This function computes information criteria for existing plsR model using Degrees of Freedom estimation.

infcrit.dof(modplsR, naive = FALSE)

Arguments

modplsR

A plsR model i.e. an object returned by one of the functions plsR, plsRmodel.default, plsRmodel.formula, PLS_lm or PLS_lm_formula.

naive

A boolean.

Value

matrix

AIC, BIC and gmdl values or NULL.

Details

If naive=FALSE returns AIC, BIC and gmdl values for estimated and naive degrees of freedom. If naive=TRUE returns NULL.

References

M. Hansen, B. Yu. (2001). Model Selection and Minimum Descripion Length Principle, Journal of the American Statistical Association, 96, 746-774.
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association, 106(494), 697-705.
N. Kraemer, M. Sugiyama, M.L. Braun. (2009). Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), 272-279.

See also

plsR.dof for degrees of freedom computation and infcrit.dof for computing information criteria directly from a previously fitted plsR model.

Author

Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/

Examples

data(Cornell) XCornell<-Cornell[,1:7] yCornell<-Cornell[,8] modpls <- plsR(yCornell,XCornell,4)
#> ____************************************************____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Component____ 4 ____ #> ____Predicting X without NA neither in X nor in Y____ #> ****________________________________________________**** #>
infcrit.dof(modpls)
#> DoF.dof sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive #> Nb_Comp_0 1.000000 6.5212706 46.0708838 47.7893514 27.59461 1 #> Nb_Comp_1 2.740749 1.8665281 4.5699686 4.9558156 21.34020 2 #> Nb_Comp_2 5.085967 1.1825195 2.1075461 2.3949331 27.40202 3 #> Nb_Comp_3 5.121086 0.7488308 0.8467795 0.9628191 24.40842 4 #> Nb_Comp_4 5.103312 0.7387162 0.8232505 0.9357846 24.23105 5 #> sigmahat.naive AIC.naive BIC.naive GMDL.naive #> Nb_Comp_0 6.5212706 46.0708838 47.7893514 27.59461 #> Nb_Comp_1 1.8905683 4.1699567 4.4588195 18.37545 #> Nb_Comp_2 1.1088836 1.5370286 1.6860917 17.71117 #> Nb_Comp_3 0.7431421 0.7363469 0.8256118 19.01033 #> Nb_Comp_4 0.7846050 0.8721072 0.9964867 24.16510