in X but not in Y____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X with NA in X and not in Y____
#> ****________________________________________________****
#> 
#>          x1       x2          x3       x4        x5        x6       x7
#> 1  1134.926 17.71027 -1.55494586 4.617652 17.305716 0.8486361 1.478701
#> 2  1289.388 28.04038  7.90829874 4.624402 17.149156 1.5219847 1.602875
#> 3  1249.652 28.26614  4.04605095 2.766712  9.769908 1.1702877 1.691789
#> 4  1302.534 27.62757 17.52125611 3.253130 10.847486 2.1870969 1.736890
#> 5  1348.106 34.85765  5.39129800 3.929641 12.914210 1.3214368 1.704204
#> 6  1266.414 28.96388  0.65947289 4.266220 15.814114 0.9760181 1.594253
#> 7  1432.714 36.98512 23.67253140 3.129351  8.217668 2.6460431 1.876249
#> 8  1404.730 37.58134  5.32566106 5.727770 20.722755 1.3677455 1.611431
#> 9  1180.796 21.81141  2.88848941 3.335411 11.169400 1.1333238 1.619553
#> 10 1275.948 27.24037  9.65604429 3.771598 11.989421 1.6470259 1.681580
#> 11 1259.564 20.94764 16.48622739 5.667959 18.533231 2.2445475 1.575084
#> 12 1394.964 27.98596 31.86797620 5.563379 21.664911 3.2946812 1.650637
#> 13 1135.520 19.18086  0.32731180 3.036465 11.266662 0.9204965 1.584646
#> 14 1238.978 25.77450  1.37695304 4.752455 19.126468 1.0315111 1.524638
#> 15 1247.316 26.42985  3.58143639 4.146871 15.175624 1.1926480 1.598700
#> 16 1501.750 38.06874 29.19896489 5.556556 18.392884 3.1295468 1.764202
#> 17 1450.581 35.94538 22.31619700 5.619470 20.182786 2.6095860 1.687935
#> 18 1252.985 25.62811  5.23193278 4.605906 14.947795 1.3637731 1.606747
#> 19 1327.516 32.77904  9.61237796 3.044450  9.806764 1.5946018 1.752730
#> 20 1429.839 36.31945 18.92696106 4.738709 15.290167 2.3501708 1.746581
#> 21 1377.533 27.81569 29.35999846 5.107524 18.668226 3.1133147 1.682007
#> 22 1318.284 28.04601 16.03323018 4.365471 14.743435 2.1271150 1.677908
#> 23 1325.821 31.50718  5.58479450 4.966866 17.261144 1.3774365 1.617724
#> 24 1383.070 31.25375 21.66717959 4.793301 16.260553 2.5508573 1.707051
#> 25 1463.234 42.03186 10.45349969 4.878436 16.759389 1.7107863 1.726395
#> 26 1301.669 29.43958  6.08840693 4.752488 15.708156 1.4213115 1.627982
#> 27 1390.268 30.07541 19.80133275 6.653309 23.022739 2.4959599 1.593548
#> 28 1236.133 28.52827  0.08033458 2.566106  6.654150 0.9086939 1.722742
#> 29 1196.392 23.15203  3.03238784 3.307398 10.802144 1.1440582 1.635806
#> 30 1265.126 24.40645 14.03965248 3.978220 11.110834 2.0069974 1.696349
#> 31 1293.488 27.99940  7.51088152 5.069256 19.457843 1.5011917 1.566879
#> 32 1250.314 22.52645 10.77971133 5.291157 16.422781 1.8201013 1.590744
#> 33 1407.143 33.66167 19.58235996 5.058855 16.210758 2.4207837 1.717287
#>           x8       x9      x10
#> 1   6.105504 1.326767 1.647842
#> 2   6.882002 1.660718 1.629429
#> 3   3.757650 1.284641 1.725048
#> 4   6.421039 2.062960 1.892126
#> 5   5.987267 1.652982 1.682369
#> 6   5.454892 1.287215 1.567051
#> 7   7.544949 2.574739 2.006478
#> 8   8.157027 1.715136 1.468098
#> 9   5.082501 1.505169 1.812920
#> 10  6.686354 1.941424 1.849234
#> 11 10.892806 2.672310 1.925674
#> 12 10.645052 2.659727 1.738274
#> 13  3.883547 1.174771 1.746730
#> 14  5.741519 1.174675 1.475078
#> 15  5.794444 1.450750 1.647027
#> 16 11.388213 2.984510 1.830369
#> 17 10.075867 2.462894 1.670380
#> 18  7.598409 1.921157 1.790273
#> 19  5.100449 1.686284 1.783541
#> 20  9.030929 2.446771 1.799899
#> 21 10.240385 2.699833 1.836498
#> 22  8.066347 2.207112 1.829440
#> 23  7.530488 1.773139 1.631801
#> 24  9.286715 2.494618 1.828172
#> 25  7.617564 1.892788 1.570558
#> 26  7.677432 1.907246 1.728978
#> 27 12.072562 2.739598 1.733802
#> 28  4.043894 1.474978 1.868514
#> 29  5.121026 1.537486 1.819119
#> 30  8.364931 2.461724 2.036300
#> 31  7.233594 1.604288 1.553519
#> 32  9.906396 2.472563 1.923566
#> 33  9.829378 2.595127 1.840669
plsRglm(ypine,XpineNAX21,4,EstimXNA=TRUE)$XChapeauNA
#> ____************************************************____
#> Only naive DoF can be used with missing data
#> 
#> Model: pls 
#> 
#> ____There are some NAs in X but not in Y____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X with NA in X and not in Y____
#> ****________________________________________________****
#> 
#>    [,1]     [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> 1     0 17.71027    0    0    0    0    0    0    0     0
#> 2     0  0.00000    0    0    0    0    0    0    0     0
#> 3     0  0.00000    0    0    0    0    0    0    0     0
#> 4     0  0.00000    0    0    0    0    0    0    0     0
#> 5     0  0.00000    0    0    0    0    0    0    0     0
#> 6     0  0.00000    0    0    0    0    0    0    0     0
#> 7     0  0.00000    0    0    0    0    0    0    0     0
#> 8     0  0.00000    0    0    0    0    0    0    0     0
#> 9     0  0.00000    0    0    0    0    0    0    0     0
#> 10    0  0.00000    0    0    0    0    0    0    0     0
#> 11    0  0.00000    0    0    0    0    0    0    0     0
#> 12    0  0.00000    0    0    0    0    0    0    0     0
#> 13    0  0.00000    0    0    0    0    0    0    0     0
#> 14    0  0.00000    0    0    0    0    0    0    0     0
#> 15    0  0.00000    0    0    0    0    0    0    0     0
#> 16    0  0.00000    0    0    0    0    0    0    0     0
#> 17    0  0.00000    0    0    0    0    0    0    0     0
#> 18    0  0.00000    0    0    0    0    0    0    0     0
#> 19    0  0.00000    0    0    0    0    0    0    0     0
#> 20    0  0.00000    0    0    0    0    0    0    0     0
#> 21    0  0.00000    0    0    0    0    0    0    0     0
#> 22    0  0.00000    0    0    0    0    0    0    0     0
#> 23    0  0.00000    0    0    0    0    0    0    0     0
#> 24    0  0.00000    0    0    0    0    0    0    0     0
#> 25    0  0.00000    0    0    0    0    0    0    0     0
#> 26    0  0.00000    0    0    0    0    0    0    0     0
#> 27    0  0.00000    0    0    0    0    0    0    0     0
#> 28    0  0.00000    0    0    0    0    0    0    0     0
#> 29    0  0.00000    0    0    0    0    0    0    0     0
#> 30    0  0.00000    0    0    0    0    0    0    0     0
#> 31    0  0.00000    0    0    0    0    0    0    0     0
#> 32    0  0.00000    0    0    0    0    0    0    0     0
#> 33    0  0.00000    0    0    0    0    0    0    0     0

# compare pls-glm-gaussian with classic plsR
modplsglm4 <- plsRglm(ypine,Xpine,4,modele="pls-glm-gaussian")
#> ____************************************************____
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
cbind(modpls4$Std.Coeffs,modplsglm4$Std.Coeffs)
#>                 [,1]        [,2]
#> Intercept  0.0000000  0.81121212
#> x1        -0.4420109 -0.34178559
#> x2        -0.3440382 -0.26828907
#> x3         0.2638393  0.19051737
#> x4        -0.2948914 -0.09571119
#> x5         0.3931541  0.17792633
#> x6         0.2227973  0.24017232
#> x7        -0.1176200 -0.12049491
#> x8        -0.2582013 -0.11958412
#> x9        -0.5091120 -0.58148650
#> x10       -0.1219269 -0.04519212

# without missing data
cbind(ypine,modpls4$ValsPredictY,modplsglm4$ValsPredictY)
#>    ypine                         
#> 1   2.37  2.01939633  2.025720690
#> 2   1.47  1.24570213  1.188171412
#> 3   1.13  1.53585542  1.417980819
#> 4   0.85  1.04161870  0.901257566
#> 5   0.24  0.58902449  0.539466433
#> 6   1.49  1.37731103  1.394223504
#> 7   0.30 -0.17938500 -0.181775915
#> 8   0.07  0.39516648  0.513587769
#> 9   3.00  1.60139990  1.576666292
#> 10  1.21  0.86352520  0.915171230
#> 11  0.38  0.64182858  0.636399772
#> 12  0.70  0.92157715  0.906678742
#> 13  2.64  2.19169300  2.197201851
#> 14  2.05  1.84688715  1.849649772
#> 15  1.75  1.43462512  1.475461977
#> 16  0.06 -0.48552205 -0.373068343
#> 17  0.13  0.15763382 -0.036909766
#> 18  1.00  0.88458167  0.805974957
#> 19  0.41  0.82968208  0.811023094
#> 20  0.72 -0.06160100 -0.009618538
#> 21  0.67  0.71563687  0.690072944
#> 22  0.12  0.76705111  0.734843252
#> 23  0.97  0.68206508  0.723928013
#> 24  0.07  0.36607751  0.409261632
#> 25  0.10 -0.01161858 -0.049135741
#> 26  0.68  0.64060202  0.676658656
#> 27  0.13  0.07976920  0.142983517
#> 28  0.20  0.98446655  1.067690338
#> 29  1.09  1.46033916  1.566714783
#> 30  0.18  0.49408354  0.348494547
#> 31  0.35  1.31718138  1.348938103
#> 32  0.21  0.50456716  0.644006458
#> 33  0.03 -0.08122119 -0.087719821

# with missing data
modplsglm4NA <- plsRglm(ypine,XpineNAX21,4,modele="pls-glm-gaussian")
#> ____************************************************____
#> Only naive DoF can be used with missing data
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> ____There are some NAs in X but not in Y____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X with NA in X and not in Y____
#> ****________________________________________________****
#> 
cbind((ypine),modpls4NA$ValsPredictY,modplsglm4NA$ValsPredictY)
#>    [,1]        [,2]        [,3]
#> 1  2.37  2.59632584  2.65655978
#> 2  1.47  1.29283727  1.28488164
#> 3  1.13  1.75173093  1.15999892
#> 4  0.85  1.18716395  0.63676710
#> 5  0.24  0.86910609  0.48002572
#> 6  1.49  1.46921709  1.35213181
#> 7  0.30 -0.21535819 -0.40312929
#> 8  0.07  0.23933510  0.06547790
#> 9  3.00  1.40568878  1.59073347
#> 10 1.21  0.50211746  0.51995031
#> 11 0.38  0.66223983  0.59109134
#> 12 0.70  0.44282335  0.02503985
#> 13 2.64  2.36396443  2.30673885
#> 14 2.05  1.90161042  1.99562658
#> 15 1.75  1.29947548  1.50028142
#> 16 0.06 -0.46871207 -0.45217350
#> 17 0.13  0.57159705  0.38572317
#> 18 1.00  0.91390716  0.93127818
#> 19 0.41  0.66724660  0.69975186
#> 20 0.72 -0.11983245 -0.17511644
#> 21 0.67  1.05066865  1.10740476
#> 22 0.12  0.92111414  0.88988795
#> 23 0.97  0.56876142  1.08147288
#> 24 0.07  0.57008862  0.95768372
#> 25 0.10  0.04444106 -0.37407716
#> 26 0.68  0.55151878  1.09037413
#> 27 0.13  0.33919018  0.37286685
#> 28 0.20  1.24427797  1.30885327
#> 29 1.09  1.34241091  1.60355751
#> 30 0.18  0.49663099  0.45727580
#> 31 0.35  0.97474814  1.27926735
#> 32 0.21  0.41013362  0.97635769
#> 33 0.03 -0.37518880 -0.15328541
rm(list=c("Xpine","ypine","modpls4","modpls4NA","modplsglm4","modplsglm4NA"))

data(fowlkes)
Xfowlkes <- fowlkes[,2:13]
yfowlkes <- fowlkes[,1]
modpls <- plsRglm(yfowlkes,Xfowlkes,4,modele="pls-glm-logistic",pvals.expli=TRUE)
#> ____************************************************____
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modpls
#> Number of required components:
#> [1] 4
#> Number of successfully computed components:
#> [1] 4
#> Coefficients:
#>                   [,1]
#> Intercept -0.651543987
#> MA        -0.267881403
#> MW         0.086198351
#> NE         0.169434730
#> NW         0.036691503
#> PA        -0.257673339
#> SO        -0.009023316
#> SW        -0.126008946
#> color      0.006227693
#> age1       0.148377241
#> age2       0.026777188
#> age3      -0.214447902
#> sexe       0.177928904
#> Information criteria and Fit statistics:
#>                AIC      BIC Missclassed Chi2_Pearson_Y    RSS_Y       R2_Y
#> Nb_Comp_0 12989.10 12996.31        3569       9949.000 2288.694         NA
#> Nb_Comp_1 12890.53 12904.94        3569       9951.203 2265.506 0.01013155
#> Nb_Comp_2 12886.80 12908.42        3569       9951.831 2264.195 0.01070437
#> Nb_Comp_3 12888.51 12917.34        3569       9951.623 2264.140 0.01072862
#> Nb_Comp_4 12890.48 12926.51        3569       9951.646 2264.133 0.01073170
#>           R2_residY RSS_residY
#> Nb_Comp_0        NA   2288.694
#> Nb_Comp_1 -3.997724  11438.263
#> Nb_Comp_2 -4.008537  11463.011
#> Nb_Comp_3 -4.008640  11463.246
#> Nb_Comp_4 -4.008764  11463.529
#> Model with all the required components:
#> 
#> Call:  glm(formula = YwotNA ~ ., family = family, data = tttrain)
#> 
#> Coefficients:
#> (Intercept)         tt.1         tt.2         tt.3         tt.4  
#>   -0.587799     0.177512     0.045112     0.013739     0.007043  
#> 
#> Degrees of Freedom: 9948 Total (i.e. Null);  9944 Residual
#> Null Deviance:	    12990 
#> Residual Deviance: 12880 	AIC: 12890
colSums(modpls$pvalstep)
#> temppvalstep temppvalstep temppvalstep temppvalstep 
#>            7            0            0            0 
rm(list=c("Xfowlkes","yfowlkes","modpls"))


if(require(chemometrics)){
data(hyptis)
yhyptis <- factor(hyptis$Group,ordered=TRUE)
Xhyptis <- as.data.frame(hyptis[,c(1:6)])
options(contrasts = c("contr.treatment", "contr.poly"))
modpls2 <- plsRglm(yhyptis,Xhyptis,6,modele="pls-glm-polr")
modpls2$Coeffsmodel_vals
modpls2$InfCrit
modpls2$Coeffs
modpls2$Std.Coeffs

table(yhyptis,predict(modpls2$FinalModel,type="class"))
rm(list=c("yhyptis","Xhyptis","modpls2"))
}
#> Loading required package: chemometrics
#> Loading required package: rpart
#> ____************************************************____
#> 
#> Model: pls-glm-polr 
#> Method: logistic 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 

dimX <- 24
Astar <- 6
dataAstar6 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ysimbin1 <- dicho(dataAstar6)[,1]
Xsimbin1 <- dicho(dataAstar6)[,2:(dimX+1)]
modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic")
#> ____************************************************____
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> ____Component____ 8 ____
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: algorithm did not converge
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: algorithm did not converge
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> ____Component____ 9 ____
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#> 
modplsglm
#> Number of required components:
#> [1] 10
#> Number of successfully computed components:
#> [1] 10
#> Coefficients:
#>                    [,1]
#> Intercept -1.623502e+15
#> X1        -1.011879e+14
#> X2         5.342311e+14
#> X3         1.108874e+15
#> X4        -1.117490e+15
#> X5         1.134682e+14
#> X6         2.647085e+14
#> X7        -1.011879e+14
#> X8         2.311884e+14
#> X9        -1.344914e+15
#> X10       -1.117490e+15
#> X11        1.134682e+14
#> X12        5.663207e+14
#> X13       -1.430663e+14
#> X14        5.342311e+14
#> X15        1.108874e+15
#> X16        2.071362e+15
#> X17        1.134682e+14
#> X18        2.842260e+14
#> X19       -1.011879e+14
#> X20        5.342311e+14
#> X21        1.108874e+15
#> X22       -1.117490e+15
#> X23        1.134682e+14
#> X24        2.842260e+14
#> Information criteria and Fit statistics:
#>                  AIC       BIC Missclassed Chi2_Pearson_Y    RSS_Y      R2_Y
#> Nb_Comp_0   346.9719  350.4933         115   2.500000e+02 62.10000        NA
#> Nb_Comp_1   160.8411  167.8840          30   2.741373e+02 23.06119 0.6286443
#> Nb_Comp_2   133.1011  143.6655          29   1.959365e+02 19.38885 0.6877802
#> Nb_Comp_3   133.3088  147.3946          28   2.252790e+02 18.81629 0.6970001
#> Nb_Comp_4   135.0428  152.6502          28   2.261994e+02 18.80984 0.6971040
#> Nb_Comp_5   136.9905  158.1192          28   2.240010e+02 18.82154 0.6969156
#> Nb_Comp_6   138.7349  163.3851          28   2.219784e+02 18.81129 0.6970807
#> Nb_Comp_7   140.3418  168.5135          28   2.186454e+02 18.78917 0.6974368
#> Nb_Comp_8   142.2210  173.9142          28   2.163215e+02 18.79231 0.6973863
#> Nb_Comp_9  2398.8811 2434.0957          33   1.486188e+17 33.00000 0.4685990
#> Nb_Comp_10 2112.5319 2151.2680          29   1.306044e+17 29.00000 0.5330113
#>                R2_residY   RSS_residY
#> Nb_Comp_0             NA 6.210000e+01
#> Nb_Comp_1  -2.128058e+01 1.383624e+03
#> Nb_Comp_2  -3.525317e+01 2.251322e+03
#> Nb_Comp_3  -4.005418e+01 2.549465e+03
#> Nb_Comp_4  -4.054993e+01 2.580251e+03
#> Nb_Comp_5  -4.077104e+01 2.593981e+03
#> Nb_Comp_6  -4.031245e+01 2.565503e+03
#> Nb_Comp_7  -4.131414e+01 2.627708e+03
#> Nb_Comp_8  -1.930668e+04 1.199007e+06
#> Nb_Comp_9  -1.846932e+31 1.146945e+33
#> Nb_Comp_10 -1.658940e+31 1.030202e+33
#> Model with all the required components:
#> 
#> Call:  glm(formula = YwotNA ~ ., family = family, data = tttrain)
#> 
#> Coefficients:
#> (Intercept)         tt.1         tt.2         tt.3         tt.4         tt.5  
#>   3.707e+14    6.835e+14    3.323e+14    1.316e+14    1.409e+14    4.791e+14  
#>        tt.6         tt.7         tt.8         tt.9        tt.10  
#>  -3.130e+14   -5.735e+14   -6.527e+15    1.044e+15    8.805e+15  
#> 
#> Degrees of Freedom: 249 Total (i.e. Null);  239 Residual
#> Null Deviance:	    345 
#> Residual Deviance: 2091 	AIC: 2113

simbin=data.frame(dicho(dataAstar6))
cv.modplsglm <- suppressWarnings(cv.plsRglm(Y~.,data=simbin,nt=10,
modele="pls-glm-logistic",NK=100, verbose=FALSE))
res.cv.modplsglm <- cvtable(summary(cv.modplsglm,MClassed=TRUE,
verbose=FALSE))
#> Error in PLS_glm_formula(formula = Y ~ ., data = simbin, nt = 10, modele = "pls-glm-logistic",     verbose = FALSE, typeVC = "none", MClassed = TRUE): object 'simbin' not found
plot(res.cv.modplsglm) #defaults to type="CVMC"


rm(list=c("dimX","Astar","dataAstar6","ysimbin1","Xsimbin1","modplsglm","cv.modplsglm",
"res.cv.modplsglm"))
# }