R/kfolds2coeff.R
kfolds2coeff.Rd
This fonction extracts coefficients from k-fold cross validated partial least squares regression models
kfolds2coeff(pls_kfolds)
an object that is a k-fold cross validated partial least squares regression models either lm or glm
matrix with the values of the coefficients for each
leave one out step or NULL
if another type of cross validation was
used.
This fonctions works for plsR and plsRglm models.
Only for NK=1
and leave one out CV
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47
kfolds2Pressind
, kfolds2Press
,
kfolds2Mclassedind
, kfolds2Mclassed
and
summary
to extract and transform
results from k-fold cross validation.
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,K=nrow(XCornell),keepcoeffs=TRUE,
verbose=FALSE)
kfolds2coeff(bbb)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 90.87298 -7.730285 -5.317939 -13.05518 -7.612449 10.6111677 9.346481
#> [2,] 92.08375 -10.476510 -5.782367 -17.77961 -7.207449 -7.0528029 10.556420
#> [3,] 91.99726 -9.787064 -6.457435 -16.59124 -7.879221 -5.1780580 11.296555
#> [4,] 93.11223 -9.180395 -7.969940 -15.39982 -9.450540 -0.4784392 9.484642
#> [5,] 93.60436 -10.510020 -7.605163 -17.88485 -9.971635 -11.5650708 9.778748
#> [6,] 94.86937 -11.914366 -7.224898 -20.18752 -8.149944 -8.9696175 8.585089
#> [7,] 92.23105 -9.632494 -6.603052 -16.34906 -8.168203 -3.6682514 10.603008
#> [8,] 92.46569 -9.885233 -6.735075 -16.81921 -8.272827 -4.0839573 10.373591
#> [9,] 92.46387 -9.579230 -6.777947 -16.25454 -8.298890 -4.1484044 10.358129
#> [10,] 92.60529 -9.691082 -6.914517 -16.46361 -8.382754 -4.2807356 10.236205
#> [11,] 92.36316 -8.747489 -6.589638 -14.87073 -8.309297 -3.4465827 10.445493
#> [12,] 93.42592 -11.114193 -8.038234 -18.87582 -8.783616 -6.9236077 9.690647
#> [,8]
#> [1,] -29.60954
#> [2,] -33.45639
#> [3,] -31.02182
#> [4,] -34.89010
#> [5,] -34.37588
#> [6,] -53.16098
#> [7,] -33.39444
#> [8,] -34.49712
#> [9,] -33.70987
#> [10,] -34.34320
#> [11,] -34.82607
#> [12,] -31.84496
boxplot(kfolds2coeff(bbb)[,2])
rm(list=c("XCornell","yCornell","bbb"))
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb2 <- cv.plsR(object=ypine,dataX=Xpine,nt=4,K=nrow(Xpine),keepcoeffs=TRUE,verbose=FALSE)
kfolds2coeff(bbb2)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 7.814246 -0.002869674 -0.03549716 0.02107684 -0.2219176 0.07293649
#> [2,] 8.361383 -0.002854043 -0.03743841 0.02249864 -0.2164871 0.06909414
#> [3,] 8.650702 -0.002814409 -0.03797563 0.02335471 -0.2733051 0.07768935
#> [4,] 8.558683 -0.002769261 -0.03941925 0.02261582 -0.2486856 0.07253035
#> [5,] 8.218008 -0.002808356 -0.03512320 0.02344851 -0.2380859 0.07483498
#> [6,] 8.305299 -0.002728968 -0.03775406 0.02226888 -0.2278873 0.07310943
#> [7,] 8.544910 -0.002866033 -0.04077690 0.02255038 -0.1986620 0.08297200
#> [8,] 8.071791 -0.002768139 -0.03735800 0.01911647 -0.1574095 0.06347242
#> [9,] 7.713087 -0.002301366 -0.03350332 0.02179469 -0.1982322 0.06886116
#> [10,] 8.193386 -0.002427074 -0.03899699 0.02178240 -0.2476962 0.07823805
#> [11,] 8.878504 -0.003085315 -0.03992126 0.01865159 -0.2000119 0.06161356
#> [12,] 9.117046 -0.003179412 -0.03520851 0.02509672 -0.2355585 0.07948714
#> [13,] 7.765163 -0.002551739 -0.03589722 0.02021236 -0.2297687 0.07507578
#> [14,] 8.298677 -0.002659646 -0.03597977 0.02186039 -0.2382632 0.06852447
#> [15,] 8.306726 -0.002731392 -0.03769351 0.02271611 -0.2067318 0.06867246
#> [16,] 8.700332 -0.003000855 -0.03968194 0.02031214 -0.2439055 0.07971910
#> [17,] 8.363382 -0.002725646 -0.03760331 0.02239444 -0.2284354 0.07265824
#> [18,] 8.297162 -0.002703300 -0.03809335 0.02228154 -0.2452161 0.07683082
#> [19,] 8.262983 -0.002749134 -0.03604436 0.02181592 -0.2560591 0.07712466
#> [20,] 8.876407 -0.003129747 -0.04096829 0.02442558 -0.2257238 0.07799168
#> [21,] 8.201937 -0.002817385 -0.04037497 0.01866908 -0.2256173 0.07206968
#> [22,] 8.284944 -0.002533698 -0.04058031 0.02165310 -0.2387052 0.07384772
#> [23,] 8.797446 -0.002860185 -0.03849982 0.02287225 -0.2398173 0.06896626
#> [24,] 7.929182 -0.002433262 -0.04104596 0.02373045 -0.2080378 0.07196279
#> [25,] 7.989959 -0.002757493 -0.04265244 0.02273451 -0.2204082 0.07554612
#> [26,] 8.387502 -0.002676524 -0.03883171 0.02166663 -0.2438722 0.07389119
#> [27,] 8.472460 -0.002825763 -0.03726580 0.02081686 -0.2401187 0.07506551
#> [28,] 7.911123 -0.002181740 -0.03810400 0.01767450 -0.1808041 0.04804859
#> [29,] 8.351547 -0.002759590 -0.03948543 0.02215742 -0.2302882 0.07157444
#> [30,] 8.433206 -0.002887146 -0.03839730 0.02024058 -0.2138490 0.06996299
#> [31,] 8.443818 -0.003194742 -0.03679137 0.02566206 -0.2401347 0.09821587
#> [32,] 8.304524 -0.003016708 -0.03992431 0.02217589 -0.1715886 0.06046621
#> [33,] 8.457649 -0.002769321 -0.03834922 0.02197341 -0.2326822 0.07359720
#> [,7] [,8] [,9] [,10] [,11]
#> [1,] 0.2447542 -0.2023747 -0.08867027 -0.6756387 -0.3860024
#> [2,] 0.2508868 -0.4458012 -0.08263970 -0.7356824 -0.3964378
#> [3,] 0.2606680 -0.4565363 -0.09217752 -0.7261476 -0.4746015
#> [4,] 0.2586394 -0.5379771 -0.08575226 -0.7061042 -0.4206479
#> [5,] 0.2133057 -0.3908510 -0.08249627 -0.7398298 -0.3869324
#> [6,] 0.2557966 -0.5581856 -0.08777483 -0.7309410 -0.3373923
#> [7,] 0.2140205 -0.5802810 -0.10056348 -0.7089801 -0.3989933
#> [8,] 0.2412951 -0.5263135 -0.09178826 -0.7010010 -0.2785220
#> [9,] 0.2802143 -0.5919984 -0.07268121 -0.8076147 -0.4227010
#> [10,] 0.2415159 -0.6658565 -0.08619423 -0.7333098 -0.3641896
#> [11,] 0.2358135 -0.5397474 -0.06518898 -0.6304151 -0.5049983
#> [12,] 0.2670978 -0.9590753 -0.08518518 -0.6965007 -0.2282369
#> [13,] 0.2021548 -0.4795504 -0.07983647 -0.6572603 -0.3362084
#> [14,] 0.2422333 -0.6637845 -0.07746177 -0.7198954 -0.2925045
#> [15,] 0.2466642 -0.5335098 -0.09370588 -0.6981061 -0.3848060
#> [16,] 0.2507118 -0.4494593 -0.09915981 -0.6924289 -0.4327700
#> [17,] 0.2490739 -0.5898428 -0.08451685 -0.7448365 -0.3305126
#> [18,] 0.2564153 -0.5118346 -0.08873345 -0.7275463 -0.3785027
#> [19,] 0.2611840 -0.4432492 -0.09082157 -0.7323138 -0.3756275
#> [20,] 0.2454048 -0.4253930 -0.09794089 -0.7144557 -0.4743556
#> [21,] 0.2600754 -0.3528332 -0.07860586 -0.6946200 -0.4181529
#> [22,] 0.2715177 -0.6308057 -0.09274944 -0.7124415 -0.3325791
#> [23,] 0.2610561 -0.6266037 -0.08359975 -0.6979821 -0.4452225
#> [24,] 0.2350859 -0.5378953 -0.09799516 -0.7206555 -0.2957781
#> [25,] 0.2374591 -0.3632903 -0.08893607 -0.7293388 -0.2622970
#> [26,] 0.2396266 -0.5755539 -0.08208888 -0.7096107 -0.3818814
#> [27,] 0.2637412 -0.4868311 -0.08269255 -0.7191352 -0.4532000
#> [28,] 0.2315868 -0.6747620 -0.08792043 -0.7548252 -0.2050949
#> [29,] 0.2622808 -0.5122030 -0.08093838 -0.7864637 -0.2986094
#> [30,] 0.2040295 -0.5588206 -0.10558610 -0.5334666 -0.3581429
#> [31,] 0.2718858 -0.3416514 -0.10653476 -0.8057978 -0.3245760
#> [32,] 0.1956558 -0.3607404 -0.06637462 -0.7149729 -0.3418038
#> [33,] 0.2524494 -0.5331250 -0.08739496 -0.7228717 -0.4052381
boxplot(kfolds2coeff(bbb2)[,1])
rm(list=c("Xpine","ypine","bbb2"))