Skip to contents

This function generates a single univariate response value \(Y\) and a vector of explanatory variables \((X_1,\ldots,X_{totdim})\) drawn from a model with a given number of latent components.

Usage

simul_data_UniYX(totdim, ncomp)

Arguments

totdim

Number of columns of the X vector (from ncomp to hardware limits)

ncomp

Number of latent components in the model (from 2 to 6)

Value

vector

\((Y,X_1,\ldots,X_{totdim})\)

Details

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

References

T. Naes, H. Martens, Comparison of prediction methods for multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89, doi:10.1016/S0169-7439(02)00051-5 .

See also

simul_data_YX and simul_data_complete for generating multivariate data

Examples


simul_data_UniYX(20,6)                          
#>           Y          X1          X2          X3          X4          X5 
#>  5.37208159  2.61772471  1.98015086  2.73966905 -0.65033218  2.80462160 
#>          X6          X7          X8          X9         X10         X11 
#>  2.56459761  2.97305937 -0.07073625  0.09994084  1.52460131  1.87522259 
#>         X12         X13         X14         X15         X16         X17 
#>  1.47017902  2.54432359  3.69661409  0.10830547  1.51483474  1.89846468 
#>         X18         X19         X20 
#>  1.46503159  2.55933333  3.67439144 

# \donttest{
dimX <- 6
Astar <- 2
simul_data_UniYX(dimX,Astar)
#>          Y         X1         X2         X3         X4         X5         X6 
#> -13.907393   1.960788   1.972129 -12.548192   1.981423   1.972791 -12.529984 
(dataAstar2 <- data.frame(t(replicate(50,simul_data_UniYX(dimX,Astar)))))
#>              Y           X1          X2          X3           X4           X5
#> 1    3.8835021  -0.86101898  -0.8585292   3.5667795  -0.86396799  -0.85963034
#> 2    2.1036123  -4.23745332  -4.2451625   2.6827753  -4.23773593  -4.24655183
#> 3   -7.6334554   1.63488040   1.6198754  -7.0916115   1.62034004   1.62234791
#> 4    5.2684942   6.02266762   6.0035262   3.4444054   6.01491653   6.03774662
#> 5    5.3073841   3.43863801   3.4290896   3.8601260   3.44318025   3.42863295
#> 6   14.1292800   9.39403422   9.4096588  10.2487855   9.39540352   9.39415553
#> 7  -12.7078565  -4.99976673  -5.0027713 -10.0752803  -4.99043747  -4.99635204
#> 8   -8.3401731   2.64693430   2.6431057  -8.1373183   2.63832587   2.63936376
#> 9    2.6521257  -0.09433747  -0.1078118   2.2133681  -0.08936865  -0.09518355
#> 10   8.6763013  -9.88098128  -9.9042742  10.0556337  -9.89152604  -9.87553203
#> 11  -0.9632626   9.58474352   9.5887055  -3.2305931   9.60993068   9.56627937
#> 12 -16.8184852  -0.94634924  -0.9526492 -14.4230444  -0.93679857  -0.96541380
#> 13   1.0199900  -5.19862080  -5.1936552   2.1500019  -5.19912401  -5.19056624
#> 14  17.8291114  -1.34479290  -1.3492358  15.9098476  -1.34808293  -1.33920119
#> 15  -4.6104361  -6.71956191  -6.7168387  -2.2519049  -6.69500066  -6.71863827
#> 16   2.0552492   1.91474298   1.9273525   1.3234751   1.92965979   1.91400875
#> 17  -1.4873593  -0.32223625  -0.3259767  -1.1575482  -0.30600170  -0.30726717
#> 18  -5.0542769  -7.09269213  -7.1057334  -2.7318341  -7.09574924  -7.09831930
#> 19  11.2761574   3.47220734   3.4847111   9.0669754   3.47792371   3.48452409
#> 20 -11.6565941   3.09511377   3.1179164 -10.8131318   3.11844854   3.10927176
#> 21   9.3498807   7.58249010   7.5926645   6.3069149   7.58835745   7.58460974
#> 22  -2.8393309   4.40729402   4.4115625  -3.5618869   4.42013211   4.42532752
#> 23 -10.6205438   7.71139729   7.6919160 -10.9908654   7.70183762   7.70002745
#> 24 -18.4918386  -8.17862749  -8.1543959 -14.3323704  -8.17335733  -8.19547554
#> 25  -4.1456204   4.67818616   4.6700780  -4.9050637   4.65602956   4.67854494
#> 26   4.6904730  -1.20983931  -1.1910112   4.5526713  -1.18465815  -1.18363840
#> 27  -1.3481296  -5.20637717  -5.2207911   0.1423457  -5.19546166  -5.20366869
#> 28  -6.9649421 -10.51188564 -10.5142038  -3.5120759 -10.51934024 -10.53309255
#> 29  12.0024773   5.22529539   5.2446828   9.2860329   5.23587640   5.23076541
#> 30   1.0779628   9.01658176   9.0175611  -1.2955567   9.02725592   9.00860771
#> 31   1.0493864   1.05689427   1.0253789   0.7514018   1.02966186   1.04720388
#> 32  -5.0395468  -6.59996503  -6.5995401  -2.7773355  -6.59466791  -6.59926102
#> 33 -17.3292878  -6.74167486  -6.7699467 -13.3821982  -6.73789684  -6.73729467
#> 34  -5.5137724   5.51032179   5.5052749  -6.2023025   5.50789402   5.52668350
#> 35 -12.4978407  -1.49623562  -1.5004234 -10.7332391  -1.52810861  -1.52425007
#> 36  -3.8843655  -0.70012435  -0.7107067  -3.2533373  -0.70248578  -0.71553083
#> 37  -5.6005114   5.64539111   5.6497678  -6.1774716   5.64850876   5.64455227
#> 38  -2.6804103   2.42087271   2.4032030  -2.9265460   2.41376446   2.41339274
#> 39  11.6112195   1.47025923   1.4833565   9.9658942   1.48251834   1.47975745
#> 40   2.0287946  -2.78573085  -2.7772632   2.4840439  -2.78562442  -2.78234378
#> 41  -5.1830779  -0.70929950  -0.7211025  -4.3696184  -0.72363317  -0.73659370
#> 42 -15.3210544   0.95543343   0.9476569 -13.5879601   0.95379695   0.95064553
#> 43  -5.1145830   1.49915057   1.4852571  -4.6896349   1.50728777   1.48331294
#> 44   4.1997361  -2.68052500  -2.6882637   4.2251419  -2.68428888  -2.68853188
#> 45   8.6108449   1.53618973   1.5237747   7.2044338   1.50836988   1.52866652
#> 46  -5.0628676   2.00435225   1.9992170  -4.8958960   2.01722943   2.00301714
#> 47 -16.4823624  -6.30269172  -6.3001770 -12.8443507  -6.30296475  -6.29372646
#> 48 -16.5945227 -13.86088554 -13.8849554 -11.0957969 -13.87212632 -13.87673512
#> 49   6.1745872  -1.38215770  -1.3846519   5.7810565  -1.37898207  -1.39402422
#> 50  -7.9239998  -1.35914913  -1.3883223  -6.7668870  -1.38381653  -1.36855332
#>             X6
#> 1    3.5648792
#> 2    2.6722453
#> 3   -7.0861820
#> 4    3.4467972
#> 5    3.8727228
#> 6   10.2741243
#> 7  -10.0948566
#> 8   -8.1367866
#> 9    2.2250447
#> 10  10.0459464
#> 11  -3.2237765
#> 12 -14.4261306
#> 13   2.1469067
#> 14  15.8915027
#> 15  -2.2555525
#> 16   1.3162244
#> 17  -1.1894906
#> 18  -2.7349873
#> 19   9.0786301
#> 20 -10.8211611
#> 21   6.3180235
#> 22  -3.5412934
#> 23 -11.0057288
#> 24 -14.3207732
#> 25  -4.9146715
#> 26   4.5492355
#> 27   0.1613773
#> 28  -3.5319529
#> 29   9.3058474
#> 30  -1.2829327
#> 31   0.7383270
#> 32  -2.7550041
#> 33 -13.3664442
#> 34  -6.2054366
#> 35 -10.6931173
#> 36  -3.2291507
#> 37  -6.1657026
#> 38  -2.9261940
#> 39   9.9363752
#> 40   2.4753093
#> 41  -4.3433148
#> 42 -13.5772263
#> 43  -4.6896462
#> 44   4.2330389
#> 45   7.2106320
#> 46  -4.8978538
#> 47 -12.8548489
#> 48 -11.1004403
#> 49   5.7849515
#> 50  -6.7647212
cvtable(summary(cv.plsR(Y~.,data=dataAstar2,5,NK=100, verbose=FALSE)))
#> ____************************************************____
#> Error in eval(mf, parent.frame()): object 'dataAstar2' not found

dimX <- 6
Astar <- 3
simul_data_UniYX(dimX,Astar)
#>        Y       X1       X2       X3       X4       X5       X6 
#> 5.147520 1.513335 4.440176 2.109769 1.526822 4.455568 2.118202 
(dataAstar3 <- data.frame(t(replicate(50,simul_data_UniYX(dimX,Astar)))))
#>               Y          X1           X2           X3          X4            X5
#> 1    1.61184288  -3.1453515   2.67245432  -1.38751871  -3.1335055  2.680796e+00
#> 2   -1.30671233   6.0789699  -0.01409086   1.05812766   6.0615349  5.139614e-05
#> 3    3.86404629   7.5471695   4.05847595   3.51592392   7.5450722  4.066135e+00
#> 4   -5.71544893   4.4169696  -2.06311192  -2.04103648   4.4280102 -2.057402e+00
#> 5   10.42782288   1.0612895  -2.39586723  11.10991373   1.0780188 -2.375335e+00
#> 6   15.74690681   3.5686973  10.31033359   8.89112771   3.5510225  1.032373e+01
#> 7   -6.25234893   0.7998805  -3.45696908  -2.74371941   0.8208916 -3.471445e+00
#> 8   15.50724918 -10.6852600  -0.88442192   9.76954475 -10.7019801 -9.106402e-01
#> 9    3.32925053   0.3733313  -0.94292185   3.71406374   0.3819483 -9.325856e-01
#> 10   9.16838763 -10.7052609  -5.89006748   7.67509096 -10.6965845 -5.883337e+00
#> 11 -21.22080041  -1.3537709  -7.17443071 -14.58477057  -1.3770165 -7.189509e+00
#> 12  -7.13605888  -2.0240266   0.13805329  -7.19593050  -2.0363195  1.543217e-01
#> 13   0.32544237   2.5910330   1.11652908   0.41826840   2.5940457  1.100608e+00
#> 14  -4.01863392   5.5147199   4.67585699  -4.23649047   5.5235122  4.652382e+00
#> 15   3.41492208   2.8135642   8.82793641  -1.65962845   2.8282798  8.828523e+00
#> 16  -2.71240209  -0.1181444   2.08747214  -3.85839105  -0.1222899  2.092057e+00
#> 17   5.64165464  -3.8922316  -3.56902390   5.60484620  -3.8951310 -3.557819e+00
#> 18  -8.74803187 -16.6573380 -14.86368112  -4.62858551 -16.6479412 -1.487390e+01
#> 19  16.64326611  -5.1423132   4.51826085   9.80288345  -5.1565371  4.539871e+00
#> 20   4.83944696  -5.4797383   4.98217762  -0.82966162  -5.4758555  4.986784e+00
#> 21  -2.37452366  -1.5272576  -6.69083286   1.47741360  -1.5264493 -6.678615e+00
#> 22  -0.46743870  -6.0470156  -4.74361450  -0.08959611  -6.0812672 -4.751834e+00
#> 23  -0.80190884   3.5343239   4.03116230  -2.04418975   3.5333668  4.019366e+00
#> 24 -15.11309472  -2.5697972  -2.13676919 -13.05862183  -2.5661690 -2.126380e+00
#> 25   7.73080317  -1.6197055   3.49750323   3.95377848  -1.6292029  3.496756e+00
#> 26   6.89997310 -14.7632822  -1.01305798   0.94643873 -14.7482680 -1.008190e+00
#> 27   4.33649122   2.2461857  -0.78315855   4.92004196   2.2632953 -7.794394e-01
#> 28  14.29956345  -3.1933515  -3.56095518  13.62003606  -3.1778156 -3.557107e+00
#> 29   0.23645067   0.3290622  -1.05430729   1.08159722   0.3289938 -1.044840e+00
#> 30  -0.41725081 -18.1209777 -12.04381295   0.03811136 -18.1039799 -1.204332e+01
#> 31 -11.91781638   2.4010988  -9.96809706  -3.23666283   2.4030743 -9.982433e+00
#> 32  -0.03276720   5.8873117   1.76116090   1.10291100   5.8850760  1.769101e+00
#> 33  -1.84971837  -0.7848941   1.40287358  -2.92722243  -0.7931282  1.393646e+00
#> 34   2.12820592 -10.0175419  -7.91879427   2.79155658 -10.0450615 -7.919383e+00
#> 35   7.56748431   5.9218802   8.78864118   3.59299874   5.9060197  8.769332e+00
#> 36  16.09577645   5.4569825   5.32502527  12.78369177   5.4296274  5.345703e+00
#> 37   0.19097685   9.1880168   6.89820547  -0.41668056   9.1931464  6.893767e+00
#> 38  -1.62614423  17.7220363   8.47289389  -0.04774728  17.7168731  8.475962e+00
#> 39 -10.74021974  -0.2053579  -0.13773318  -9.32781957  -0.2033117 -1.446842e-01
#> 40   3.06197407   1.5532651  -3.70648028   5.43621067   1.5366369 -3.709812e+00
#> 41   0.06081361   3.6684504   4.93578748  -1.67370886   3.6816702  4.896537e+00
#> 42   1.72664479  -1.6221266   0.21791156   0.79285769  -1.6082344  2.004612e-01
#> 43 -12.77548455   5.7172520  -6.49999945  -4.97376634   5.6843545 -6.511580e+00
#> 44   7.87577686   4.4654945   2.02644763   7.49516136   4.4560643  2.017758e+00
#> 45  -0.13041315  -5.1855721   8.36831532  -7.40532668  -5.1898595  8.383204e+00
#> 46  -5.35516241   7.0032044   1.89287812  -3.09609157   7.0132003  1.900229e+00
#> 47   7.51800821   0.8560249   5.63294764   3.39519055   0.8172378  5.641474e+00
#> 48  12.07280412 -20.0492593  -4.94393234   5.80418880 -20.0518943 -4.915580e+00
#> 49  -2.23649254   1.0247076   4.79627403  -4.48618152   1.0307158  4.791178e+00
#> 50  20.20569168   1.4178214  10.11621374  11.82872431   1.4087079  1.013776e+01
#>              X6
#> 1   -1.40858378
#> 2    1.07207982
#> 3    3.50041869
#> 4   -2.06255993
#> 5   11.09622926
#> 6    8.89227423
#> 7   -2.75335931
#> 8    9.78326885
#> 9    3.70934172
#> 10   7.69532509
#> 11 -14.57035737
#> 12  -7.20389554
#> 13   0.42151221
#> 14  -4.22599353
#> 15  -1.64441264
#> 16  -3.84831000
#> 17   5.60499342
#> 18  -4.62487007
#> 19   9.81102871
#> 20  -0.83920066
#> 21   1.50512520
#> 22  -0.08125450
#> 23  -2.02903098
#> 24 -13.05831424
#> 25   3.95899158
#> 26   0.93761627
#> 27   4.93596583
#> 28  13.60030540
#> 29   1.07604548
#> 30   0.03042669
#> 31  -3.25687586
#> 32   1.08729402
#> 33  -2.95200753
#> 34   2.79537222
#> 35   3.57952657
#> 36  12.79662174
#> 37  -0.41224688
#> 38  -0.03645503
#> 39  -9.31912428
#> 40   5.40963671
#> 41  -1.69099017
#> 42   0.77923864
#> 43  -5.00067229
#> 44   7.49760779
#> 45  -7.40554767
#> 46  -3.09519023
#> 47   3.37952371
#> 48   5.80402100
#> 49  -4.46498290
#> 50  11.84522252
cvtable(summary(cv.plsR(Y~.,data=dataAstar3,5,NK=100, verbose=FALSE)))
#> ____************************************************____
#> Error in eval(mf, parent.frame()): object 'dataAstar3' not found

dimX <- 6
Astar <- 4
simul_data_UniYX(dimX,Astar)
#>          Y         X1         X2         X3         X4         X5         X6 
#>  4.1025014 -7.3463924 -1.8833438  2.7813756 -5.8684888 -0.4107439  4.2461270 
(dataAstar4 <- data.frame(t(replicate(50,simul_data_UniYX(dimX,Astar)))))
#>                Y           X1           X2          X3           X4
#> 1    0.966031019   4.50068200  -1.94061431   3.7402178   9.53705369
#> 2    3.495971538   8.02106104   3.22040249   4.8583732   4.71601175
#> 3   -1.670187656  -2.85123295  -1.28044149  -2.0228122  -7.45368695
#> 4    6.776411670  -1.65313773   2.03237970   4.9211335  -0.66178490
#> 5   -2.837133817   3.75149740   0.74930417  -2.1141171   6.76443657
#> 6   -3.090030903   1.85817645 -11.75887543   4.8730087  -0.73794398
#> 7    2.051109713   4.77718821   8.02323831  -0.9316928   0.03708379
#> 8    7.389664461  -4.75863834   3.69398209   3.1939522  -8.04082347
#> 9    9.627635282   3.32824120   1.33571275  10.0884911  -1.06203683
#> 10  -0.226408178   0.09123474   9.69438503  -6.0834229   1.83400953
#> 11  -1.896880639  -3.04452889  -3.01264925  -1.0823789  -2.26983188
#> 12  -2.232002377  -2.84021073   4.96370258  -6.5183381  -0.63463906
#> 13   4.361903283  -3.93227840  -3.10445698   5.0062563  -5.09856165
#> 14 -15.151074140  -2.07063564  -3.06376273 -14.5004611   0.86600345
#> 15  -5.150118268   0.46972134  -1.91339687  -3.6978604   2.14253078
#> 16   1.821468706  -5.85561856  -3.58035750   2.1570105   0.96659778
#> 17   5.354033787  14.10975378  15.55440141   1.2229256   9.94728332
#> 18  13.346756685  -6.37944723   3.62587755   8.8088506  -7.23265418
#> 19  -1.876444141  -4.08136765  -4.04430045  -1.1081081  -8.00201728
#> 20   0.286432025   5.25001628  -3.77857011   4.3487252   1.85623546
#> 21  -4.893634969  -6.84102266 -10.67132351  -0.9226245   0.88802679
#> 22 -17.479906863   0.86397862 -14.61131427  -8.1053448   5.28912109
#> 23  -5.970519904  -9.55824956  -8.70219368  -4.2830267 -13.79289519
#> 24  11.830100673  -4.56473566   5.88461719   6.4419748  -6.09922013
#> 25 -13.108851286  -4.36255329  -2.23245896 -13.4950822  -1.69063431
#> 26   0.766468795   4.93581420   2.34223122   0.8549509   4.29308605
#> 27 -13.445290428 -10.39174893  -8.73274916 -12.3041350 -10.19909712
#> 28  -6.887919309  -3.08610363  -5.74355344  -4.5215467  -5.27074432
#> 29   4.018200137   3.50896470  -3.30077486   7.4055212   2.49665829
#> 30   3.300228900   2.66367169   5.63768688   0.6643811  -2.55645973
#> 31  -5.116920292  -1.00378799  -0.05558991  -5.2346620   2.44113148
#> 32  -4.219609448   4.00960831   9.51248664  -8.6100331   2.04055413
#> 33  16.359444387   6.00761376   9.07118039  13.2718654   3.92092304
#> 34  15.228556033   0.87004344   8.09345624  10.7638992  -0.19726769
#> 35  -6.948448988  -7.15303402 -13.36909721  -1.7739551  -4.92127340
#> 36   0.408994809  -4.51098078   0.91030664  -2.0332454  -6.50986719
#> 37   0.744618591   0.04720849  -6.47685893   4.9257665   2.85202746
#> 38  -3.241210024  -9.21759590  -4.76961090  -3.9257373  -3.82689540
#> 39  11.114421886  -5.08209953  -2.93155309  11.2797439  -2.75695757
#> 40   6.550466610   5.00269866   8.22265149   3.4478487   2.46121647
#> 41  -4.617573850  -0.27947483  -1.30340522  -3.9362930  -3.29092805
#> 42  -0.006716945   5.90653668   0.38579251   1.9457905   6.15568801
#> 43  -9.981692586  -3.05601532   0.12834889 -11.3388541   4.36133430
#> 44  -2.430963824   7.42050044   8.61457109  -4.9584686   3.46372229
#> 45  12.471468862   8.19222227   1.03879541  15.0466501   7.95701556
#> 46   0.100983251  12.01505990   6.63291900   0.6671434   7.56202524
#> 47   4.990012231  -4.86603505   1.27598106   2.7874906   0.96174553
#> 48   5.060678322  -0.67182060  -0.36544881   4.8536096  -0.83716419
#> 49  13.599742755   6.99960766   6.85180475  12.1439564   7.16229107
#> 50  -3.262443935   7.73136191   3.36980553  -2.5844432   8.23744657
#>              X5           X6
#> 1    3.10546507   8.75943335
#> 2   -0.05796514   1.54075568
#> 3   -5.86028068  -6.59672126
#> 4    3.03007345   5.90012114
#> 5    3.77272826   0.89945667
#> 6  -14.36149135   2.25322462
#> 7    3.30444318  -5.67128645
#> 8    0.41780007  -0.08179084
#> 9   -3.03290303   5.69245773
#> 10  11.44183555  -4.31039378
#> 11  -2.23279419  -0.30564154
#> 12   7.16040442  -4.32085247
#> 13  -4.25593043   3.84711146
#> 14  -0.09342710 -11.55567798
#> 15  -0.23392278  -1.99863219
#> 16   3.25125657   9.01570694
#> 17  11.41630450  -2.91349902
#> 18   2.76513719   7.98415293
#> 19  -7.96694145  -5.01846735
#> 20  -7.15630305   0.95161804
#> 21  -2.92758431   6.82304833
#> 22 -10.18549421  -3.71102204
#> 23 -12.88557036  -8.49774958
#> 24   4.39218902   4.94449344
#> 25   0.40517274 -10.85014294
#> 26   1.68290564   0.23176969
#> 27  -8.55642976 -12.12425518
#> 28  -7.95598944  -6.71163939
#> 29  -4.31376896   6.39878120
#> 30   0.41085986  -4.57152587
#> 31   3.42085930  -1.80381199
#> 32   7.54634697 -10.58679208
#> 33   6.98597630  11.20854621
#> 34   7.00303727   9.66707478
#> 35 -11.08549523   0.49753277
#> 36  -1.11326943  -4.02839306
#> 37  -3.67568665   7.75985653
#> 38   0.66765200   1.47913194
#> 39  -0.58458609  13.62261220
#> 40   5.65703379   0.89087367
#> 41  -4.31533175  -6.93089191
#> 42   0.64110556   2.20665903
#> 43   7.56560199  -3.90385110
#> 44   4.64156162  -8.93464409
#> 45   0.81156501  14.80883364
#> 46   2.16760214  -3.81518298
#> 47   7.11068531   8.63438251
#> 48  -0.55846990   4.66900855
#> 49   6.99317228  12.29462297
#> 50   3.84947115  -2.09604189
cvtable(summary(cv.plsR(Y~.,data=dataAstar4,5,NK=100, verbose=FALSE)))
#> ____************************************************____
#> Error in eval(mf, parent.frame()): object 'dataAstar4' not found

rm(list=c("dimX","Astar","dataAstar2","dataAstar3","dataAstar4"))
# }