
Number of missclassified individuals for k-fold cross validated partial least squares regression models.
Source:R/kfolds2Mclassed.R
kfolds2Mclassed.Rd
This function indicates the total number of missclassified individuals for k-fold cross validated partial least squares regression models.
Value
- list
Total number of missclassified individuals vs number of components for the first group partition
- list()
...
- list
Total number of missclassified individuals vs number of components for the last group partition
Note
Use cv.plsR
to create k-fold cross validated partial
least squares regression models.
References
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. https://www.numdam.org/item/JSFS_2010__151_2_1_0/
See also
kfolds2coeff
, kfolds2Press
,
kfolds2Pressind
and kfolds2Mclassedind
to
extract and transforms results from k-fold cross validation.
Author
Frédéric Bertrand
frederic.bertrand@lecnam.net
https://fbertran.github.io/homepage/
Examples
# \donttest{
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
kfolds2Mclassed(cv.plsR(object=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=1,verbose=FALSE))
#> [[1]]
#> [1] 44 48 41 39 39 39 39 38 38 38
#>
kfolds2Mclassed(cv.plsR(object=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=2,verbose=FALSE))
#> [[1]]
#> [1] 49 46 41 45 44 45 44 46 46 46
#>
#> [[2]]
#> [1] 49 48 48 50 48 49 50 52 51 51
#>
rm(list=c("Xaze_compl","yaze_compl"))
# }