R/kfolds2Mclassed.R
kfolds2Mclassed.Rd
This function indicates the total number of missclassified individuals for k-fold cross validated partial least squares regression models.
kfolds2Mclassed(pls_kfolds)
a k-fold cross validated partial least squares regression model used on binary data
Total number of missclassified individuals vs number of components for the first group partition
...
Total number of missclassified individuals vs number of components for the last group partition
Use cv.plsR
to create k-fold cross validated partial
least squares regression models.
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47
kfolds2coeff
, kfolds2Press
,
kfolds2Pressind
and kfolds2Mclassedind
to
extract and transforms results from k-fold cross validation.
# \donttest{
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
kfolds2Mclassed(cv.plsR(object=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=1,verbose=FALSE))
#> [[1]]
#> [1] 42 48 45 48 51 53 51 51 50 50
#>
kfolds2Mclassed(cv.plsR(object=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=2,verbose=FALSE))
#> [[1]]
#> [1] 46 51 42 43 40 41 42 41 41 42
#>
#> [[2]]
#> [1] 45 51 48 52 49 49 50 49 49 49
#>
rm(list=c("Xaze_compl","yaze_compl"))
# }