
Computes Predicted Chisquare for k-fold cross-validated partial least squares regression models.
Source:R/kfolds2Chisq.R
kfolds2Chisq.Rd
This function computes Predicted Chisquare for k-fold cross validated partial least squares regression models.
Value
- list
Total Predicted Chisquare vs number of components for the first group partition
- list()
...
- list
Total Predicted Chisquare vs number of components for the last group partition
Note
Use cv.plsRglm
to create k-fold cross validated partial
least squares regression glm models.
References
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. https://www.numdam.org/item/JSFS_2010__151_2_1_0/
See also
kfolds2coeff
, kfolds2Press
,
kfolds2Pressind
, kfolds2Chisqind
,
kfolds2Mclassedind
and kfolds2Mclassed
to
extract and transforms results from k-fold cross validation.
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
# \donttest{
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(object=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=16,verbose=FALSE)
bbb2 <- cv.plsRglm(object=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=5,verbose=FALSE)
kfolds2Chisq(bbb)
#> [[1]]
#> [1] 55.70774 24.52966 20.84377
#>
kfolds2Chisq(bbb2)
#> [[1]]
#> [1] 69.55157 27.20145 26.54985
#>
rm(list=c("XCornell","yCornell","bbb","bbb2"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(object=ypine,dataX=Xpine,nt=4,modele="pls-glm-gaussian",verbose=FALSE)
bbb2 <- cv.plsRglm(object=ypine,dataX=Xpine,nt=10,modele="pls-glm-gaussian",K=10,verbose=FALSE)
kfolds2Chisq(bbb)
#> [[1]]
#> [1] 12.89898 12.44225 10.44155 10.35581
#>
kfolds2Chisq(bbb2)
#> [[1]]
#> [1] 13.55527 12.30310 10.45758 10.94869 11.48481 12.23844 12.10153 11.98165
#> [9] 12.11042 12.10683
#>
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbbNA <- cv.plsRglm(object=ypine,dataX=XpineNAX21,nt=10,modele="pls",K=10,verbose=FALSE)
kfolds2Press(bbbNA)
#> [[1]]
#> [1] 14.05196 14.10976 13.88910 11.23984 11.38487 13.36423 20.93071
#> [8] 39.65877 178.10012
#>
kfolds2Chisq(bbbNA)
#> [[1]]
#> [1] 14.05196 14.10976 13.88910 11.23984 11.38487 13.36423 20.93071
#> [8] 39.65877 178.10012
#>
bbbNA2 <- cv.plsRglm(object=ypine,dataX=XpineNAX21,nt=4,modele="pls-glm-gaussian",verbose=FALSE)
bbbNA3 <- cv.plsRglm(object=ypine,dataX=XpineNAX21,nt=10,modele="pls-glm-gaussian",K=10,
verbose=FALSE)
kfolds2Chisq(bbbNA2)
#> [[1]]
#> [1] 13.88537 13.76352 10.31822 12.90021
#>
kfolds2Chisq(bbbNA3)
#> [[1]]
#> [1] 14.193035 13.426074 12.152154 12.708522 12.930586 10.740865 9.980292
#> [8] 10.665961 10.920715
#>
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2","bbbNA","bbbNA2","bbbNA3"))
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
kfolds2Chisq(cv.plsRglm(object=yaze_compl,dataX=Xaze_compl,nt=4,modele="pls-glm-family",
family="binomial",verbose=FALSE))
#> [[1]]
#> [1] 212.6266 367.4410 1786.6113 12084.5509
#>
kfolds2Chisq(cv.plsRglm(object=yaze_compl,dataX=Xaze_compl,nt=4,modele="pls-glm-logistic",
verbose=FALSE))
#> [[1]]
#> [1] 213.0669 2087.8089 75802.6131 604360.4772
#>
kfolds2Chisq(cv.plsRglm(object=yaze_compl,dataX=Xaze_compl,nt=10,modele="pls-glm-family",
family=binomial(),K=10,verbose=FALSE))
#> [[1]]
#> [1] 205.0276 399.5351 5357.1214 19652.8925 22438.1409
#> [6] 45101.3065 91601.8014 359566.1556 899715.6936 1600524.6150
#>
kfolds2Chisq(cv.plsRglm(object=yaze_compl,dataX=Xaze_compl,nt=10,modele="pls-glm-logistic",
K=10,verbose=FALSE))
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> [[1]]
#> [1] 2.225894e+02 5.840101e+02 1.268689e+04 3.661034e+05 1.466490e+08
#> [6] 3.505241e+12 4.505082e+15 1.351087e+16 2.251800e+16 2.251800e+16
#>
rm(list=c("Xaze_compl","yaze_compl"))
# }