This function plots the confidence intervals derived using the function confints.bootpls from from a bootpls based object.

plots.confints.bootpls(
  ic_bootobject,
  indices = NULL,
  legendpos = "topleft",
  prednames = TRUE,
  articlestyle = TRUE,
  xaxisticks = TRUE,
  ltyIC = c(2, 4, 5, 1),
  colIC = c("darkgreen", "blue", "red", "black"),
  typeIC,
  las = par("las"),
  mar,
  mgp,
  ...
)

Arguments

ic_bootobject

an object created with the confints.bootpls function.

indices

vector of indices of the variables to plot. Defaults to NULL: all the predictors will be used.

legendpos

position of the legend as in legend, defaults to "topleft"

prednames

do the original names of the predictors shall be plotted ? Defaults to TRUE: the names are plotted.

articlestyle

do the extra blank zones of the margin shall be removed from the plot ? Defaults to TRUE: the margins are removed.

xaxisticks

do ticks for the x axis shall be plotted ? Defaults to TRUE: the ticks are plotted.

ltyIC

lty as in plot

colIC

col as in plot

typeIC

type of CI to plot. Defaults to typeIC=c("Normal", "Basic", "Percentile", "BCa") if BCa intervals limits were computed and to typeIC=c("Normal", "Basic", "Percentile") otherwise.

las

numeric in 0,1,2,3; the style of axis labels. 0: always parallel to the axis [default], 1: always horizontal, 2: always perpendicular to the axis, 3: always vertical.

mar

A numerical vector of the form c(bottom, left, top, right) which gives the number of lines of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2) + 0.1.

mgp

The margin line (in mex units) for the axis title, axis labels and axis line. Note that mgp[1] affects title whereas mgp[2:3] affect axis. The default is c(3, 1, 0).

...

further options to pass to the plot function.

Value

NULL

See also

Author

Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/

Examples

data(Cornell) modpls <- plsR(Y~.,data=Cornell,3)
#> ____************************************************____ #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Predicting X without NA neither in X nor in Y____ #> ****________________________________________________**** #>
# Lazraq-Cleroux PLS (Y,X) bootstrap set.seed(250) Cornell.bootYX <- bootpls(modpls, R=250, verbose=FALSE) temp.ci <- confints.bootpls(Cornell.bootYX,2:8)
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE, main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:3,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomright")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE, main="Bootstrap confidence intervals for some of the bj")
temp.ci <- confints.bootpls(Cornell.bootYX,typeBCa=FALSE) plots.confints.bootpls(temp.ci)
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
plots.confints.bootpls(temp.ci,2:8)
plots.confints.bootpls(temp.ci,prednames=FALSE)
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
# Bastien CSDA 2005 (Y,T) bootstrap Cornell.boot <- bootpls(modpls, typeboot="fmodel_np", R=250, verbose=FALSE) temp.ci <- confints.bootpls(Cornell.boot,2:8) plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE, main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:3,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomright")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE, main="Bootstrap confidence intervals for some of the bj")
temp.ci <- confints.bootpls(Cornell.boot,typeBCa=FALSE) plots.confints.bootpls(temp.ci)
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
plots.confints.bootpls(temp.ci,2:8)
plots.confints.bootpls(temp.ci,prednames=FALSE)
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
#> Warning: zero-length arrow is of indeterminate angle and so skipped
# \donttest{ data(aze_compl) modplsglm <- plsRglm(y~.,data=aze_compl,3,modele="pls-glm-logistic")
#> ____************************************************____ #> #> Family: binomial #> Link function: logit #> #> ____Component____ 1 ____ #> ____Component____ 2 ____ #> ____Component____ 3 ____ #> ____Predicting X without NA neither in X or Y____ #> ****________________________________________________**** #>
# Lazraq-Cleroux PLS (Y,X) bootstrap # should be run with R=1000 but takes much longer time aze_compl.bootYX3 <- bootplsglm(modplsglm, typeboot="plsmodel", R=250, verbose=FALSE)
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
temp.ci <- confints.bootpls(aze_compl.bootYX3)
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE, main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomleft")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE, main="Bootstrap confidence intervals for some of the bj")
plots.confints.bootpls(temp.ci,indices=1:34,prednames=FALSE)
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE,ltyIC=1,colIC=c(1,2))
temp.ci <- confints.bootpls(aze_compl.bootYX3,1:34,typeBCa=FALSE) plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE)
# Bastien CSDA 2005 (Y,T) Bootstrap # much faster aze_compl.bootYT3 <- bootplsglm(modplsglm, R=1000, verbose=FALSE) temp.ci <- confints.bootpls(aze_compl.bootYT3) plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,typeIC="Normal")
plots.confints.bootpls(temp.ci,typeIC=c("Normal","Basic"))
plots.confints.bootpls(temp.ci,typeIC="BCa",legendpos="bottomleft")
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE, main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomleft")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE, main="Bootstrap confidence intervals for some of the bj")
plots.confints.bootpls(temp.ci,prednames=FALSE,ltyIC=c(2,1),colIC=c(1,2))
temp.ci <- confints.bootpls(aze_compl.bootYT3,1:33,typeBCa=FALSE) plots.confints.bootpls(temp.ci,prednames=FALSE)
# }